Information
-
Patent Grant
-
6541851
-
Patent Number
6,541,851
-
Date Filed
Friday, July 20, 200123 years ago
-
Date Issued
Tuesday, April 1, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Tran; Minh Loan
- Tran; Tan
Agents
- Antonelli, Terry, Stout & Kraus, LLP
-
CPC
-
US Classifications
Field of Search
US
- 257 666
- 257 674
- 257 676
- 257 677
- 257 690
- 257 692
- 257 696
- 257 735
- 257 736
- 257 784
- 257 668
- 257 669
-
International Classifications
-
Abstract
In a semiconductor device, a lead frame is adhered to a base substrate for heat dissipation via an insulating layer, and an outward guided terminal portion is formed by perpendicularly upwardly bending an end of the lead frame after the mounting of one or more of power semiconductor elements on the lead frame. A recessed portion is formed beforehand in a portion of the lead frame to be bent, and it is ensured that the lead frame does not adhere to the surface of the base substrate in this recessed portion when the lead frame is adhered to the base substrate via the insulating layer before the bending of the lead frame. By virtue of this structure, manufacturing is simplified and manufacturing costs are reduced.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device in which one or more of power semiconductor elements is/are mounted on a lead frame and then this assembly is insertionally molded with a resin and, particularly, to a semiconductor device in which a portion of the lead frame serving as an outward guided terminal stands up generally perpendicularly from the lead frame.
In semiconductor devices known as power semiconductor devices operating with relatively large electric power, it is an important problem as to how the heat generated by the semiconductor elements are efficiently conducted and dissipated to the outside under a sufficient withstand voltage characteristic.
Therefore, hitherto, the so-called a semiconductor device composed of a lead frame has been known, in which device the lead frame is used as a circuit conductor and one or more of power semiconductor elements is/are mounted on one surface of the lead frame and then a base substrate made from a metal having excellent thermal conductivity is joined to the other surface of the lead frame via a resin insulating layer, which is designed for realizing the compatibility between high dielectric withstanding voltage and low thermal resistance characteristics.
FIG. 8
shows an example of this semiconductor device composed of the lead frame, which is disclosed in JP-A-11-42663. As shown therein, a lead frame
13
is used, which frame is formed substantially integrally from a conductor plate of copper, etc. having a uniform thickness. This lead frame
13
is adhered to one surface (a top side surface) of a metal base substrate
15
via an insulating layer
18
, whereby the lead frame can play a role as a pattern of the conductor on a usual circuit board.
A predetermined end portion of the lead frame
13
is bent so that it stands up generally perpendicularly from the bonding surface of the base substrate
15
and thus an outward guided terminal portion
17
is formed. The outward guided terminal portion
17
and one or more of power semiconductor elements
11
are electrically connected with each other to the lead frame
13
by mounting the power semiconductor elements
11
on the lead frame
13
, and necessary portions are connected with each other by an aluminum bonding wire
16
, whereby necessary circuits such as the main circuit, etc. of a power converter are formed.
The reason why the lead frame
13
is bent perpendicularly to the surface of the base substrate
15
is to keep an insulation distance from the base substrate
15
.
At the same time, for the same reason, the bending position of the lead frame
13
comes inward from an end surface of the base substrate
15
toward the center thereof (right direction).
The lead frame
13
is adhered to the one surface (a top surface) of the base substrate
15
via the thin insulating layer
18
and, therefore, the heat generated by the power semiconductor elements
11
are conducted to the base substrate
15
via the insulating layer
18
, thereby ensuring the dissipation of heat. Therefore, this base substrate
15
is fabricated from a metal plate composing a metal such as aluminum and copper, which are excellent in thermal conductivity.
The insulating layer
18
serves to adhere the lead frame
13
to the base substrate
15
and serves the function of physically spacing both apart and electrically insulating therebetween with each other. For this reason, the insulating layer
18
is made from a thermosetting resin such as an epoxy resin having a glassy-transition temperature of not less than 100° C. and this material is used in the form of a resin sheet.
A molded outer package (not shown) is adhered to the base substrate
15
by an adhesive or the like, in which package a resin such as an epoxy resin is filled. Thus, the remaining portion on the lead frame
13
except for the terminal portion
17
extending perpendicularly from the bonding surface of the lead frame
13
to the surafece of the insulating layer
18
, and one or more of power semiconductor elements
11
mounted thereon by bonding with a solder layer
26
are encapsulated, whereby a semiconductor device is completed.
In the above prior art, no consideration is given to the fact the terminal portion of the lead frame stands up from the bonding surface of the lead frame to be fixedly adhered to the surface of the insulating layer and, therefore, it is a problem that manufacturing process becomes complicated.
Normally, according to the prior art, if a semiconductor device in which, as shown in
FIG. 8
, the terminal portion
17
stands up generally perpendicularly from the bonding surface of the lead frame to be fixedly adhered to the surface of the base substrate, it is necessary to form the lead frame in such a manner that the terminal portion is bent beforehand and then to adhere this bent lead frame to the base substrate.
This is because a lead frame placed on the surface of the base substrate in an unbent state generally comes into contact with the insulating layer including the outward guided terminal portion and fixedly adheres thereto, with the result that it becomes difficult to bend the lead frame later.
A manufacturing process of semiconductor devices in accordance with the prior art will be described as shown in FIGS.
9
(
a
) to
9
(
c
).
First of all, as shown in FIG.
9
(
a
), a lead frame
13
is prepared, which frame is bent beforehand so as to form an outward guided terminal portion
17
. This lead frame
13
is placed on the surface of a base substrate
15
with an insulation resin sheet
18
′ for insulative adhesion interposed therebetween, and is then heated under pressure to thereby obtain the state shown in FIG.
9
(
b
). The resin sheet
18
′ sets hard and thereafter forms an insulating layer
18
. As a result, the lead frame
13
is fixedly adhered to the surface of the base substrate
15
.
Next, similarly as shown in FIG.
9
(
b
), solder printing treatment necessary for the formation of a solder layer
26
is exerted on the surface of the lead frame
13
for mounting one or more of the semiconductor elements
11
thereon. Subsequently, as shown in FIG.
9
(
c
), the semiconductor elements
11
are superimposed on the solder layer
26
and the semiconductor elements
11
are joined to the lead frame
13
by heating under pressure. After that, a predetermined wiring is performed by means of a bonding wire
16
.
In the prior art, however, there arose the following problems in these steps and thus the manufacturing process was obliged to become complicated as mentioned above.
The outward guided terminal portion
17
stands up from the lead frame
13
and, therefore, first of all, in the step of FIG.
9
(
a
), it is necessary to prevent the interference (i.e., the collision) of the outward guided terminal portion
17
with a compression press and the like. This leads to an increase in equipment size and hence an increase in the amount of investment.
Next, in the step of FIG.
9
(
b
), a mask and a squeegee for solder layer printing interfere with the outward guided terminal portion
17
. Therefore, it is difficult to perform solder printing treatment for forming the solder layer
26
on the lead frame
13
and techniques such as screen printing cannot be applied thereto.
Further, in the step of FIG.
9
(
c
), the outward guided terminal portion
17
stands a great physical difficulties to the operating range of mounting equipment necessary for mounting parts on the lead frame
13
and it is difficult to solve this problem with a usual mounting equipment.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a semiconductor device composed of a lead frame in which the possibility of a complicated manufacturing process is prevented and a reduction in manufacturing cost can be satisfactorily achieved.
The above object is achieved by providing a semiconductor device in which a lead frame fixedly adhered via an insulating layer to one surface of a base substrate serves as a circuit conductor and on which frame one or more of semiconductors are mounted so as to bend an end portion of said lead frame in a stand-up direction from the bonding surface of the lead frame to be fixedly adhered to the surface of said base substrate as an outward guided terminal portion, wherein, in a portion of the lead frame, there is formed a recessed portion whose thickness is reduced from the bonding surface of the lead frame to be fixedly adhered to the surface of the base substrate and the lead frame is bent at this recessed portion having a reduced thickness.
The stand-up position of the lead frame from the surface of the base substrate may be spaced apart by a predetermined specific distance from an end surface of the base substrate. A curved portion following a straight portion may also be formed in a stand-up portion of the lead frame from the surface of the base substrate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a sectional view illustrative of a first embodiment of a semiconductor device according to the present invention,
FIGS.
2
(
a
) to
2
(
d
) are explanatory diagrams of a manufacturing process of the semiconductor device according to the present invention,
FIG. 3
is a sectional view illustrative of a second embodiment of the semiconductor device according to the present invention,
FIG. 4
is a sectional view illustrative of a third embodiment of a semiconductor device according to the present invention,
FIG. 5
is a sectional view illustrative of a fourth embodiment of a semiconductor device according to the present invention,
FIG. 6
is a top plan view illustrative of the fourth embodiment of the semiconductor device according to the present invention,
FIG. 7
is a circuit diagram illustrative of the fourth embodiment of the semiconductor device according to the present invention,
FIG. 8
is a sectional view illustrative of an example of a semiconductor device according to the prior art, and
FIG.
9
(
a
) to FIG.
9
(
c
) are explanatory diagrams of a manufacturing process of the semiconductor device according to the prior art.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Semiconductor device according to the present invention will be described below in further detail with reference to the accompanying drawings.
FIG. 1
shows a first embodiment of a semiconductor device according to the present invention. In this figure, one or more of power semiconductor elements
11
, a lead frame
13
, a base substrate
15
, a bonding wire
16
, an outward guided terminal portion
17
and a solder layer
26
are the same prior art semiconductor device as described in FIG.
8
.
More specifically, the terminal that is guided to outside the package of the semiconductor device as the outward guided terminal portion
17
is extended on the base substrate
15
inside the package to form the lead frame
13
. This lead frame
13
is fixedly adhered to the base substrate
15
with the insulating layer
18
interposed therebetween, and the power semiconductor elements
11
are directly joined to the lead frame
13
via the solder layer
26
.
The lead frame
13
and the power semiconductor elements
11
are each electrically connected by the bonding wire
16
represented by an aluminum wire to form a predetermined circuit.
As described in connection with the prior art, the direction to which the lead frame
13
is to be guided as the outward guided terminal portion
17
must be perpendicular to the surface of the base substrate
15
in order to ensure a necessary insulation distance and, for this reason, the position where the lead frame
13
is perpendicularly (upward direction) bent must be spaced inside by a distance of not less than d
4
from an end surface of the base substrate
15
toward the center direction (right direction) of the base substrate
15
.
The distance d
4
from an end surface of the base substrate
15
is determined by a voltage applied between the lead frame
13
and the base substrate
15
and is primarily determined by dielectric withstand voltage characteristic required for the semiconductor device.
Therefore, the embodiment shown in
FIG. 1
differs from that of the prior art shown in
FIG. 8
in that the lead frame
13
includes portions each having different thicknesses of d
1
and d
2
, respectively. The thickness of the lead frame
13
is adapted to be d
1
(fixedly adhered portion) in a portion where the lead frame
13
is fixedly adhered to the base substrate with the insulating layer
18
interposed therebetween while the thickness of the lead frame is adapted to be d
2
in another portion
130
of the lead frame
13
where the lead frame
13
is bent in order to form the outward guided terminal portion
17
, wherein the relationship therebetween is d
1
>d
2
and this portion
130
having a reduced thickness is formed on the lead frame
13
in a manner such that the thickness is reduced from the bonding surface of the lead frame
13
which is fixedly adhered to the base substrate
15
via the insulating layer
18
. The above-mentioned features are essential to the present invention.
In other words, the lead frame
13
of the embodiment shown in
FIG. 1
differs from the prior art in that it is formed with the portion
130
having a reduced thickness, and in that the lead frame
13
is bent in this portion
130
to form the outward guided portion
17
in a perpendicular standing upright position.
In this embodiment, the lead frame
13
on which this portion
130
is formed beforehand is superimposed on the insulating layer
18
in a flat state and is fixedly adhered to the base substrate
15
. After the mounting of parts, the lead frame
13
is perpendicularly bent at a predetermined position of the base substrate
15
to thereby form the outward guided terminal portion
17
.
In this case, however, if the lead frame
13
including the portion to be bent is completely adhered to the insulating layer
18
as in the prior art, on bending the lead frame
13
is stripped off from the insulating layer
18
, with the result that the insulating layer
18
might be damaged.
In this embodiment, therefore, in order to form the outward guided terminal portion
17
, a longitudinally extending portion of the lead frame
13
is formed with the portion
130
having a reduced thickness. With regard to the length d
5
, it is adapted to be longer than the distance d
4
necessary for insulation, that is, it is ensured that the relationship therebetween is held true to be d
5
>d
4
and in addition to the above the lead frame
13
is adapted to be bent in this portion
130
when forming the outward guided portion
17
.
The portion
130
provided in the lead frame
13
is formed, as mentioned above, on the lead frame
13
as a recessed portion from the surface on which the lead frame
13
is fixedly adhered to the base substrate
15
. For this reason, even when the lead frame
13
is fixedly adhered to the base substrate
15
via the insulating layer
18
as it is, the lead frame
13
is spaced apart at a predetermined distance from the insulating layer
18
in this portion
130
and works so that it keeps a state in which the lead frame
13
is not fixedly adhered to the base substrate
15
in this portion
130
.
Therefore, according to this embodiment, even when after fixedly adhereing the lead frame
13
to the surface of the base substrate
15
in a flat state via the insulating layer
18
, this lead frame
13
is perpendicularly bent to thereby form the outward guided terminal portion
17
, it can be ensured that there is no possibility of damage to the insulating layer
18
at all.
Next, a part of a manufacturing process of the semiconductor device according to the embodiment shown in
FIG. 1
will be described with reference to FIGS.
2
(
a
) to
2
(
d
).
First of all, as shown in FIG.
2
(
a
), the lead frame
13
having a reduced thickness portion
130
is prepared and superimposed on the base substrate
15
in a flat state with the resin sheet
18
′ interposed therebetween, and the lead frame
13
is fixedly adhered to the base substrate
15
by heating under pressure after predetermined positioning, whereby as shown in FIG.
2
(
b
), the lead frame
13
in a flat state is adapted to be fixedly adhered to the base substrate
15
via the insulating layer
18
.
The level difference between the bottom of the recessed portion of the portion
130
and the surface of the insulating layer
18
, i.e., the difference between the original thickness d
1
of the lead frame
13
and the thickness d
2
of the portion
130
(=d
1
−d
2
) should generally be about 0.1 to 0.2 mm. However, this level difference is not limited to the above numerical values and may be arbitrarily determined according to the thickness of the lead frame
13
and specifications for the insulating layer
18
.
Furthermore, with regard to the length d
5
of the portion
130
, the condition that it is longer than the above distance d
4
required for insulation, i.e., the relationship therebetween of d
5
>d
4
may be preferably kept. The portion
130
is not restricted to be formed in only the peripheral end portion of the base substrate
15
and but may be extended to the leading end of the outward guided terminal portion
17
. Therefore, the dimensional conditions necessary for the lead frame
13
are d
1
>d
2
and d
4
<d
5
.
Next, similarly as shown in FIG.
2
(
b
), a predetermined portion of the lead frame
13
, i.e., the portion on which one or more of power semiconductor elements are mounted is subjected to solder printing treatment necessary for the formation of the solder layer
26
and after that, as shown in FIG.
2
(
c
), the semiconductor elements
11
are positioned. Subsequently, as shown in FIG.
2
(
d
), the semiconductor elements
11
are joined to the lead frame
13
via the solder layer
26
and wiring is then performed by means of the bonding wire
16
.
After that, an end portion of the lead frame
13
(left side end) is held by means of a predetermined jig from the upper side in the figure so that the lead frame
13
is not stripped off from the insulating layer
18
and then, as indicated by the arrow A in FIG.
2
(
c
), the outward guided terminal portion
17
is formed by standing the lead frame
13
up generally perpendicularly to the surface of the base substrate
15
, whereby a semiconductor device in a state shown in
FIG. 1
can be obtained.
In the case of this embodiment, when the lead frame
13
is fixedly adhered to the base substrate
15
via the insulating layer
18
, the lead frame
13
is superimposed in a flat state on the insulating layer
18
and there are no any obstacles on the surface of the lead frame
13
.
Therefore, according to this embodiment, it is possible to apply screen printing treatment by a screen mask and a squeegee without any differences from the solder printing treatment for the surface of an ordinary printed circuit board. As a result of this, the reliability of a power semiconductor device can be satisfactorily improved by the application of screen printing, which facilitates the control of various conditions such as layer thickness, shape, etc. in solder application treatment.
Furthermore, for this reason, the interference by the stand-up portion of the lead frame
13
does not occur during the mounting of parts or wire bonding. Therefore, according to this embodiment, the limitation for various kinds of equipment to be used in the assembling steps shown in FIGS.
2
(
a
) to
2
(
d
) can be minimized and hence a cost rise can be efficiently reduced.
In the case of this embodiment, it is possible to locate the bending position of the lead frame
13
at an arbitrary position in the portion
130
and, therefore, the lead frame
13
can be easily stood up from the arbitrary position inward from an end surface of the base substrate
15
.
In addition, because the lead frame
13
may have a flat shape as it is, this lead frame
13
is excellent in the loading efficiency and is easy to be fixedly adhered and enables the quality during transportation to be easily ensured. Furthermore, when the lead frame
13
is fixedly adhered to the insulating layer
18
, the size of press equipment can be minimized. This is advantageous for reducing the costs for equipment and in terms of working cost when the lead frame
13
is fixedly adhered.
Furthermore, because the lead frame
13
in this embodiment can be easily stamped by press working, etc. and is flat, it can be manufactured by the etching process in the same way as with an ordinary printed circuit board and does not require special manufacturing techniques.
Incidentally, with regard to the size d
3
in
FIG. 1
, the relationship of d
3
=d
1
is a basis as mentioned above. However, there is no special dimensional limitation. Therefore, the relationship of d
3
=d
2
is allowed and other plate thicknesses may be used.
Next, a second embodiment of the present invention will be described with reference to FIG.
3
.
In a semiconductor device, there is provided a device in which its terminals may be led out from a peripheral portion of the package and the embodiment shown in
FIG. 3
is applied to this type of semiconductor device. Therefore, the second embodiment shown in
FIG. 3
differs from the first embodiment shown in
FIG. 1
in that the outward guided terminal portion
17
firstly stands up perpendicularly upwardly to the base substrate
15
and then bent again at a position by the distance d
5
spaced from an end surface of the base substrate
15
and is finally led out horizontally to the base substrate
15
.
The distance d
5
is provided, as mentioned above, in order to keep a predetermined insulation distance from the base substrate
15
and its value is determined by a voltage applied to the lead frame
13
. However, once the distance d
5
is obtained, there is no limitation to the bending direction or the number of bending of the leading end of the lead frame
13
. Therefore, the lead frame
13
may be led out as the outward guided terminal portion
17
so that the lead frame
13
can be ultimately handled with ease as a product.
Therefore, the adoption of this embodiment shown in
FIG. 3
also enables the reliability of a power semiconductor device to be satisfactorily improved and a cost rise to be efficiently reduced. Thus, the same effects as with the embodiment shown in
FIG. 1
can be obtained from the embodiment shown in FIG.
3
.
Next, a third embodiment of the present invention will be described with reference to FIG.
4
.
The third embodiment shown in
FIG. 4
differs from the first embodiment shown in
FIG. 1
in that the position in which the perpendicular bending of the lead frame
13
is started is not at one end c of the portion
130
, but at a point between the one end c and the end surface a of the base substrate
15
, and in that after a non-bent portion dx is provided between the above one end c and a midway point b, the lead frame
13
is perpendicularly upwardly bent while forming a curved portion R from this point b to thereby form the outward guided terminal portion
17
.
Therefore, the adoption of this embodiment shown in
FIG. 4
also enables the reliability of a power semiconductor device to be sufficiently improved and a cost rise to be efficiently reduced. Thus, the same effects as with the embodiment shown in
FIG. 1
can be obtained from the embodiment shown in FIG.
4
. In addition, because the non-bent portion dx provides a clearance portion during the bending of the lead frame
13
, the bonding surface can be positively held by means of a jig and the lead frame
13
can be gently bent in the curved portion R. The shape and size of the above non-bent portion dx and curved portion R can be selectively changed as required.
Next, a fourth embodiment of the present invention applied to a semiconductor device for a power converter will be described with reference to
FIGS. 5
to
7
.
FIG. 5
is a sectional view of the semiconductor device, the view being taken along line A-A′ of
FIG. 6
,
FIG. 6
is a top plan view of the semiconductor device before sealing with a resin, and
FIG. 7
is a circuit diagram of the semiconductor device.
In the embodiment shown in
FIGS. 5
to
7
, a main circuit including one or more of power semiconductor elements
11
are composed of a lead frame
13
, and an integrated circuit
23
, such as a driver IC for driving the power semiconductor elements
11
, and a peripheral control circuit part
22
are integrally mounted on a printed circuit board
21
.
The main circuit is provided with an outward guided terminal
17
formed by bending the lead frame
13
, the printed circuit board
21
is provided with a control terminal
24
, and all mounted parts are housed in a resin-molded outer package and integrally sealed with a resin sealing agent
32
. The numeral
31
in
FIG. 6
indicates a mounting hole.
In the case of this embodiment, the arrangement of the printed circuit board
21
and mounted parts within the semiconductor device is mere a part of the arrangement as a semiconductor device. Therefore, by connecting various printed circuit boards for a power supply portion, control portion, communication portion, display portion, etc. not shown in addition to this arrangement, it is possible to arrange a semiconductor device as a power converter and all the more higher level system.
According to the present invention, it is possible to obtain the effects enumerated below:
(1) Because the lead frame in a flat state can be fixedly adhered to the insulating layer, the solder layer can be formed by the screen printing method, with the result that cost reduction can be achieved and, at the same time, the quality control and reliability of the semiconductor device can be enhanced.
(2) For the same reason, also for mounting parts on the lead frame, it can be ensured that there are no obstacles to various mounts such as a die bonder and the like. Therefore, there is little apprehension that mounting conditions might be limited and hence productivity increases.
(3) Because the lead frame can be bent in an arbitrary position during the formation of the outward guided terminal, the position in which the outward guided terminal is led out can be arbitrarily selected and the range to which the semiconductor device is applicable becomes wide.
(4) Because the lead frame itself is a two-dimensionally shaped one, the loading efficiency during transportation can be improved.
(5) It is possible to reduce the size of equipment necessary for fixedly adhering the lead frame under pressure.
Claims
- 1. A semiconductor device in which a lead frame fixedly adhered via an insulating layer to one surface of a base substrate serves as a circuit conductor and on which lead frame one or more of power semiconductor elements are mounted, wherein an end portion of said lead frame is bent to form a stand-up portion in a stand-up direction from the surface of said base substrate as an outward guided terminal,wherein the lead frame has a first thickness in a first portion fixedly adhered to the surface of the base substrate, and wherein the lead frame has a recessed portion having a second thickness, less than the first thickness, said recessed portion being formed in a lower portion of the stand-up portion beginning adjacent to said first portion and extending upwardly along said stand-up portion.
- 2. A semiconductor device according to claim 1, wherein the stand-up portion of the lead frame from the surface of the base substrate is spaced inwardly apart by a predetermined specific distance from an end surface of the base substrate.
- 3. A semiconductor device according to claim 2, wherein said recessed portion includes a first recessed portion extending in a direction of the surface of the base substrate and spaced apart from the base substrate, a second recessed portion extending in the stand-up direction along the stand-up portion, and a curved recessed portion which extends between the first recessed portion and the second recessed portion, wherein the curved recessed portion curves from the direction of the surface of the base substrate to the stand-up direction.
- 4. A semiconductor device according to claim 2, wherein the recessed portion begins at a bend point at which said lead frame begins to bend in the stand-up direction, wherein said bend point is immediately adjacent to said first portion of said lead frame.
- 5. A semiconductor device according to claim 1, wherein the recessed portion begins at a bend point at which said lead frame begins to bend in the stand-up direction, wherein said bend point is immediately adjacent to said first portion of said lead frame.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-220855 |
Jul 2000 |
JP |
|
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
5777380 |
Otsuki et al. |
Jul 1998 |
A |
6277225 |
Kinsman et al. |
Aug 2001 |
B1 |
6313598 |
Tamba et al. |
Nov 2001 |
B1 |
Foreign Referenced Citations (1)
Number |
Date |
Country |
1142663 |
Feb 1999 |
JP |