IC substrate with over voltage protection function

Information

  • Patent Grant
  • 7528467
  • Patent Number
    7,528,467
  • Date Filed
    Tuesday, February 28, 2006
    18 years ago
  • Date Issued
    Tuesday, May 5, 2009
    15 years ago
Abstract
The present invention relates to an IC substrate provided with over voltage protection functions and thus, a plurality of over voltage protection devices are provided on a single substrate to protect an IC chip directly. According to the present invention, there is no need to install protection devices at respective I/O ports on a printed circuit board to prevent the IC devices from damage by surge pulses. Therefore, the costs to design circuits are reduced, the limited space is efficiently utilized, and unit costs to install respective protection devices are lowered down.
Description
FIELD OF THE INVENTION

The present invention relates to an IC substrate with over voltage protection functions, more particularly, to an IC substrate provided with a structure having multiple over voltage protection devices.


BACKGROUND OF THE INVENTION

A conventional over voltage protection device is installed near I/O ports on a printed circuit board to protect internal IC devices according to demands by each IC device. However, such design requires installing independent over voltage protection devices in accordance with requirements of respective circuits to prevent respective IC devices from being damaged by surge pulses.


Please refer to FIG. 1a, which is a top view of an IC device disposed on a conventional substrate. In FIG. 1a, there are a plurality of electrodes (11) and a grounding line (13) disposed on a substrate (12). Then, an IC device (10) is soldered to the plurality of electrodes and the grounding line. FIG. 1b is a sectional view of the IC device disposed on the conventional substrate. In FIG. 1b, we can understand the relationship among the constituent elements. Because such structure cannot provide over voltage protection functions, the IC device cannot withstand the energy of surge pulses, which result in an irrecoverable damage to the IC device.


In order to protect the IC device, several over voltage protection devices are frequently proposed. However, those over voltage protection devices need to install individual protection devices on a printed circuit board according to actual demands after the IC device was manufactured and installed near the I/O ports on the printed circuit board. Therefore, such design has the disadvantages of high design costs, wasting limited space, and providing incomplete protection for the IC device.


Therefore, there is a need to provide an IC substrate with over voltage protection functions. In this substrate, a plurality of over voltage protection devices are provided simultaneously to solve the problems with the prior arts that is unable to provide the over voltage protection or to eliminate the inconvenience in the prior arts that needs to install individual protection, devices on a printed circuit board. The present invention provides an IC substrate with over voltage protection functions to eliminate such inconvenience.


SUMMARY OF INVENTION

An object of the present invention is to provide an IC substrate with over voltage protection functions and a method for manufacturing the same and thus, the IC device can be protected against the presence of surge pulses.


Another object of the present invention is to provide an IC substrate with over voltage protection functions and a method for manufacturing the same, wherein the grounding lines are disposed on a lower surface of a substrate and thus, the space is saved and the costs are reduced.


Still another object of the present invention is to provide a substrate having a plurality of over voltage protection devices, so that the design costs are reduced, the space is saved and the unit costs needed for installing protection device on the IC circuits are reduced.


Further still another object is to provide an IC substrate with over voltage protection functions and a method for manufacturing the same, wherein the substrate can be designed by all kinds of IC packaging methods, such as Dual In-line Package (DIP) and Surface Mount Devices SMD.


Another object of the present invention is to provide an IC substrate with over voltage protection functions and a method for manufacturing the same, wherein the protection circuits are installed after the IC is packaged.


In order to accomplish the above objects, the IC substrate comprises a substrate, and a grounding conductor layer for forming a grounding terminal. The grounding terminal is disposed on the lower surface of the substrate and extends to an upper surface of the substrate, thereby to expose one or more terminals on the upper surface of the substrate. One or more variable resistance material layers are disposed on exposed terminals of the grounding conductor layer. The grounding conductor layer terminals are electrically connected with the variable resistance material layers. A plurality of conductor layers form electrode terminals. Each conductor layer is disposed on the substrate and overlays on each of the variable resistance material, so as to form a connection with each of the variable resistance material layers. In practical application, the substrate is made of ceramic substrate or Printed Circuit Board (PCB).


In order to understand the technical contents and features of the present invention with ease, the present invention is described by referring to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be illustrated according to the following drawings, wherein:



FIG. 1
a is a top view of an IC device disposed on a conventional substrate;



FIG. 1
b is a sectional view of an IC device disposed on a conventional substrate;



FIGS. 2
a, 2b and 2c are sectional views of an IC substrate formed with over voltage protection functions according to an embodiment of the present invention;



FIGS. 2
d and 2e are top views of an IC substrate formed with over voltage protection functions according to the embodiment of the present invention;



FIGS. 3, 4 and 5 are sectional views of an IC substrate formed with over voltage protection functions according to another embodiment of the present invention;



FIGS. 6
a and 6b are top views of a multi-layer IC substrate formed with over voltage protection functions according to an embodiment of the present invention;



FIGS. 7
a, 7b and 7c are sectional views of a multi-layer IC substrate formed with over voltage protection functions according to an embodiment of the present invention;



FIGS. 8
a, 8b, 8c, 8d and 8e are sectional views of a BGA IC package formed with over voltage protection functions according to an embodiment of the present invention;



FIG. 8
f is a top view of a BGA IC package formed with over voltage protection functions according to an embodiment of the present invention;



FIGS. 9
a and 9b are sectional views of the IC substrate with over voltage protection functions according to an embodiment of the present invention; and



FIGS. 10
a, 10b, 10c, 10d, 10e and 10f are sectional views of an IC substrate formed with over voltage protection functions according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiments of the present invention are described with reference to the drawings.



FIGS. 2
a, 2b and 2c are sectional views of an IC substrate formed with over voltage protection functions according to an embodiment of the present invention. As shown in FIG. 2a, a first conductor layer is formed to be a grounding conductor layer (23) on a substrate (22). The first conductor layer is formed on a lower surface (22b) of the substrate and extends through the substrate to its upper surface (22a). One or more terminals (27) are formed on the upper surface of the substrate. As shown in FIG. 2b, one or more variable resistance material layers (24) are formed to overlay the terminals of the grounding conductor layer (23) so as to form connection with the grounding conductor layer. In addition, a plurality of second conductor layers (21) are formed to be upper electrodes. The second conductor layers overlay on the variable resistance material layers (24) so as to form connection with each of the variable resistance material layers. FIG. 2c is a sectional view of an IC chip (20) disposed on the substrate. A chip (20) is connected with the upper electrodes (21) by soldering, and a protection layer (25) is added to the chip to prevent from dust and moisture. FIG. 2d is a top view of the invention in FIG. 2a. FIG. 2e is a top view of the invention in FIG. 2b.



FIG. 3 shows another embodiment of connecting an IC chip with the upper electrodes by wire bonding. A first conductor layer is formed to be a grounding conductor layer (33) on a substrate (32). The first conductor layer is formed on a lower surface (32b) of the substrate and extends through the substrate to its upper surface (32a). One or more terminals are formed on the upper surface of the substrate, one or more variable resistance material layers (34) are formed to overlay the terminals of the grounding conductor layer (33) so as to form connection with the grounding conductor layer. In addition, a plurality of second conductor layers (31) formed to be upper electrodes. The second conductor layers overlay on the variable resistance material layers (34) so as to form connection with each of the variable resistance material layers. A chip (30) is connected with the upper electrodes (31) wire bonding (38) and a protection layer (35) is added to the chip (30) to prevent from dust and moisture.



FIG. 4 is a sectional view of an IC substrate with over voltage protection functions according to another embodiment of the present invention. As shown in FIG. 4, one or more variable resistance material layers (44) are formed on a substrate. The variable resistance material layers are disposed on the lower surface (42b) of the substrate. A grounding conductor layer (43) is formed to be a grounding terminal. The grounding terminal is disposed on the lower surface of the substrate and extends to overlay on each of the variable resistance material layers. A plurality of conductor layers (41) are formed to be electrodes. The conductor layers are disposed on the upper surface (42a) of the substrate, and extend through the substrate to its lower surface so as to form connection with each of the variable resistance material layers. A chip (40) is connected with the conductor layers (41) by soldering at (48).



FIG. 5 is a sectional view of an IC substrate with over voltage protection functions according to further another embodiment of the present invention. As shown in FIG. 5, a grounding conductor layer (53) is formed on a substrate to be a grounding terminal. The grounding terminal is disposed on the lower surface (52b) of the substrate. One or more variable resistance material layers (54) are disposed through the substrate and are connected with the grounding conductor layer. A plurality of conductor layers (51) are formed to be electrode terminals. Each of the conductor layers are disposed on the upper surface (52a) of the substrate, and overlays each of the variable resistance material layers and is connected with them.


When a surge pulse occurs, the energy of the surge pulse will enter the electrode terminals (51) to propagate to the grounding terminal (53) through the variable resistance material layers (54). Because the nature of the variable resistance materials and its structure, the energy of the surge pulse will be released evenly to the grounding lines and thus, the IC device (50) will not be damaged and the object to protect the IC device is achieved.



FIGS. 6
a and 6b are top views of a multi-layer IC substrate formed with over voltage protection functions according to an embodiment of the present invention. As shown in FIG. 6a, one or more grounding conductor layers (83) are formed on a first substrate (821) to be grounding terminals, which extend to a upper surface (821a) of the first substrate and is disposed on the lower surface (821b) of the first substrate, thereby forming one or more terminals (87) on the upper surface of the first substrate. One or more variable resistance material layer (84) are formed on the first substrate (821) and overlay the terminals of grounding conductor layers (83) appeared on the substrate and are connected with each of the grounding conductor layers. A plurality of first conductor layers (811) are formed on the upper surface of the first substrate (821). Each of the conductor layers (811) is disposed on the substrate and overlays on each of the variable resistance material layers (84), so as to form an electrical connection with each of the variable resistance material layers. The plurality of first conductor layers (811) extend through the first substrate (821), and terminals (87) of the first conductor layer (811) appear on the upper and lower surfaces of the first substrate (821).


As shown in FIG. 6b, a plurality of second conductor layers (812) are formed on a second substrate (822) to be electrode terminals. The plurality of second conductor layers extend through the second substrate (822), and terminals (87) of the second conductor layer appear on the upper surface (822a) of the second substrate (822). The second substrate (822) is disposed on the upper surface of the first substrate (821), wherein the first conductor layers (811) are electrically connected with the second conductor layers (812). In FIG. 6b, an IC chip (80) is disposed on the second substrate (822), and is connected with the second conductor layers by soldering at (88). A protection layer (85) is added to the second substrate.



FIGS. 7
a, 7b and 7c are sectional views of forming a multi-layer IC substrate formed with over voltage protection functions according to an embodiment of the present invention. As shown in FIG. 7a, a plurality of first conductor layers (611) are formed on a first substrate (621). Each of the first conductor layers (611) is disposed through the first substrate, and terminals of the conductor layer appear on the upper surface (621a) and lower surface (621b) of the first substrate (621). A plurality of second conductor layers (612) are formed on a second substrate (622). Each of the second conductor layers (612) is disposed through the second substrate (622), and terminals of the conductor layer (612) appear on the upper surface (622a) and lower surface (622b) of the second substrate (622). Holes are formed in the second substrate (622) and filled with one or more variable resistance material layers (64). The variable resistance material layer (64) is disposed through the second substrate (622). Terminals of the variable resistance material layers appear on the upper surface of the second substrate. A grounding conductor layer (63) is formed on the second substrate (622) to be a grounding terminal, which is disposed on the lower surface of the second substrate. A plurality of third conductor layers (613) are formed on a third substrate (623) to be electrode terminals. The plurality of third conductor layers are disposed through the third substrate and on the upper (623a) and lower surfaces (623b) of the third substrate.


As shown in FIG. 7b, the second substrate (622) overlays the first substrate (621). The lower portion of the variable resistance material layers (64) is connected with the grounding conductor layer (63). The terminals (612) of the second conductor layer on the lower surface of the second substrate are connected with the terminals (611) of the first conductor layer on the upper surface of the first substrate (621). The third substrate (623) overlays the second substrate (622). The third conductor layer (613) is connected with the variable resistance material layer (64) and the terminals (612) on the upper surface of the second conductor layer (612), respectively.


As shown in FIG. 7c, an IC chip (60) is disposed on the third substrate (623). The chip (60) is connected with the upper electrodes by soldering. A protection layer (65) is added to prevent from dust and moisture.


Please note that the variable resistance material layers can be made of non-linear resistance materials.



FIGS. 8
a, 8b, 8c, 8d and 8e are sectional views of a Ball Grid Array (BGA) IC package formed with over voltage protection functions according to an embodiment of the present invention. FIG. 8f is a top view of a BGA IC package formed with over voltage protection functions according to an embodiment of the present invention.


As shown in FIG. 8a, a plurality of grounding conductor layers (731a, 731b, 731c) are formed on a BGA IC package to be grounding terminals. Each of the terminals is disposed on the surface of the BGA IC package. As shown in FIGS. 8b and 8f, one or more variable resistance material layers (74) are formed on the plurality of grounding conductor layers (731a, 731b). Each of the variable resistance material layers is disposed on the terminals of the grounding conductor layers (731a, 731b) and is connected with each of the grounding conductor layers. As shown in FIG. 8c, a plurality of variable resistance material layers (74) are connected with electrode terminals (71) and grounding conductor layers (731a, 731b). As shown in FIG. 8d, a second protective layer (76) is disposed on the electrode terminals and the variable resistance materials layers. FIG. 8e is a sectional view of an embodiment of the present invention after solders are added on the electrode terminals and the grounding conductor layers.



FIGS. 9
a and 9b are sectional views of the IC substrate with over voltage protection functions according to an embodiment of the present invention. As shown in FIG. 9a, a plurality of grounding conductor layers (93) are formed on a substrate (92). One or more variable resistance material layers (94) are formed on the plurality of grounding conductor layers (93). Each of the variable resistance material layers is disposed on the grounding conductor layers (93) and is connected with each of the grounding conductor layers. A plurality of variable resistance materials layers (94) are connected with electrode terminals (91) and the grounding conductor layers (93). A protection layer (95) is formed as a chamber by the upper half and the bottom half. The substrate (92) is disposed in the bottom half of the protection layer (95). A plurality of electrodes (96) are disposed on the sidewalls of the bottom half of the protection layer. The plurality of electrodes (96) are connected with the electrode terminals (91) by wire bonding (99). As shown in FIG. 9b, a chip (90) is disposed over the substrate and is connected with the electrode terminals. The upper half of the protection layer is connected with the bottom half of the protection layer to form the IC substrate.



FIGS. 10
a, 10b, 10c, 10d, 10e and 10f are sectional views of an IC substrate formed with over voltage protection functions according to an embodiment of the present invention.


According to an embodiment of the present invention, a method for forming an IC substrate with over voltage protection functions comprises the following steps. As shown in FIGS. 10a and 10b, one or more desired holes are formed in the substrate (102) by laser or punching. As shown in FIG. 10c, the holes are filled variable resistance material layers (104). As shown in FIG. 10d, a lower electrode (103) is formed on the substrate. The lower electrode (103) overlays each of the variable resistance material layers (104) and is connected with the variable resistance material layers (104). As shown in FIG. 10e, a plurality of upper electrodes (101) are formed on the upper surface (102a) of the substrate (102). Said upper electrodes (101) overlay each of the variable resistance material layers (104) and are connected with the variable resistance material layers (104). Said upper electrodes and lower electrodes are formed by printing or metal foil pressing. FIG. 10f is a sectional view of an IC chip (100) disposed on the substrate (102).


Although the invention has been disclosed in terms of preferred embodiments, the disclosure is not intended to limit the invention. The invention still can be modified or varied by persons skilled in the art without departing from the scope and spirit of the invention which is determined by the claims below.

Claims
  • 1. An IC substrate with over voltage protection functions, comprising: a first substrate;a plurality of the first grounding conductor layers disposed through the first substrate, thereby terminals of the first grounding conductor layers being exposed on an upper surface and a lower surface of the first substrate;a second substrate disposed on the first substrate;a plurality of the second conductor layers disposed through the second substrate, thereby terminals of the second conductor layers being exposed on an upper surface and a lower surface of the second substrate, wherein the terminals exposed on the lower surface of the second substrate are connected with the first conductor layers exposed on the upper surface of the first substrate;a grounding conductor layer for forming a grounding terminal disposed on the lower surface of the second substrate;one or more variable resistance material layers disposed through the second substrate, so that lower terminals of the variable resistance material layers is connected with the grounding conductor layer and upper terminals of the variable resistance material layers are exposed on the upper surface of the second substrate;a third substrate disposed on the upper surface of the second substrate; anda plurality of the third conductor layers for forming electrode terminals through the third substrate, the terminals exposed on a lower surface of the third substrate being connected with the second conductor layers of the second substrate, and terminals of the third conductor layers being exposed on the upper surface of the third substrate.
  • 2. The IC substrate with over voltage protection functions of claim 1, wherein the variable resistance material layers are non-linear resistance material layers.
  • 3. The IC substrate with over voltage protection functions of claim 1, wherein the substrate are made of ceramic materials or polymer materials.
  • 4. The IC substrate with over voltage protection functions of claim 1, wherein the electrode terminals are connected with a chip by soldering.
  • 5. The IC substrate with over voltage protection functions of claim 1, further comprising a protection layer for reducing the influence from an outside environment.
  • 6. The IC substrate with over voltage protection functions of claim 1, wherein the electrode terminals are connected with a chip by wire bonding.
Priority Claims (1)
Number Date Country Kind
91113365 A Jun 2002 TW national
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. Non-Provisional application Ser. No. 10/463,984, filed Jun. 18, 2003, now U.S. Pat. No. 7,053,468, the entire contents of which are incorporated herein by reference.

US Referenced Citations (43)
Number Name Date Kind
3648364 Endo Mar 1972 A
4959505 Ott Sep 1990 A
4993142 Burke et al. Feb 1991 A
5831510 Zhang et al. Nov 1998 A
5866942 Suzuki et al. Feb 1999 A
5884391 McGuire et al. Mar 1999 A
5888837 Fillion et al. Mar 1999 A
6013358 Winnett et al. Jan 2000 A
6160695 Winnett et al. Dec 2000 A
6162159 Martini et al. Dec 2000 A
6166914 Sugiyama et al. Dec 2000 A
6172590 Shrier et al. Jan 2001 B1
6223423 Hogge May 2001 B1
6239687 Shrier et al. May 2001 B1
6242997 Barrett et al. Jun 2001 B1
6285275 Chen et al. Sep 2001 B1
6297722 Yeh Oct 2001 B1
6429533 Li et al. Aug 2002 B1
6431456 Nishizawa et al. Aug 2002 B2
6498715 Lee et al. Dec 2002 B2
6556123 Iwao et al. Apr 2003 B1
6573567 Nishizawa et al. Jun 2003 B1
6587008 Hatanaka et al. Jul 2003 B2
6657532 Shrier et al. Dec 2003 B1
6667546 Huang et al. Dec 2003 B2
6693508 Whitney et al. Feb 2004 B2
6806553 Yashima et al. Oct 2004 B2
6844564 Tanaka et al. Jan 2005 B2
6849954 Lee Feb 2005 B2
6950293 Anthony Sep 2005 B2
7218492 Shrier May 2007 B2
20010000658 Barrett et al. May 2001 A1
20020050912 Shrier et al. May 2002 A1
20020072147 Sayanagi et al. Jun 2002 A1
20020139578 Alcoe et al. Oct 2002 A1
20030038345 Lee Feb 2003 A1
20030123205 Ashiya Jul 2003 A1
20040041277 Kimura et al. Mar 2004 A1
20040056277 Karnezos Mar 2004 A1
20050161682 Mazzochette et al. Jul 2005 A1
20060017144 Uematsu Jan 2006 A1
20060232292 Shimizume et al. Oct 2006 A1
20070108598 Zhong et al. May 2007 A1
Foreign Referenced Citations (3)
Number Date Country
9-260106 Oct 1997 JP
11-68261 Mar 1999 JP
ROC377504 Dec 1999 TW
Related Publications (1)
Number Date Country
20060138609 A1 Jun 2006 US
Divisions (1)
Number Date Country
Parent 10463984 Jun 2003 US
Child 11363771 US