This disclosure is related to electronic packages, and more particularly, to improved heat dissipation in substrate-based electronic packages.
Electronic packaging technology demands smaller and more complex packages. A heat slug, or heat spreader, is a rectangular metal plate used to dissipate heat away from electronic devices. Typically, heat slugs are mounted on top of the package or die. This adds to manufacturing cost. If a heat slug is not used, junction temperature will increase, eventually leading to system failure.
U.S. Pat. No. 5,642,261 (Bond et al), U.S. Pat. No. 5,285,352 (Pastore et al), and U.S. Pat. No. 6,282,094 (Lo et al) disclose heat slugs, but in these disclosures, the heat slug is packaged completely differently from the present disclosure.
It is the primary objective of the present disclosure to embed a heat slug within a substrate.
Another objective of the present disclosure is to provide a method to improve the heat flow out of electronic devices in a package.
A further objective is to provide an electronic package having an embedded heat slug.
A yet further objective is to provide an electronic package in which a heat slug is embedded in the substrate dielectric layer and in which the heat slug is not exposed on its top or bottom side.
In accordance with the objectives of the present disclosure, a method of fabricating an electronic package is achieved. A substrate is provided having three or more layers, comprising a dielectric layer and a metal layer within the dielectric layer thermally connected to at least one metal layer on top of the dielectric layer and to at least one metal layer on bottom of the dielectric layer. A heat slug is embedded completely within the dielectric layer. A die is attached above the substrate. Thermal paths to the heat slug are linked through all of the metal layers.
Also in accordance with the objectives of the present disclosure, a method of fabricating an electronic package is achieved. A substrate is provided having three or more layers, comprising a dielectric layer and a metal layer within the dielectric layer thermally connected to at least one metal layer on top of the dielectric layer and to at least one metal layer on bottom of the dielectric layer wherein the thermally connected metal layers form ground signal interconnects. A heat slug is embedded completely within the dielectric layer. A die is attached above the substrate wherein the die has no direct connection to the heat slug. Thermal paths are linked to the heat slug through the ground signal interconnects.
Also in accordance with the objectives of the present disclosure, an electronic package is achieved. The electronic package comprises a substrate having three or more metal layers, comprising a dielectric core layer and a metal layer within the dielectric core layer thermally connected to at least one metal layer on top of the dielectric core layer and to at least one metal layer on bottom of the dielectric core layer. A die is attached above the substrate and a heat slug is embedded within the dielectric layer wherein the heat slug has no direct contact to the die and wherein the heat slug is thermally connected to each of the metal layers.
In the accompanying drawings forming a material part of this description, there is shown:
The present disclosure provides an electronic package having improved heat flow as well as increased miniaturization. Embedding a heat slug within a substrate minimizes junction temperature increases without increasing the assembly process manufacturing cost. As far as the assembly process is concerned, mounting the heat slug on top of the die will increase the manufacturing cost since it will incur additional assembly process and will increase through-put time. However, substrate manufacturing is not part of the assembly process and as a result, will not affect assembly cost since the heat slug is already embedded inside the substrate prior to assembly manufacturing.
In the process of the present disclosure, a heat slug will be embedded in a substrate underneath the die, just below the die attach glue. This will enable the heat flow to be concentrated to the substrate. Other advantages of this concept are:
This method should be applicable to all packages using a BT (Bismaleimide Triazine) rigid laminate substrate. For example, a ball grid array (BGA) package with wire bonds is shown. However, it is also possible to embed a heat slug in other packages, such as Flip Chip Chip Scale Package (FC-CSP), Land Grid Arrays (LGA), or System in Package (SIP).
Referring now more particularly to
Now, a first metal layer 12 and second metal layer 14 are formed on the top and bottom of the core material 10, respectively. Thermal via connections 13 are formed in the first metal layer to connect to the heat slug 25 and to connect metal 12 and metal 14, as shown in
Now, in
The metal layers 12/14/17 are thermally connected, forming ground signal interconnects (traces, vias and planes). Ground planes are the metal layers that are internal to the substrates. These metal layers or planes are directly in contact with the heat slug; that is, the heat slug is linked to each of the ground metal layers (traces, planes and vias composing the ground net signals).
The heat slug has no direct contact to the solder balls 50 or to the silicon die 46. All thermal connections or thermal paths are linked to the heat slug through the ground planes of all layers. On electronic packages, the die contains the components that generate heat. When power is inputted to the chip (or die) and the system turns on, heat is generated inside the chip. This heat will be dissipated throughout the package through the heat transfer process called conduction. With the help of the heat slug, a major percentage of heat can flow to the system printed circuit board (PCB), not shown. The PCB is a mounting board used by the end-customer and is not part of the electronic package.
The embedded heat slug of the present disclosure is applicable to a substrate having three or more layers. Referring now more particularly to
Now, a first metal layer 12 and second metal layer 14 are formed on the top and bottom of the core material 10, respectively. Thermal via connections 13 are formed in the first metal layer to connect to the heat slug 25 and to connect metal 12 and metal 14, as shown in
Now, in
The method and device of the present disclosure allow electronic packages to be thinner, which is advantageous for constructing smaller applications, such as mobile phones, for example. Another advantage is that electronic packages of the present disclosure can be allowed to dissipate more power than previous devices, which can be used in high performance chips.
A Finite Differential Modeling (FDM) technique was employed to assess thermal performance of the electronic package of the present disclosure. The simulation suggests that more heat is absorbed by the embedded heat slug of the present disclosure and that the heat dissipates quickly from the package going to the printed circuit board. Furthermore, copper traces can be routed away from the embedded heat slug using multilayer substrates making the design flexible.
Although the preferred embodiment of the present disclosure has been illustrated, and that form has been described in detail, it will be readily understood by those skilled in the art that various modifications may be made therein without departing from the spirit of the disclosure or from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
13368016.5 | May 2013 | EP | regional |