The present invention relates to interconnection technologies within semiconductor chips, especially to a method for fabricating semiconductor chip devices with Through-Silicon-Via (TSV).
Integrated circuits (IC) are fabricated on the active surface of a chip. Conventionally the electrical terminals of a chip are only formed on the active surface such as bonding pads. In order to increase package densities within the smallest footprint, a plurality of chips are vertically stacked with electrical terminals disposed not only on the active surfaces of a chip but also on the back surface to increase the electrical interconnections between chips. This is why the Through-Silicon-Via (TSV) connection is developed, TSV's electrically connect vertically stacked chips through the electrical terminals on the active surfaces as well as on the back surfaces of the chips. However, the existing TSV technologies involve many front-end semiconductor fabrication processes and materials such as a plurality of photo masks, a plurality of photolithography, sputtering, electrical plating processes and also many back-end packaging manufacture processes such as chip alignment, chip bonding, solder ball placement, etc. In order to fill conductive materials into TSV, the most common processes should include the steps as follows. TSV, which is still a blind via but not through hole (TH) in a wafer form, has to be covered with dielectrics in advance to form a dielectric via, then a conductive seed layer was disposed in the dielectric via and followed by electrical plating of conductive materials, and then finally the TSV in wafer. The wafer is lapped until TSV is exposed from the back surface of the wafer. Due to the complicated fabrication method of TSV, the processes become unstable with lower yields and higher costs. A conventional TSV technology is taught by Mashino, revealed in US patent application publication No. US 2003/0092256 A1.
As shown in
Furthermore, the insulation layer 150 is disposed on the lapped back surface 112 of the chip 110 after wafer lapping. Then a plurality of external pads 180 are disposed at the other end of the through holes 140 on the back surface 112 of the chip 110. Another passivation layer 190 may cover the back surface 112 of the chip 110. Since the redistributed pads 120 and the external pads 180 are disposed without protruding from the active surface 111 and the bottom surface 112 of the chip 110, therefore, bumps or solder balls (not shown in the figures) are disposed as electrical connections between chip stacks or to chip carriers. Consequently, the through holes 140 and electrical insulation including the dielectric layer 113 and the insulation layer 150 are disposed in several steps and the disposition of external terminals 180 are needed, therefore, the overall fabrication method are complicated with longer lead times and higher fabrication costs.
The main purpose of the present invention is to provide a semiconductor device with TSV (Through-Silicon-Via) and its fabrication method by using flexible metal wire in chip to pass through the through holes of the chip and to form protruded integral terminals on both ends of the through holes to provide good resistance to stresses and to provide electrical connections for vertical chip stacking and for high-density chip carriers without electrical open.
The second purpose of the present invention is to provide a semiconductor device with TSV and its fabrication method to provide good electrical connections between stacked chips or chip carriers and to simplify process flow to reduce fabrication lead times and costs.
According to the present invention, a semiconductor device with TSV primarily comprises a chip, a redistributed trace layer, a passivation layer, a through hole, an insulation layer, and a flexible metal wire. The chip has an active surface, a back surface, and a bonding pad formed on the active surface. The redistributed trace layer is disposed on the active surface and includes a redistributed pad electrically connected to the bonding pad. The passivation layer is formed over the active surface of the chip to cover the redistributed trace layer with the redistributed pad exposed. The through hole is formed through the redistributed pad and penetrates the chip from the active surface to the back surface. The insulation layer is formed inside the through hole. The flexible metal wire has a first terminal and a second terminal, wherein the first terminal is bonded to the redistributed pads and the second terminal passes through the through hole and protrudes from the back surface of the chip. The fabrication process of the semiconductor device is also revealed in the present invention.
Please refer to the attached drawings, the present invention will be described by means of embodiment(s) below.
According to the first embodiment of the present invention as shown in
The redistributed trace layer 220 is electrically conductive and is disposed on the active surface 211. The redistributed trace layer 220 includes a plurality of redistributed pads 221 electrically connected to the bonding pads 213 to change the locations of the electrical terminals of the chip 210, i.e., from the locations of the bonding pads 213 to the redistributed pads 221. In the present embodiment, the redistributed pads 221 are located at the peripheries of the active surface 211 of the chip 210 without any integrated circuits under them. The first passivation layer 230 is an electrically isolating material formed over the active surface 211 of the chip 210 where the first passivation layer 230 covers the redistributed trace layers 220 with the redistributed pads 221 exposed. Preferably, the first passivation layer 230 has a plurality of openings aligned with the redistributed pads 221, which diameters are larger than the ones of the through holes 240 so that the redistributed pads 221 have exposed surfaces surrounding the through holes 240 for bonding one end 261 of the flexible metal wires 260.
The through holes 240 are formed through the corresponding redistributed pads 221 and penetrate the chip 210 from the active surface 211 to the back surface 212. The insulation layer 250 is formed inside the through holes 240. Preferably, the insulation layer 250 can further be formed over the back surface 212 of the chip 210 to prevent leakage current and electrical short.
Each flexible metal wire 260 has a first terminal 261 and a second terminal 262, as shown in
The semiconductor device 200 may further comprises a plurality of external pads 270 corresponding to the through holes 240 disposed on the back surface 212 of the chip 210. A second passivation layer 280 is disposed on the back surface 212 of the chip 210 to protect and secure the external pads 270. To be more specific, the second terminals 262 of the flexible metal wire 260 can be ball bonds as well and are protrusively bonded to the external pads 270 on the back surface 212 of the chip 210. Preferably, as shown in
Therefore, the semiconductor device 200 of the present invention implements a flexible metal wire 260 passing through the through holes 240 to form two protruded integral terminals, i.e., the first terminals 261 and the second terminals 262, to reduce the cost of fabricating the TSV, to provide good resistance to stresses and good reliability, and to provide electrical connections for vertical chip stacking and for high-density chip carriers without electrical open. Furthermore, extruded electrical terminals are formed at both ends of the TSV, therefore, the disposition of bumps or solder balls is not necessary to reduce the fabrication cost and to enhance the reliability of the semiconductor device 200.
The fabrication method are described in details from
Firstly, as shown in
Then, as shown in
Then, as shown in
Then, as shown in
Optionally, as shown in
Optionally, as shown in
Then, as shown in
Then, as shown in
Finally, as shown in
As shown in
In the second embodiment of the present invention, as shown in
The though holes 340 are formed through the corresponding redistributed pads 321 and penetrate the chip 310 from the active surface 311 to the back surface 312. The insulation layer 350 is formed inside the through holes 340. Preferably, the insulation layer 350 is further formed over the back surface 312 of the chip 310 to protect the chip 310. Each flexible metal wire 360 has a first terminal 361 and a second terminal 362 where the first terminal 361 is bonded to the redistributed pad 321 and the second terminal 362 passes through the through hole 340 and protrudes from the back surface 312 of the chip 310. In the present embodiment, the first terminals 361 are ball bonds and the second terminals 362 are suspended to be movable with respect to the redistributed pad 321 so that the passivation layer on the back surface 312 of the chip 310 can be eliminated to simplify fabrication method and to save fabrication costs. Preferably, solder paste 370 is disposed on the second terminals 362 of the flexible metal wire 360 for external soldering.
In conclusions, the flexible metal wires 360 in the present invention pass through the through holes 340 of the chip 310 to form the first extruded terminals 361 on the active surface 311 and the second extruded terminals 362 on the back surface 312 as external electrical terminals which are integral and stress-resistant. When stacking a plurality of semiconductor devices 300, high-density connections can be achieved between the stacked semiconductor devices 300 with good electrical connections between the chips 310 or between the chip 310 and the chip carrier. Moreover, the fabrication process flow is simplified to reduce the lead times and the cost.
The above description of embodiments of this invention is intended to be illustrative and not limiting. Other embodiments of this invention will be obvious to those skilled in the art in view of the above disclosure.
This application is a Divisional of co-pending application Ser. No. 11/984,785, filed on Nov. 27, 2007, and for which priority is claimed under 35 U.S.C. §120, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11984785 | Nov 2007 | US |
Child | 12722251 | US |