Plasma-enhanced cyclic layer deposition process for barrier layers

Information

  • Patent Grant
  • 7473638
  • Patent Number
    7,473,638
  • Date Filed
    Thursday, July 20, 2006
    17 years ago
  • Date Issued
    Tuesday, January 6, 2009
    15 years ago
Abstract
In one embodiment, a method for forming a metal-containing material on a substrate is provided which includes forming a metal containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process, exposing the substrate to a soak process, and depositing a conductive material on the substrate by a second vapor deposition process. The substrate may be exposed to a silicon-containing compound (e.g., silane) during the soak process. In some examples, a metallic nitride layer may be deposited subsequent to the soak process and prior to the second vapor deposition process. In other examples, the metal containing barrier layer contains metallic titanium, the metallic nitride layer contains titanium nitride, and the conductive material contains tungsten or copper. The plasma-enhanced cyclical vapor deposition process may further include exposing the substrate to a nitrogen precursor, such as nitrogen, hydrogen, a nitrogen/hydrogen mixture, ammonia, hydrazine, or derivatives thereof.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to an apparatus and method of integration of titanium and titanium nitride layers.


2. Description of the Related Art


Reliably producing sub-micron and smaller features is one of the key technologies for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. However, as the fringes of circuit technology are pressed, the shrinking dimensions of interconnects in VLSI and ULSI technology have placed additional demands on the processing capabilities. The multilevel interconnects that lie at the heart of this technology require precise processing of high aspect ratio features, such as vias and other interconnects. Reliable formation of these interconnects is very important to VLSI and ULSI success and to the continued effort to increase circuit density and quality of individual substrates.


As circuit densities increase, the widths of interconnects, such as vias, trenches, contacts, and other features, as well as the dielectric materials between, decrease to sub-micron dimensions (e.g., 0.20 micrometers or less), whereas the thickness of the dielectric layers remain substantially constant, with the result of increasing the aspect ratios (i.e., height divided by width) of the features. Many traditional deposition processes have difficulty filling sub-micron structures where the aspect ratio exceeds 4:1. Therefore, there is a great amount of ongoing effort being directed at the formation of substantially void-free and seam-free sub-micron features having high aspect ratios.


In the manufacture of integrated circuits, a titanium/titanium (Ti/TiN) film stack, a titanium nitride layer over a titanium layer, is often used as a liner barrier. For example, Ti/TiN film stack may be used to provide contacts to the source and drain of a transistor. For example, a Ti layer is deposited over a silicon substrate. A portion of the Ti layer, which is in contact with the silicon substrate, is converted to titanium silicide (TiSix) in situ or in an annealing step. A TiN layer is deposited over the Ti layer. The titanium nitride layer is used as a barrier layer to inhibit the diffusion of metals into regions underlying the barrier layer. A metal layer, such as a tungsten (W) layer, is deposited over the TiN layer.


A Ti layer and a TiN layer may be formed by chemical vapor deposition and/or physical vapor deposition techniques. One example of forming a Ti Layer by chemical vapor deposition includes reacting titanium tetrachloride (TiCl4) with a hydrogen plasma. One example of forming a TiN layer by chemical vapor deposition includes reacting TiCl4 with a nitrogen reactant, such as a nitrogen plasma or ammonia (NH3). One problem with the use of TiCl4-based chemistry used to form a TiN layer over a Ti layer is that reliability problems can occur. In particular, the TiN layer may have poor adhesion over the Ti layer, resulting in peeling of the TiN layer off the Ti layer.


Therefore, there is a need for an improved apparatus and method of integration of titanium and titanium nitride layers.


SUMMARY OF THE INVENTION

Embodiments of the present invention generally relate to an apparatus and method of integration of titanium and titanium nitride layers. One embodiment includes providing one or more cycles of a first set of compounds, providing one or more cycles of a second set of compounds, and providing one or more cycles of a third set of compounds. One cycle of the first set of compounds includes introducing a titanium precursor and a reductant. One cycle of the second set of compounds includes introducing the titanium precursor and a silicon precursor. One cycle of the third set of compounds includes introducing the titanium precursor and a nitrogen precursor. Another embodiment includes depositing a titanium layer utilizing titanium halide. Then, a passivation layer is deposited over the titanium layer utilizing titanium halide. The passivation layer may comprise titanium silicide, titanium silicon nitride, and combinations thereof. Then, a titanium nitride layer is deposited over the passivation layer utilizing titanium halide. Still another embodiment comprises depositing a titanium layer over a surface of a substrate. Then, the titanium layer is treated with a soak with a silicon precursor at a substrate temperature of about 550° C. or less to form a treated titanium layer. Then, a titanium nitride layer is deposited over the treated titanium layer.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a flow chart illustrating one embodiment of a process of integrating a titanium layer and a titanium nitride layer by forming a titanium silicide layer and/or a titanium silicon nitride layer between the titanium layer and the titanium nitride layer.



FIG. 2A is a graph of the control signals of an exemplary process for cyclical deposition of a material.



FIG. 2B is a graph of the control signals of one exemplary process for chemical vapor deposition of a material.



FIG. 2C is a graph of one exemplary process of the control signals for a combined mode of cyclical deposition and chemical vapor deposition.



FIG. 3A is a flow chart illustrating one embodiment of a process utilizing a continuous flow of a purge gas to deposit a Ti layer, a TiSix layer, and a TiN layer by cyclical deposition in the same chamber.



FIG. 3B is a flow chart illustrating one embodiment of a process utilizing pulses of a purge gas to deposit a Ti layer, a TiSix layer, and a TiN layer by cyclical deposition in the same chamber.



FIG. 3C is a flow chart illustrating one embodiment of a process utilizing a continuous flow of a purge gas to deposit a Ti layer, a TiSixNy layer, and a TiN layer by cyclical deposition in the same chamber.



FIG. 3D is a flow chart illustrating one embodiment of a process utilizing pulses of a purge gas to deposit a Ti layer, a TiSixNy layer, and a TiN layer by cyclical deposition in the same chamber.



FIGS. 4 and 4A are drawings of an exemplary processing chamber that may be used to perform cyclical deposition, chemical vapor deposition, or a combined mode of cyclical deposition and chemical vapor deposition.



FIG. 5 is a flow chart illustrating another embodiment of a process of integrating a Ti layer and a TiN layer by soaking a Ti layer with a flow of a silicon precursor prior to deposition of a TiN layer thereover.



FIG. 6 is a schematic cross-sectional view of one embodiment of an exemplary application of an integrated Ti/TiN film stack.



FIG. 7 is a schematic cross-sectional view of another embodiment of an exemplary application of an integrated Ti/TiN film stack.





DETAILED DESCRIPTION

Formation of a TiSix and/or a TiSixNy film



FIG. 1 is a flow chart illustrating one embodiment of a process of integrating a titanium (Ti) layer and a titanium nitride (TiN) layer by forming a titanium silicide (TiSix) layer and/or a titanium silicon nitride (TiSixNy) layer between the Ti layer and the TiN layer. In step 10, a Ti layer may be formed over a substrate structure by cyclical deposition, chemical vapor deposition, or a combined mode of cyclical deposition and chemical vapor deposition. In step 20, a passivation layer comprising titanium silicide and/or titanium silicon nitride may be formed over the Ti layer by cyclical deposition, chemical vapor deposition, or a combined mode of cyclical deposition and chemical vapor deposition. In step 30, a TiN layer may be formed over the passivation layer by cyclical deposition, chemical vapor deposition, or a combined mode of cyclical deposition and chemical vapor deposition.


Not wishing to be bound by theory, it is believed that the TiSix layer or TiSixNy helps protect the interface between the Ti layer and a subsequently deposited TiN layer resulting in improved adhesion of the TiN layer thereover. In the embodiment in which TiN is deposited utilizing a titanium halide, it is believed that the TiSix layer or TiSixNy reduces the attack of the halide from the titanium halide used during deposition of TiN and thus provides a Ti/TiN film stack with improved adhesion.


The term “substrate structure” as used herein is intended to include any workpiece upon which film processing is performed and may be used to denote a substrate, such as a semiconductor substrate or a glass substrate, as well as other material layers formed on the substrate, such as a dielectric layer. The term “cyclical deposition” as used herein refers to the sequential introduction of one or more compounds to deposit a thin layer over a structure and includes processing techniques such as atomic layer deposition. Compounds can be reactants, reductants, precursors, catalysts, and mixtures thereof. Sequentially providing compounds may result in the adsorption of thin layers of the compounds over a substrate structure. The sequential introduction of compounds may be repeated to deposit a plurality of thin layers forming a conformal layer to a desired thickness. The terms “adsorption” and “adsorb” as used herein are defined to include chemisorption, physisorption, or any attractive and/or bonding forces which may be at work and/or which may contribute to the bonding, reaction, adherence, or occupation of a portion of a surface of a substrate structure. The term “chemical vapor deposition” as used herein refers to deposition of materials in a primarily gas-phase and/or thermal co-reaction of compounds to form a layer and includes plasma enhanced and non-enhanced processes. A mode of deposition combining cyclical deposition and chemical vapor deposition may also be performed.



FIG. 2A is a graph of the control signals of an exemplary process for cyclical deposition of a material. One cycle 310 comprises introducing a pulse 312 of a first compound 313 into a chamber by opening and closing a valve providing the first compound. After the pulse of the first compound, a pulse 314 of a second compound 315 is introduced into the chamber by opening and closing a valve providing the second compound. The cycle 310 may be repeated to deposit a desired thickness of the material. The pulses 312 of the first compound 313 and the pulses 314 of the second compound 315 may be delivered with or without a carrier gas. Examples of carrier gases which may be used include, but are not limited to, helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and mixtures thereof. In one embodiment, the pulses 312 of the first compound 313 and the pulses 314 of the second compound 315 may be dosed into a continuous flow of a purge gas. Examples of purge gases which may be used include, but are not limited to, helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and mixtures thereof. In other embodiments, pulses 312 of the first compound 313 and pulses 314 of the second compound 315 may be separated by pulses of a purge gas. In still other embodiments, pulses 312 of the first compound 313 and pulses 314 of a second compound 315 may be separated by pump evacuation alone. In other embodiments, cyclical deposition comprises providing pulses of more than two compounds.



FIG. 2B is a graph of the control signals of one exemplary process for chemical vapor deposition of a material. Chemical vapor deposition of a material may comprise introducing a first compound 323 and a second compound 325 simultaneously to a chamber by opening a valve providing the first compound and by opening a valve providing the second compound. The first compound and the second may be delivered with or without a carrier gas. Examples of carrier gases which may be used include, but are not limited to, helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and mixtures thereof. In other embodiments, chemical vapor deposition comprises providing more than two compounds.



FIG. 2C is a graph of one exemplary process of the control signals for a combined mode of cyclical deposition and chemical vapor deposition. One cycle 330 comprises introducing at least one pulse 332 of a first compound 333 by opening and closing a valve providing the first compound and introducing pulses 334 of a second compound 335 by opening and closing a valve providing the second compound. One or more pulses 334a of the second compound 335 at least partially overlap with one or more pulses 332 of the first compound 333 in which the valve providing the first compound and the valve providing the second compound are both open at the same time for a period of time. One or more pulses 334b , 334c of the second compound 335 do not overlap with one or more pulses 332 of the first compound 333 in which the valve providing the first compound is closed for a period of time while the valve providing the second compound is open. The cycle 330 may be repeated to deposit a desired thickness of the material. The pulses 332 of the first compound 333 and the pulses 334 of the second compound 335 may be delivered with or without a carrier gas. Examples of carrier gases which may be used include, but are not limited to, helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and mixtures thereof. In one embodiment, the pulses 332 of the first compound 333 and the pulses 334 of the second compound 335 may be dosed into a continuous flow of a purge gas. Examples of purge gases which may be used include, but are not limited to, helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and mixtures thereof. In other embodiments, pulses 332 of the first compound 333 and pulses 334 of the second compound 335 may be separated by pulses of a purge gas. In still other embodiments, pulses 332 of the first compound 333 and pulses 334 of a second compound 335 may be separated by pump evacuation alone. In one aspect, a first compound and a second compound are delivered at separate times to the substrate to provide a deposition process similar to cyclical deposition. In another aspect, a first compound and a second compound are delivered at the same time to the substrate to provide a deposition process similar to chemical vapor deposition. In other embodiments, a combined mode of cyclical deposition comprises providing pulses of more than two compounds.


Other embodiments of a combined mode of cyclical deposition and chemical vapor deposition are possible. For example, one cycle may comprise providing one pulse of a first compound and one pulse of a second compound in which the pulse of the first compound and the pulse of the second compound only partially overlap in time by opening a valve providing the first compound, then opening a valve providing the second compound, then closing the valve providing the first compound, and then closing the valve providing the second compound.



FIGS. 2A and 2C show the duration of pulses of compounds provided over a relative length of time, show a specific order of pulses, and show a specific number of pulses per cycle. In other embodiments, other relative lengths of time, other order of the pulses, and other number of pulses are possible.


In certain embodiments, deposition of Ti, whether by cyclical deposition, by chemical vapor deposition, or by a combined mode of deposition, comprises utilizing a titanium precursor and a reductant. The titanium precursor preferably comprises titanium tetrachloride (TiCl4). Examples of other titanium containing compounds include, but are not limited to, titanium iodide (Til4), titanium bromide (TiBr4), other titanium halides, tetrakis(dimethylamido) titanium (TDMAT), tetrakis(diethylamido) titanium (TDEAT), other titanium organic compounds, and derivatives thereof. The reductant comprises a hydrogen plasma. The hydrogen plasma is preferably provided by utilizing a hydrogen gas (H2). Other hydrogen containing gases which may also be used include silane (SiH4), borane (BH3), diborane (B2H6), and triborane, among others.


In certain embodiments, deposition of TiSix, whether by cyclical deposition, by chemical vapor deposition, or by a combined mode of deposition, comprises utilizing a titanium precursor and a silicon precursor. The titanium precursor preferably comprises TiCl4. Other titanium precursors may be used, such as the titanium precursors described above in regards to the deposition of Ti. The silicon precursor preferably comprises silane (SiH4). Other silicon containing compounds include, but are not limited to disilane (Si2H6), chlorosilane (SiH3Cl), dichlorosilane (SiH2Cl2), trichlorosilane (SiHCl3), silicon tetrachloride (SiCl4), hexachlorodisilane (Si2Cl6), and derivatives thereof.


In certain embodiments, deposition of TiSixNy, whether by cyclical deposition, by chemical vapor deposition, or by a combined mode of deposition, comprises utilizing a titanium precursor, a silicon precursor, and a nitrogen precursor. The titanium precursor preferably comprises titanium tetrachloride (TiCl4) and the silicon precursor preferably comprises silane (SiH4). Other titanium precursors and silicon precursors may be used, such as the titanium precursors and silicon precursors described above in regards to the deposition of Ti and TiSix. The nitrogen precursor preferably comprises ammonia (NH3). Examples of other nitrogen precursors include, but are not limited to hydrazine (N2H4), other NxHy compounds with x and y being integers, dimethyl hydrazine ((CH3)2N2H2), t-butylhydrazine (C4H9N2H3), phenylhydrazine (C6H5N2H3), 2,2′-azotertbutane ((CH3)6C2N2), ethylazide (C2H5N3), and derivatives thereof.


In certain embodiments, deposition of TiN, whether by cyclical deposition, by chemical vapor deposition, or by a combined mode of deposition, comprises utilizing a titanium precursor and a nitrogen precursor. The titanium precursor preferably comprises titanium tetrachloride (TiCI4). Other titanium precursors may be used, such as the titanium precursors described above in regards to the deposition of Ti. The nitrogen precursor preferably comprises a nitrogen plasma, NH3, or combinations thereof. Examples of other nitrogen precursors include, but are not limited to hydrazine (N2H4), other NxHy compounds with x and y being integers, dimethyl hydrazine ((CH3)2N2H2), t-butylhydrazine (C4H9N2H3), phenylhydrazine (C6H5N2H3), 2,2′-azotertbutane ((CH3)6C2N2), ethylazide (C2H5N3) and derivatives thereof. Examples of other nitrogen containing gases which may also be used to generate a nitrogen plasma include, but are not limited to, NH3, NxHy with x and y being integers (e.g., hydrazine (N2H4)), a mixture of hydrogen gas (H2) and nitrogen gas (N2), mixtures thereof, other gases or gas mixtures containing hydrogen and nitrogen.


Referring to FIG. 1, in one embodiment, step 10, step 20, and step 30 are performed in separate chambers. In another embodiment, two or more of the steps 10, 20, 30 are performed in the same chamber. In still another embodiment, all of the steps 10, 20, 30 are performed in the same chamber.



FIG. 3A is a flow chart illustrating one embodiment of a process utilizing a continuous flow of a purge gas to deposit a Ti layer, a TiSix layer, and a TiN layer by cyclical deposition in the same chamber. As shown in step 602, a substrate is provided to the process chamber. The process chamber conditions, such as for example the substrate temperature and pressure, may be adjusted. In step 604, a purge gas stream is established within the process chamber. Referring to step 606, after the purge gas stream is established within the process chamber, a pulse of a Ti precursor, such as TiCI4, is added or dosed into the purge gas stream. In step 608, after the pulse of the Ti precursor a pulse of a reductant, such as a hydrogen plasma, is dosed into the purge gas stream. Step 606 and step 608 are repeated until a predetermined number of cycles are performed to form a Ti layer. Referring to step 610, after a predetermined number of cycles of step 606 and step 608 are performed, another pulse of the Ti precursor is dosed into the purge gas stream. In step 612, after the pulse of the Ti precursor, a pulse of a Si precursor, such as a SiH4, is dosed into the purge gas stream. Step 610 and step 612 are repeated until a predetermined number of cycles are performed to form a TiSix layer. Referring to step 614, after a predetermined number of cycles of step 610 and step 612 are performed, another pulse of the Ti precursor is dosed into the purge gas stream. In step 616, after the pulse of the Ti precursor, a pulse of a nitrogen precursor, such as NH3 or a nitrogen plasma, is dosed into the purge gas stream. Step 614 and step 616 are repeated until a predetermined number of cycles are performed to form a TiN layer.



FIG. 3B is a flow chart illustrating one embodiment of a process utilizing pulses of a purge gas to deposit a Ti layer, a TiSix layer, and a TiN layer by cyclical deposition in the same chamber. As shown in step 622, a substrate is provided to a process chamber. The process chamber conditions, such as for example the substrate temperature and pressure, may be adjusted. In step 624, a pulse of a purge gas is provided to the process chamber. Referring to step 626 after the pulse of the purge gas, a pulse of a Ti precursor, such as TiCI4, is provided to the process chamber. In step 628, after the pulse of the Ti precursor, another pulse of the purge gas is provided. In step 630, after the pulse of the purge gas, a pulse of a reductant, such as a hydrogen plasma, is provided. Steps 624, 626, 628, and 630 are repeated until a predetermined number of cycles are performed to form a Ti layer. Referring to step 632, after a predetermined number of cycles of steps 624, 626, 628, and 630 are performed, another pulse of the purge gas is provided to the process chamber. Referring to step 634, after the pulse of the purge gas, another pulse of the Ti precursor is provided to the process chamber. In step 636, after the pulse of the Ti precursor, another pulse of the purge gas is provided. In step 638, after the pulse of the purge gas, a pulse of a silicon precursor, such as silane (SiH4), is provided. Steps 632, 634, 636, and 638 are repeated until a predetermined number of cycles are performed to form a TiSix layer. Referring to step 640, after a predetermined number of cycles of steps 632, 634, 636, and 638 are performed, another pulse of the purge gas is provided to the process chamber. Referring to step 642, after the pulse of the purge gas, another pulse of the Ti precursor is provided to the process chamber. In step 644, after the pulse of the Ti precursor, another pulse of the purge gas is provided. In step 646, after the pulse of the purge gas, a pulse of a pulse of a nitrogen precursor, such as NH3 or a nitrogen plasma, is provided. Steps 640, 642, 644, and 646 are repeated until a predetermined number of cycles are performed to form a TiN layer.



FIG. 3C is a flow chart illustrating one embodiment of a process utilizing a continuous flow of a purge gas to deposit a Ti layer, a TiSixNy layer, and a TiN layer by cyclical deposition in the same chamber. As shown in step 652, a substrate is provided to the process chamber. The process chamber conditions, such as for example the substrate temperature and pressure, may be adjusted. In step 654, a purge gas stream is established within the process chamber. Referring to step 656, after the purge gas stream is established within the process chamber, a pulse of a Ti precursor, such as TiCl4, is added or dosed into the purge gas stream. In step 658, after the pulse of the Ti precursor a pulse of a reductant, such as a hydrogen plasma, is dosed into the purge gas stream. Step 656 and step 658 are repeated until a predetermined number of cycles are performed to form a Ti layer. Referring to step 660, after a predetermined number of cycles of step 656 and step 658 are performed, another pulse of the Ti precursor is dosed into the purge gas stream. In step 662, after the pulse of the Ti precursor, a pulse of a Si precursor, such as SiH4, and a pulse of a nitrogen precursor, such as NH3, is dosed into the purge gas stream. The pulses of the Si precursor and the nitrogen precursor may be introduced separately or may be introduced in which the pulses at least partially overlap in time. Step 660 and step 662 are repeated until a predetermined number of cycles are performed to form a TiSixNy layer. Referring to step 664, after a predetermined number of cycles of step 660 and step 662 are performed, another pulse of the Ti precursor is dosed into the purge gas stream. In step 666, after the pulse of the Ti precursor, another pulse of the nitrogen precursor is dosed into the purge gas stream. Step 664 and step 666 are repeated until a predetermined number of cycles are performed to form a TiN layer.



FIG. 3D is a flow chart illustrating one embodiment of a process utilizing pulses of a purge gas to deposit a Ti layer, a TiSixNy layer, and a TiN layer by cyclical deposition in the same chamber. As shown in step 672, a substrate is provided to a process chamber. The process chamber conditions, such as for example the substrate temperature and pressure, may be adjusted. In step 674, a pulse of a purge gas is provided to the process chamber. Referring to step 676 after the pulse of the purge gas, a pulse of a Ti precursor, such as TiCl4, is provided to the process chamber. In step 678, after the pulse of the Ti precursor, another pulse of the purge gas is provided. In step 680 after the pulse of the purge gas, a pulse of a reductant, such as a hydrogen plasma, is provided. Steps 674, 676, 678, and 680 are repeated until a predetermined number of cycles are performed to form a Ti layer. Referring to step 682, after a predetermined number of cycles of steps 674, 676, 678, and 680 are performed, another pulse of the purge gas is provided to the process chamber. Referring to step 684, after the pulse of the purge gas, another pulse of the Ti precursor is provided to the process chamber. In step 686, after the pulse of the Ti precursor, another pulse of the purge gas is provided. In step 688, after the pulse of the purge gas, a pulse of a silicon precursor, such as silane (SiH4), and a pulse of a nitrogen precursor, such as ammonia (NH3), is provided. The pulses of the Si precursor and the nitrogen precursor may be introduced separately or may be introduced in which the pulses at least partially overlap in time. Steps 682, 684, 686, and 688 are repeated until a predetermined number of cycles are performed to form a TiSixNy layer. Referring to step 690, after a predetermined number of cycles of steps 682, 684, 686, and 688 are performed, another pulse of the purge gas is provided to the process chamber. Referring to step 692, after the pulse of the purge gas, another pulse of the Ti precursor is provided to the process chamber. In step 694, after the pulse of the Ti precursor, another pulse of the purge gas is provided. In step 696, after the pulse of the purge gas, another pulse of a pulse of a nitrogen precursor is provided. Steps 690, 692, 694, and 696 are repeated until a predetermined number of cycles are performed to form a TiN layer.


In regards to FIGS. 3A-3D, the same Ti precursor is preferably used to deposit a Ti layer, a TiSix/TiSixNy layer, and a TiN layer. For example, TiCl4 may be used to deposit a Ti layer, a TiSix/TiSixNy layer, and a TiN layer. FIGS. 3A-3D show the deposition of a Ti layer, a TiSix/TiSixNy layer, and a TiN layer in a single chamber. In other embodiments, deposition of a Ti layer, a TiSix/TiSixNy layer, and a TiN layer may be performed in more than one chamber. For example, two or more chambers may be used to deposit a Ti layer, a TiSix/TiSixNy layer, and a TiN layer. FIGS. 3A-3D show deposition of a Ti layer, a TiSix/TiSixNy layer, and a TiN layer by cyclical deposition. In other embodiments, each layer may be deposited by the same or different deposition technique selected from the group including cyclical deposition, chemical vapor deposition, and a combined mode of cyclical deposition and chemical vapor deposition.



FIGS. 4 and 4A are drawings of an exemplary processing chamber 100 that may be used to perform cyclical deposition, chemical vapor deposition, or a combined mode of cyclical deposition and chemical vapor deposition. Other chambers may also be used. The chamber 100 comprises a chamber body 102 including a substrate support 112 having a substrate receiving surface 111 to support a substrate 110. The chamber may be adapted to heat the substrate 110, such as by a heated substrate support or by using heat lamps. A gas distribution system 130 is disposed at an upper portion of the chamber body 102 to provide a gas to the chamber 100. The gas distribution system 130 comprises a gas box 132, a top shower plate 160 positioned below the gas box 132, and a bottom shower plate 170 positioned below the top shower plate 160.



FIG. 4A is a schematic partial cross-sectional view of a portion of the gas box 132, a portion of the top shower plate 160, and a portion of the bottom shower plate 170 of FIG. 4. In reference to FIGS. 4 and 4A, the gas box 132 comprises a central gas channel 137 and a plurality of outer gas channels 143. The central gas channel 137 provides one discrete path for the flow of one or more gases through the gas box 132 while the outer channels 143 provides another discrete path for the flow of one or more gases through the gas box 132. The central gas channel 137 is coupled to a first gas source 135 (FIG. 4) through valve 136 (FIG. 4). The central gas channel 137 has a first gas outlet 138 and is adapted to deliver a first gas from the first gas source 135 to a gas conduit 210. The term “gas” as used herein is intended to mean a single gas or a gas mixture. The outer gas channels 143 are coupled to a second gas source 141 (FIG. 4) through valve 142 (FIG. 4). The outer gas channels 143 have second gas outlets 144 and are adapted to deliver a second gas from the second gas source 141 to the top shower plate 160. Preferably, the second gas outlets 144 of the outer gas channels 143 are adapted to deliver the second gas proximate a central portion of the top shower plate. Gas sources 135, 141 may be adapted to store a gas or liquid precursor in a cooled, heated, or ambient environment. The valves 136, 142 control delivery of the first gas and the second gas into the central gas channel 137 and the outer gas channels 143 respectively and may be electrically controlled valves, pneumatically controlled valves, piezoelectric valves, or other suitable valves. In another embodiment, a third gas source may be coupled to the outer gas channels 143 to provided a third gas to the top shower plate 160 or may be coupled to the central gas channel 137 to provided a third gas to the gas conduit 210.


Referring to FIG. 4A, the top shower plate 160 has a plurality of holes 162 to accommodate a gas flow therethrough from the outer gas channels 143 of the gas box 132 to the bottom shower plate 170. Referring to FIG. 4, the top shower plate 160 is separated from the bottom shower plate 170 by an insulator 164 to electrically insulate the top shower plate 160 from the bottom shower plate 170. The bottom shower plate 170 may be disposed on an upper portion of the chamber body 102, such as on a lid rim 166 disposed on the chamber body 102. The lid rim 166 comprises an insulating material to electrically insulate the bottom shower plate 170 from the chamber body 102. The gas conduit 210 is disposed through an aperture 163 in the top shower plate 160 and is disposed on the bottom shower plate 170. The gas conduit 210 is made of an insulating material to prevent electrical coupling of the top shower plate 160 and the bottom shower plate 170.


As shown in FIG. 4A, the bottom shower plate 170 comprises a first piece 172 connected to a second piece 180. The first piece 172 has a plurality of holes 174 to provide a flow of a gas therethrough. The second piece 180 comprises a plurality of columns 182 having column holes 183 formed therethrough and a plurality of grooves 184 having groove holes 185 formed therethrough. The top surface of the columns 182 are connected to the bottom surface of the first piece 172 so that the column holes 183 align with the holes 174 of the first piece 172. Therefore, one discrete passageway is provided through the holes of the first piece 172 and through the column holes 183 of the columns 182 to deliver a gas flow from the top shower plate 160 to the substrate receiving surface 111. The aperture 175 is formed through the first piece 172 and aligns with the grooves on the second piece 180. Therefore, another discrete passageway is provided through the aperture 175 of the first piece 172 and through the grooves 184 and groove holes 185 of the second piece 180 to deliver a gas flow from the gas conduit 210 to the substrate receiving surface 111.


Referring to FIG. 4, a power source 190 may be coupled to the top shower plate 160 through the gas box 132 to provide a power electrode and the bottom shower plate 170 may be grounded to provide a ground electrode. The power source 190 may be an RF or DC power source. An electric field may be established between the top shower plate 160 and the bottom shower plate 170 to generate a plasma from the gases introduced between the top shower plate 160 and the bottom shower plate 170. The power source 190 may be coupled to a matching network 194 to control delivery of power to the power source 190. The power source 190 may selectively provide power to selectively perform plasma and non-plasma processes.


In another embodiment, the bottom shower plate 170 may be optionally coupled to a power source 192 in addition to the power source 190 coupled to the top shower plate 160 and may be selectively powered or grounded. The power sources 190 and 192 are coupled to the matching network 194 to control delivery of any amount of power to the power source 190 and to control delivery of any amount of power to the power source 192. In one aspect, the matching network 194 may control the delivery of power to the power sources 190,192 so that the top shower plate 160 and the bottom shower plate 170 are at the same or substantially the same potential. With a grounded substrate support 112, the top shower plate 160 and the bottom shower plate 170 act as one electrode and the substrate support 112 acts as another electrode of spaced apart electrodes in which an electric field is established between the bottom shower plate 170 and the substrate support 112 to generate a plasma from the gases introduced between the bottom shower plate 170 and the substrate support 112. Therefore, power may be selectively provided to power sources 190, 192 to selectively generate a plasma between the top shower plate 160 and the bottom shower plate 170 or between the bottom shower plate 170 and the substrate support 112. Thus, the power sources 190, 192 may selectively provide power to selectively perform plasma and non-plasma processes.


A vacuum system 196 is in communication with a pumping channel 197 formed in the chamber body 102 to evacuate gases from the chamber 100 and to help maintain a desired pressure or a desired pressure range inside the chamber 100. Control unit 176 may be coupled to the chamber 100 to control processing conditions.


Soak with a Silicon Precursor



FIG. 5 is a flow chart illustrating another embodiment of a process of integrating a Ti layer and a TiN layer by soaking a Ti layer with a flow of a silicon precursor prior to deposition of a TiN layer thereover. In step 502, a Ti layer is deposited over a substrate structure. The Ti layer may be deposited by methods including, but are not limited to, chemical vapor deposition, cyclical deposition, physical vapor deposition, and combinations thereof. For example, the Ti layer may be deposited by chemical vapor deposition or cyclical deposition by utilizing a titanium precursor, such as titanium tetrachloride (TiCI4), and a reducing agent, such as a hydrogen plasma. Examples of other titanium containing compounds include, but are not limited to, titanium iodide (TiI4), titanium bromide (TiBr4), other titanium halides, tetrakis(dimethylamido) titanium (TDMAT), tetrakis(diethylamido) titanium (TDEAT), other titanium organic compounds and derivatives thereof. The hydrogen plasma is preferably provided by utilizing a hydrogen gas (H2). Other hydrogen containing gases which may also be used include silane (SiH4), borane (BH3), diborane (B2H6), and triborane, among others.


Referring to step 504, after the Ti layer is deposited, the Ti layer is treated with a soak with a silicon precursor by flowing in the silicon precursor into a process chamber. The silicon precursor is preferably silane (SiH4). Other silicon precursors may also be used, such as disilane (Si2H6), and less preferably, dichlorosilane, or silicon tetrachloride. The silicon precursor may be flowed in with a carrier gas, such as a helium gas (He), an argon gas (Ar), hydrogen gas (H2), nitrogen gas (N2), other suitable gases, and combinations thereof. The substrate is preferably maintained at a substrate temperature of about 550° C. or less, preferably about 500° C. or less, and more preferably about 450° C. or less. Not wishing to be bound by theory, it is believed that a soak of the Ti layer with a silicon precursor converts at least a portion of the Ti layer to titanium silicide (TiSix). It is believed that the TiSix helps protect the interface between the Ti layer and a subsequently deposited TiN layer resulting in improved adhesion of the TiN layer thereover. It is believed that a soak with a silicon precursor performed at a heater temperature of about 550° C. or less reduces the formation of polysilicon or amorphous silicon which would be undesirable due to the higher resistance of polysilicon or amorphous silicon in comparison to TiSix.


In step 506, after the SiH4 soak, a TiN layer is deposited over the treated Ti layer. The TiN layer may be deposited by such methods, with include, but are not limited to, chemical vapor deposition, cyclical deposition, physical vapor deposition, and combinations thereof. For example, the TiN layer may be deposited by chemical vapor deposition or cyclical deposition by utilizing a titanium precursor, such as titanium tetrachloride (TiCl4), and a nitrogen precursor, such as ammonia (NH3) or a nitrogen plasma. When a titanium halide is used to form the TiN layer, it is believed that the TiSix formed during the soak with a silicon precursor protects the Ti layer from etching or attack from the halogen in the titanium halide, such as chlorine from TiCI4, used during chemical vapor deposition or cyclical deposition of the TiN layer.


Examples of other titanium containing compounds which may be used to form the TiN layer include, but are not limited to, titanium iodide (Til4), titanium bromide (TiBr4), other titanium halides, tetrakis(dimethylamido) titanium (TDMAT), tetrakis(diethylamido) titanium (TDEAT), other titanium organic compounds, and derivatives thereof. Examples of other nitrogen precursors which may be used to form the TiN layer include, but are not limited to hydrazine (N2H4), other NxHy compounds with x and y being integers, dimethyl hydrazine ((CH3)2N2H2), t-butylhydrazine (C4H9N2H3), phenylhydrazine (C6H5N2H3), 2,2′-azotertbutane ((CH3)6C2N2), ethylazide (C2H5N3), and derivatives thereof. Examples of other nitrogen containing gases which may also be used to generate a nitrogen plasma to form the TiN layer include, but are not limited to, NH3, NxHy with x and y being integers (e.g., hydrazine (N2H4)), a mixture of hydrogen gas (H2) and nitrogen gas (N2), mixtures thereof, other gases or gas mixtures containing hydrogen and nitrogen.


In one embodiment, step 502, step 504, and step 506 may each be performed in separate chambers. In another embodiment, two or more of step 502, step 504, and step 506 may be performed in the same chamber. For example, deposition of a Ti layer and a soak of the Ti layer with a silicon precursor may be performed in the same chamber. In another example, a soak of a Ti layer with a silicon precursor and deposition of a TiN layer may be performed in the same chamber. In still another example, deposition of a Ti layer, a soak of the Ti layer with a silicon precursor, and deposition of a TiN over the treated Ti layer may be performed in the same chamber. Preferably, two or more of step 502, step 504, and step 506 are performed in the same chamber to increase throughput of processing the substrates.


Processing chambers which may be used to deposit a Ti layer, perform a soak with a silicon precursor, and/or deposit a TiN layer include the chamber as described in reference to FIGS. 4 and 4A. Other chambers may also be used such as the processing chamber described in U.S. Ser. No. 10/032,293, entitled “Chamber Hardware Design For Titanium Nitride Atomic Layer Deposition,” filed on Dec. 21, 2001, and published as US 2003-0116087; the processing chamber described in U.S. Ser. No. 10/016,300, entitled “Lid Assembly For A Processing System To Facilitate Sequential Deposition Techniques,” filed on Dec. 12, 2001, and issued as U.S. Pat. No. 6,878,206, which claims priority to U.S. Ser. No. 60/305,970, filed on Jul. 16, 2001; and the process chamber disclosed in U.S. Ser. No. 10/032,284, entitled “Gas Delivery Apparatus and Method For Atomic Layer Deposition,” filed on Dec. 21, 2001, and issued as U.S. Pat. No. 6,916,398, which claims priority to U.S. Ser. No. 60/346,086, entitled “Method and Apparatus for Atomic Layer Deposition,” filed on Oct. 26, 2001, which are all herein incorporated by reference in their entirety to the extent not inconsistent with the present disclosure.


One exemplary process of treating a Ti layer with a soak of a silicon precursor comprises flowing in silane (SiH4) into a chamber, such as chamber 100 described in reference to FIG. 4, at a flow rate between about 5 sccm and about 500 sccm, preferably about 100 sccm. Silane may be introduced with a carrier gas, such as a helium gas (He), an argon gas (Ar), hydrogen gas (H2), nitrogen gas (N2), other suitable gases, and combinations thereof. The chamber may be maintained at a pressure between about 0.1 Torr to about 50 Torr, preferably about 3 Torr. The substrate is preferably maintained at a substrate temperature about 550° C. or less, preferably about 500° C. or less, and more preferably about 450° C. or less. The SiH4 soak is preferably carried out for a time period between about 5 seconds and about 60 seconds. In general, treatment time will depend on the flow rate of SiH4 and the pressure of the chamber.


Applications



FIG. 6 is a schematic cross-sectional view of one embodiment of an exemplary application of an integrated Ti/TiN film stack formed by the process of FIG. 1 or FIG. 5. As shown in FIG. 6, a doped source/drain region 845 may be formed over a substrate 852 within film stack 850. The substrate 852 may be a semiconductor substrate, such as a silicon substrate. A dielectric layer 858, such as a silicon dioxide layer or a low-k dielectric layer, may be formed over the substrate 852. One example of a low-k dielectric layer is an oxidized organosilane layer or an oxidized organosiloxane layer described in more detail in U.S. Pat. No. 6,348,725, which is incorporated by reference herein. The dielectric layer 858 may be patterned and etched to form an aperture. A titanium layer 859 may be deposited over the aperture to form titanium silicide 856 in situ or in an annealing step. A passivation layer 860 comprising TiSix, TiSixNy, or combinations thereof is deposited over the titanium layer 859 or formed by a soak of the titanium layer 859 with a silicon precursor. A TiN layer 861 is deposited over the passivation layer 860. A conductive layer 862 comprising a conductive material, such as tungsten, copper, aluminum, and combinations thereof, may be deposited over the TiN layer 861.



FIG. 7 is a schematic cross-sectional view of another embodiment of an exemplary application of an integrated Ti/TiN film stack formed by the process of FIG. 1 or FIG. 5. As shown in FIG. 7, the film stack 1200 includes an underlying substrate 1202, such as a semiconductor substrate, and includes a doped source/drain region 1204. A metal silicide layer 1206, such as a titanium silicide layer, nickel silicide layer, cobalt silicide layer, or tungsten silicide layer, may be formed over the region 1204. A dielectric layer 1208, such as a silicon dioxide layer or a low-k dielectric layer, may be formed over the metal silicide layer 1206. One example of a low-k dielectric layer is an oxidized organosilane layer or an oxidized organosiloxane layer described in more detail in U.S. Pat. No. 6,348,725, which is incorporated by reference herein. The dielectric layer 1208 may be patterned and etched to form an aperture exposing the metal silicide layer 1206. A titanium layer 1212 may be formed over the aperture. A passivation layer 1214 comprising TiSix, TiSixNy, or combinations thereof is deposited over the titanium layer 1212 or formed by a soak of the titanium layer 1212 with a silicon precursor. A titanium nitride layer 1216 may be formed over the passivation layer 1214. A conductive layer 1222 comprising a conductive material, such as tungsten, copper, aluminum, and combinations thereof, may be deposited over the titanium nitride layer 1216. Other applications of the integrated Ti/TiN film stack are possible.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method for forming a metal-containing material on a substrate, comprising: forming a titanium-containing layer on a substrate by a plasma-enhanced cyclical vapor deposition process;exposing the substrate to a silicon-containing compound during a soak process; anddepositing a conductive material comprising copper on the substrate by a second vapor deposition process.
  • 2. The method of claim 1, wherein a metal nitride layer comprising titanium is deposited subsequent to the soak process and prior to the second vapor deposition process.
  • 3. The method of claim 1, wherein the silicon-containing compound is selected from the group consisting of silane, disilane, chlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, hexachlorodisilane, derivatives thereof, and combinations thereof.
  • 4. The method of claim 3, wherein the silicon-containing compound is silane.
  • 5. The method of claim 1, wherein the titanium-containing layer comprises titanium nitride.
  • 6. The method of claim 1, wherein the titanium-containing layer comprises titanium nitride formed by exposing the substrate to a nitrogen precursor during the plasma-enhanced cyclical vapor deposition process.
  • 7. The method of claim 6, wherein the nitrogen precursor comprises a gas selected from the group consisting of nitrogen, hydrogen, a nitrogen/hydrogen mixture, ammonia, hydrazine, hydrazine compounds, derivatives thereof, and combinations thereof.
  • 8. The method of claim 6, wherein the nitrogen precursor comprises ammonia.
  • 9. The method of claim 6, wherein the nitrogen precursor comprises a nitrogen plasma.
  • 10. A method for forming a metal-containing material on a substrate, comprising: forming a metal-containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process;exposing the substrate to a silicon-containing compound during a soak process to form a pretreated surface on the metal-containing barrier layer; anddepositing a tungsten material on the substrate by a vapor deposition process.
  • 11. The method of claim 10, wherein a metal nitride layer is deposited on the pretreated surface prior to depositing the tungsten material.
  • 12. The method of claim 10, wherein the tungsten material is deposited by a cyclic layer deposition process.
  • 13. The method of claim 10, wherein the tungsten material is deposited by a plasma-enhanced cyclic layer deposition process.
  • 14. The method of claim 10, wherein the silicon-containing compound is selected from the group consisting of silane, disilane, chlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, hexachlorodisilane, derivatives thereof, and combinations thereof.
  • 15. The method of claim 14, wherein the silicon-containing compound is silane and the metal-containing barrier layer comprises titanium.
  • 16. A method for forming a metal-containing material on a substrate, comprising: forming a metal-containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process, wherein the metal-containing barrier layer comprises titanium nitride formed by exposing the substrate to a nitrogen precursor during the plasma-enhanced cyclical vapor deposition process;exposing the substrate to a silicon precursor during a soak process to form a pretreated surface on the metal-containing barrier layer; anddepositing a tungsten material on the substrate by a vapor deposition process.
  • 17. The method of claim 16, wherein the nitrogen precursor comprises a gas selected from the group consisting of nitrogen, hydrogen, a nitrogen/hydrogen mixture, ammonia, hydrazine, hydrazine compounds, derivatives thereof, and combinations thereof.
  • 18. The method of claim 17, wherein the nitrogen precursor comprises ammonia or nitrogen.
  • 19. A method for forming a metal-containing material on a substrate, comprising: forming a metal-containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process;exposing the substrate to a soak process to form a pretreated surface on the metal-containing barrier layer;depositing a metal nitride layer on the pretreated surface; anddepositing a copper material on the metal nitride layer by a vapor deposition process.
  • 20. The method of claim 19, wherein the copper material is deposited by a plasma-enhanced vapor deposition process.
  • 21. A method for forming a metal-containing material on a substrate, comprising: forming a metal-containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process;exposing the substrate to a silicon-containing compound during the soak process to form a pretreated surface on the metal-containing barrier layer; anddepositing a material comprising copper on the substrate by a vapor deposition process.
  • 22. The method of claim 21, wherein the silicon-containing compound is selected from the group consisting of silane, disilane, chlorosilane, dichlorosilane trichlorosilane, tetrachlorosilane, hexachlorodisilane, derivatives thereof, and combinations thereof.
  • 23. The method of claim 22, wherein the silicon-containing compound is silane and the metal-containing barrier layer comprises titanium.
  • 24. A method for forming a metal-containing material on a substrate, comprising: forming a metal-containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process, wherein the metal-containing barrier layer comprises titanium nitride formed by exposing the substrate to a nitrogen precursor during the plasma-enhanced cyclical vapor deposition process;exposing the substrate to a soak process to form a pretreated surface on the metal-containing barrier layer; anddepositing a material comprising copper on the substrate by a vapor deposition process.
  • 25. The method of claim 24, wherein the nitrogen precursor comprises a gas selected from the group consisting of nitrogen, hydrogen, a nitrogen/hydrogen mixture, ammonia, hydrazine, hydrazine compounds, derivatives thereof, and combinations thereof.
  • 26. The method of claim 25, wherein the nitrogen precursor comprises ammonia or nitrogen.
  • 27. A method for forming a metal-containing material on a substrate, comprising: forming a metal-containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process by sequentially exposing the substrate to a metal-containing precursor and a nitrogen precursor;exposing the substrate to a soak process to form a pretreated surface on the metal-containing barrier layer; anddepositing a conductive material on the substrate by a vapor deposition process.
  • 28. The method of claim 27, wherein the nitrogen precursor comprises a gas selected from the group consisting of nitrogen, hydrogen, a nitrogen/hydrogen mixture, ammonia, hydrazine, hydrazine compounds, derivatives thereof, and combinations thereof.
  • 29. The method of claim 28, wherein the nitrogen precursor comprises ammonia or nitrogen, and the conductive material comprises tungsten or copper.
  • 30. The method of claim 29, wherein the substrate is exposed to a silane during the soak process.
  • 31. A method for forming a metal-containing material on a substrate, comprising: forming a metal-containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process by sequentially exposing the substrate to a metal-containing precursor and a nitrogen precursor, wherein the metal-containing precursor comprises methylamido or ethylamido ligands, and the nitrogen precursor comprises a gas selected from the group consisting of nitrogen, hydrogen, a nitrogen/hydrogen mixture, ammonia, hydrazine, hydrazine compounds, derivatives thereof, and combinations thereof;exposing the substrate to a soak process to form a pretreated surface on the substrate; anddepositing a conductive material on the substrate by a vapor deposition process, wherein the conductive material comprises tungsten or copper.
  • 32. The method of claim 31, wherein the metal-containing precursor comprises tetrakis(dimethylamido) titanium, tetrakis(diethylamido) titanium, or derivatives thereof.
  • 33. The method of claim 31, wherein the nitrogen precursor comprises ammonia or nitrogen plasma, and the conductive material comprises copper.
  • 34. The method of claim 31, wherein the substrate is exposed to a silicon-containing compound during the soak process.
  • 35. The method of claim 34, wherein the silicon-containing compound is selected from the group consisting of silane, disilane, chiorosilane, dichlorosilane, trichlorosilane, tetrachiorosilane, hexachiorodisilane, derivatives thereof, and combinations thereof.
  • 36. The method of claim 35, wherein the nitrogen precursor comprises ammonia or nitrogen plasma, and the silicon-containing compound comprises silane.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 11/151,699, filed Jun. 13, 2005, and issued as U.S. Pat. No. 7,094,685, which is a continuation of U.S. Ser. No. 10/118,664, filed Apr. 8, 2002, and issued as U.S. Pat. No. 6,911,391, which claims benefit of U.S. Ser. No. 60/352,191, filed Jan. 26, 2002, which are all herein incorporated by reference in their entirety.

US Referenced Citations (471)
Number Name Date Kind
2430520 Marboe Nov 1947 A
3356527 Moshier et al. Dec 1967 A
3594216 Charles et al. Jul 1971 A
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4486487 Skarp Dec 1984 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4839022 Skinner Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859625 Matsumoto Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5028565 Chang et al. Jul 1991 A
5082798 Arimoto Jan 1992 A
5085731 Norman et al. Feb 1992 A
5085885 Foley et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5098516 Norman et al. Mar 1992 A
5130269 Kitahara et al. Jul 1992 A
5166092 Mochizuki et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5186718 Tepman et al. Feb 1993 A
5205077 Wittstock Apr 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman et al. Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5273775 Dyer et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 Nishizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5306666 Izumi Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel et al. May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5344792 Sandhu et al. Sep 1994 A
5348911 Jurgensen et al. Sep 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5439876 Graf et al. Aug 1995 A
5439952 Lum et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443033 Nishizawa et al. Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5464666 Fine et al. Nov 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5526244 Bishop Jun 1996 A
5527733 Nishizawa et al. Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5580380 Liu et al. Dec 1996 A
5595784 Kaim et al. Jan 1997 A
5601651 Watabe Feb 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5644128 Wollnik et al. Jul 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5804488 Shih et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5834372 Lee Nov 1998 A
5835677 Li et al. Nov 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5863339 Usami Jan 1999 A
5865219 Lee et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5886213 Kent et al. Mar 1999 A
5904565 Nguyen et al. May 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5942040 Kim et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
6001669 Gaines et al. Dec 1999 A
6015590 Suntola et al. Jan 2000 A
6015917 Bhandari et al. Jan 2000 A
6025627 Forbes et al. Feb 2000 A
6036733 Holz et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6051286 Zhao et al. Apr 2000 A
6057229 Hieber et al. May 2000 A
6062798 Muka May 2000 A
6071808 Merchant et al. Jun 2000 A
6081034 Sandhu et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6099904 Mak et al. Aug 2000 A
6110556 Bang et al. Aug 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140237 Chan et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6140247 Muraoka et al. Oct 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6156382 Rajagopalan et al. Dec 2000 A
6158446 Mohindra et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6183563 Choi et al. Feb 2001 B1
6197683 Kang et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6214714 Wang et al. Apr 2001 B1
6218298 Hoinkis Apr 2001 B1
6231672 Choi et al. May 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6274484 Tsai et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6316098 Yitzchaik et al. Nov 2001 B1
6326297 Vijayendran Dec 2001 B1
6333260 Kwon et al. Dec 2001 B1
6335240 Kim et al. Jan 2002 B1
6335280 van der Jeugd Jan 2002 B1
6342277 Sherman Jan 2002 B1
6348376 Lim et al. Feb 2002 B2
6355561 Sandhu et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B2
6368954 Lopatin et al. Apr 2002 B1
6369430 Adetutu et al. Apr 2002 B1
6372598 Kang et al. Apr 2002 B2
6379748 Bhandari et al. Apr 2002 B1
6391785 Satta et al. May 2002 B1
6399491 Jeon et al. Jun 2002 B2
6404058 Taguwa Jun 2002 B1
6416577 Suntoloa et al. Jul 2002 B1
6416822 Chiang et al. Jul 2002 B1
6420189 Lopatin Jul 2002 B1
6423619 Grant et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6447607 Soininen et al. Sep 2002 B2
6447933 Wang et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6458701 Chae et al. Oct 2002 B1
6464779 Powell et al. Oct 2002 B1
6468924 Lee et al. Oct 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6481945 Hasper et al. Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6482733 Raaijmakers et al. Nov 2002 B2
6482740 Soininen et al. Nov 2002 B2
6489214 Kim et al. Dec 2002 B2
6511539 Raaijmakers Jan 2003 B1
6524952 Srinivas et al. Feb 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6534404 Danek et al. Mar 2003 B1
6548424 Putkonen Apr 2003 B2
6551406 Kilpi Apr 2003 B2
6551929 Kori et al. Apr 2003 B1
6569501 Chiang et al. May 2003 B2
6585823 Van Wijck Jul 2003 B1
6593484 Yasuhara et al. Jul 2003 B2
6596602 Iizuka et al. Jul 2003 B2
6599572 Saanila et al. Jul 2003 B2
6607976 Chen et al. Aug 2003 B2
6613383 George et al. Sep 2003 B1
6616986 Sherman Sep 2003 B2
6620670 Song et al. Sep 2003 B2
6620723 Byun et al. Sep 2003 B1
6620956 Chen et al. Sep 2003 B2
6630201 Chiang et al. Oct 2003 B2
6630741 Lopatin et al. Oct 2003 B1
6632279 Ritala et al. Oct 2003 B1
6635965 Lee et al. Oct 2003 B1
6660126 Nguyen et al. Dec 2003 B2
6660660 Haukka et al. Dec 2003 B2
6686271 Raaijmakers et al. Feb 2004 B2
6713177 George et al. Mar 2004 B2
6784096 Chen et al. Aug 2004 B2
6790773 Drewery et al. Sep 2004 B1
6800173 Chiang et al. Oct 2004 B2
6803272 Halliyal et al. Oct 2004 B1
6811814 Chen et al. Nov 2004 B2
6815285 Choi et al. Nov 2004 B2
6821891 Chen et al. Nov 2004 B2
6838125 Chung et al. Jan 2005 B2
6893915 Park et al. May 2005 B2
6913827 George et al. Jul 2005 B2
6936535 Kim et al. Aug 2005 B2
6936538 Byun Aug 2005 B2
6958174 Klaus et al. Oct 2005 B1
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010013312 Soininen et al. Aug 2001 A1
20010014371 Kilpi Aug 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010025979 Kim et al. Oct 2001 A1
20010028924 Sherman Oct 2001 A1
20010029094 Mee-Young et al. Oct 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042523 Kesala Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010050039 Park Dec 2001 A1
20010051215 Arkles et al. Dec 2001 A1
20010054377 Lindfors et al. Dec 2001 A1
20010054730 Kim et al. Dec 2001 A1
20010054769 Raaijmakers et al. Dec 2001 A1
20020000196 Park Jan 2002 A1
20020000598 Kang et al. Jan 2002 A1
20020004293 Soininen et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020009544 McFeely et al. Jan 2002 A1
20020019121 Pyo Feb 2002 A1
20020020869 Park et al. Feb 2002 A1
20020021544 Cho et al. Feb 2002 A1
20020031618 Sherman Mar 2002 A1
20020037630 Agarwal et al. Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020043722 Taguwa Apr 2002 A1
20020047151 Kim et al. Apr 2002 A1
20020048635 Kim et al. Apr 2002 A1
20020048880 Lee Apr 2002 A1
20020052097 Park May 2002 A1
20020055235 Agarwal et al. May 2002 A1
20020060363 Xi et al. May 2002 A1
20020061612 Sandhu et al. May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020074588 Lee Jun 2002 A1
20020076481 Chiang et al. Jun 2002 A1
20020076490 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020081844 Jeon et al. Jun 2002 A1
20020086106 Park et al. Jul 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020086507 Park et al. Jul 2002 A1
20020090829 Sandhu et al. Jul 2002 A1
20020092471 Kang et al. Jul 2002 A1
20020092584 Soininen et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020096627 Pomarede et al. Jul 2002 A1
20020098685 Sophie et al. Jul 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020105088 Yang et al. Aug 2002 A1
20020106451 Skarp et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020106846 Seutter et al. Aug 2002 A1
20020108570 Lindfors Aug 2002 A1
20020109168 Kim et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020115886 Yasuhara et al. Aug 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020121241 Nguyen et al. Sep 2002 A1
20020121342 Nguyen et al. Sep 2002 A1
20020121697 Marsh Sep 2002 A1
20020122884 Chen et al. Sep 2002 A1
20020127336 Chen et al. Sep 2002 A1
20020134307 Choi Sep 2002 A1
20020135071 Kang et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020144786 Chiang et al. Oct 2002 A1
20020146511 Chiang et al. Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164421 Chiang et al. Nov 2002 A1
20020164423 Chiang et al. Nov 2002 A1
20020173130 Pomerede et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020187631 Kim et al. Dec 2002 A1
20020192396 Wang et al. Dec 2002 A1
20020196591 Hujanen et al. Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20020197831 Todd et al. Dec 2002 A1
20020197863 Mak et al. Dec 2002 A1
20020197881 Ramdanl et al. Dec 2002 A1
20030004723 Chihara Jan 2003 A1
20030010451 Tzu et al. Jan 2003 A1
20030013300 Byun Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030015764 Raaijmakers et al. Jan 2003 A1
20030017697 Choi et al. Jan 2003 A1
20030023338 Chln et al. Jan 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030038369 Layadi et al. Feb 2003 A1
20030042614 Deraa et al. Mar 2003 A1
20030042630 Babcoke et al Mar 2003 A1
20030049931 Byun et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030053799 Lei Mar 2003 A1
20030054631 Raaijmakers et al. Mar 2003 A1
20030057526 Chung et al. Mar 2003 A1
20030057527 Chung et al. Mar 2003 A1
20030059538 Chung et al. Mar 2003 A1
20030072884 Zhang et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030075925 Liindfors et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030082296 Elers et al. May 2003 A1
20030082300 Todd et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030082307 Chung et al. May 2003 A1
20030089308 Raaijmakers May 2003 A1
20030089942 Bhattacharyya May 2003 A1
20030096468 Soininen et al. May 2003 A1
20030097013 Chen et al. May 2003 A1
20030101927 Raaijmakers et al. Jun 2003 A1
20030104126 Fang et al. Jun 2003 A1
20030106490 Jalllepally et al. Jun 2003 A1
20030106643 Tabuchi et al. Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030121469 Lindfors et al. Jul 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030123216 Yoon et al. Jul 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030129308 Chen et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030134508 Raaijmakers et al. Jul 2003 A1
20030140854 Kilpi Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030143747 Bondestam et al. Jul 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030143867 Matsuki et al. Jul 2003 A1
20030153181 Yoon et al. Aug 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030161952 Wang et al. Aug 2003 A1
20030165615 Alton et al. Sep 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030173747 Mlckelson et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030190497 Yang et al. Oct 2003 A1
20030190804 Glenn et al. Oct 2003 A1
20030194493 Chang et al. Oct 2003 A1
20030194825 Law et al. Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030203616 Chung et al. Oct 2003 A1
20030205729 Basceri et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030216981 Tillman Nov 2003 A1
20030219942 Choi et al. Nov 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224578 Chung et al. Dec 2003 A1
20030224600 Cao et al. Dec 2003 A1
20030227033 Ahn et al. Dec 2003 A1
20030232142 Bradley et al. Dec 2003 A1
20030232497 Xi et al. Dec 2003 A1
20030232554 Blum et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040005749 Choi et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009665 Chen et al. Jan 2004 A1
20040011504 Ku et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013803 Chung et al. Jan 2004 A1
20040014315 Lai et al. Jan 2004 A1
20040014320 Cheng et al. Jan 2004 A1
20040015300 Ganguli et al. Jan 2004 A1
20040016866 Huang et al. Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040028952 Cartier et al. Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040041320 Hodumi Mar 2004 A1
20040043630 Vaartstra et al. Mar 2004 A1
20040046197 Basceri et al. Mar 2004 A1
20040048491 Jung et al. Mar 2004 A1
20040051152 Nakajiman Mar 2004 A1
20040053484 Kumar et al. Mar 2004 A1
20040077183 Chung Apr 2004 A1
20040187304 Chen et al. Sep 2004 A1
20040194691 George et al. Oct 2004 A1
20040214354 Marsh et al. Oct 2004 A1
20040216670 Gutsche et al. Nov 2004 A1
20040219784 Kang et al. Nov 2004 A1
20040224506 Chol et al. Nov 2004 A1
20040235285 Kang et al. Nov 2004 A1
20040256351 Chung et al. Dec 2004 A1
20050003075 Bradley et al. Jan 2005 A1
20050006799 Brock et al. Jan 2005 A1
20050009325 Chung et al. Jan 2005 A1
20050012975 George et al. Jan 2005 A1
20050059240 Choi et al. Mar 2005 A1
20050104142 Narayanan et al. May 2005 A1
Foreign Referenced Citations (229)
Number Date Country
4202889 Aug 1993 DE
19627017 Jan 1997 DE
19820147 Jul 1999 DE
0 344 352 Dec 1989 EP
0 429 270 May 1991 EP
0 442 290 Aug 1991 EP
0 799 641 Oct 1997 EP
1 142 894 Oct 2001 EP
1 167 569 Jan 2002 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2 332 980 Jul 1999 GB
2 355 727 May 2001 GB
58-097917 Jun 1983 JP
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-65712 Apr 1985 JP
6-135847 Feb 1986 JP
61-210623 Sep 1986 JP
60-69508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64-082671 Mar 1989 JP
10-090524 Apr 1989 JP
11-043233 Jun 1989 JP
1-245512 Sep 1989 JP
1-236657 Oct 1989 JP
1-264218 Oct 1989 JP
1-270593 Oct 1989 JP
1-272108 Oct 1989 JP
1-290221 Nov 1989 JP
1-290222 Nov 1989 JP
1-296673 Nov 1989 JP
1-303770 Dec 1989 JP
1-305894 Dec 1989 JP
1-313927 Dec 1989 JP
2-012814 Jan 1990 JP
2-014513 Jan 1990 JP
02-014513 Jan 1990 JP
2-017634 Jan 1990 JP
2-063115 Mar 1990 JP
2-074029 Mar 1990 JP
2-074587 Mar 1990 JP
2-106822 Apr 1990 JP
2-129913 May 1990 JP
2-162717 Jun 1990 JP
2-172895 Jul 1990 JP
2-196092 Aug 1990 JP
2-203517 Aug 1990 JP
2-230690 Sep 1990 JP
02-230690 Sep 1990 JP
2-230722 Sep 1990 JP
2-246161 Sep 1990 JP
02-246161 Oct 1990 JP
2-264491 Oct 1990 JP
2-283084 Nov 1990 JP
2-304619 Dec 1990 JP
3-019211 Jan 1991 JP
3-022569 Jan 1991 JP
3-023294 Jan 1991 JP
3-023299 Jan 1991 JP
3-044967 Feb 1991 JP
3-048421 Mar 1991 JP
3-070124 Mar 1991 JP
3-185716 Aug 1991 JP
3-208885 Sep 1991 JP
03-234025 Oct 1991 JP
3-234025 Oct 1991 JP
3-286522 Dec 1991 JP
3-286531 Dec 1991 JP
4-031391 Feb 1992 JP
4-031396 Feb 1992 JP
4-100292 Apr 1992 JP
4-111418 Apr 1992 JP
4-132214 May 1992 JP
4-132681 May 1992 JP
4-151822 May 1992 JP
4-162418 Jun 1992 JP
4-175299 Jun 1992 JP
4-186824 Jul 1992 JP
4-212411 Aug 1992 JP
4-260696 Sep 1992 JP
4-273120 Sep 1992 JP
4-291916 Sep 1992 JP
4-285167 Oct 1992 JP
4-325500 Nov 1992 JP
4-328874 Nov 1992 JP
05-029228 Feb 1993 JP
5-029228 Feb 1993 JP
5-047665 Feb 1993 JP
5-047666 Feb 1993 JP
5-047668 Feb 1993 JP
5-074717 Mar 1993 JP
5-074724 Mar 1993 JP
05-074724 Mar 1993 JP
5-102189 Apr 1993 JP
5-160152 Jun 1993 JP
5-175143 Jul 1993 JP
5-175145 Jul 1993 JP
5-182906 Jul 1993 JP
5-186295 Jul 1993 JP
5-206036 Aug 1993 JP
5-234899 Sep 1993 JP
5-235047 Sep 1993 JP
5-251339 Sep 1993 JP
5-270997 Oct 1993 JP
5-283336 Oct 1993 JP
5-283339 Oct 1993 JP
5-291152 Nov 1993 JP
5-304334 Nov 1993 JP
5-343327 Dec 1993 JP
5-343685 Dec 1993 JP
6-045606 Feb 1994 JP
6-224138 May 1994 JP
06-177381 Jun 1994 JP
6-177381 Jun 1994 JP
6-196809 Jul 1994 JP
6-222388 Aug 1994 JP
06-230421 Aug 1994 JP
6-230421 Aug 1994 JP
6-052057 Sep 1994 JP
62-091048 Oct 1994 JP
7-070752 Mar 1995 JP
07-086269 Mar 1995 JP
7-086269 Mar 1995 JP
6-132236 Jul 1995 JP
07-300649 Nov 1995 JP
8-181076 Jul 1996 JP
8-245291 Sep 1996 JP
8-064530 Oct 1996 JP
9-093681 Apr 1997 JP
9-060786 Oct 1997 JP
10-009895 Jan 1998 JP
10-009896 Jan 1998 JP
10-009897 Jan 1998 JP
10-037832 Feb 1998 JP
10-082615 Mar 1998 JP
10-082617 Mar 1998 JP
10-082671 Mar 1998 JP
10-082676 Mar 1998 JP
10-188840 Apr 1998 JP
10-190128 Jul 1998 JP
10-308283 Nov 1998 JP
11-003996 Jan 1999 JP
11-017017 Jan 1999 JP
11-043221 Feb 1999 JP
11-054511 Feb 1999 JP
11-003982 Jun 1999 JP
11-269652 Oct 1999 JP
2000-005877 Jan 2000 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-087029 Mar 2000 JP
2000-319772 Mar 2000 JP
2000-138094 May 2000 JP
2000-178735 Jun 2000 JP
2000-218445 Aug 2000 JP
2001-020075 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
2001-062244 Mar 2001 JP
2001-152339 Apr 2001 JP
2001-189312 May 2001 JP
2001-172767 Jun 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
2001-240972 Sep 2001 JP
2001-254181 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-303251 Oct 2001 JP
2001-328900 Nov 2001 JP
2001-111000 Dec 2002 JP
WO 9002216 Mar 1990 WO
WO 9110510 Jul 1991 WO
WO 9302110 Feb 1993 WO
WO 9302111 Feb 1993 WO
WO 9617107 Jun 1996 WO
WO 9618756 Jun 1996 WO
WO 9806889 Feb 1998 WO
WO 9851838 Nov 1998 WO
WO 9901595 Jan 1999 WO
WO 9913504 Mar 1999 WO
WO 9917335 Apr 1999 WO
WO 9929924 Jun 1999 WO
WO 9941423 Aug 1999 WO
WO 9965064 Dec 1999 WO
WO 0011721 Mar 2000 WO
WO 0015865 Mar 2000 WO
WO 0015881 Mar 2000 WO
WO 0016377 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 0063957 Oct 2000 WO
WO 0079019 Dec 2000 WO
WO 0079576 Dec 2000 WO
WO 0115220 Mar 2001 WO
WO 0117692 Mar 2001 WO
WO 0127346 Apr 2001 WO
WO 0127347 Apr 2001 WO
WO 0129280 Apr 2001 WO
WO 0129891 Apr 2001 WO
WO 0129893 Apr 2001 WO
WO 0136702 May 2001 WO
WO 0140541 Jun 2001 WO
WO 0166832 Sep 2001 WO
WO 0188972 Nov 2001 WO
WO 0201628 Jan 2002 WO
WO 0208485 Jan 2002 WO
WO 0208488 Jan 2002 WO
WO 0231875 Apr 2002 WO
WO 0243115 May 2002 WO
WO 0245167 Jun 2002 WO
WO 0245871 Jun 2002 WO
WO 0246489 Jun 2002 WO
WO 02065525 Aug 2002 WO
WO 02067319 Aug 2002 WO
WO 03044242 May 2003 WO
Related Publications (1)
Number Date Country
20060292864 A1 Dec 2006 US
Provisional Applications (1)
Number Date Country
60352191 Jan 2002 US
Continuations (2)
Number Date Country
Parent 11151699 Jun 2005 US
Child 11458852 US
Parent 10118664 Apr 2002 US
Child 11151699 US