The embodiments described herein relate a power module apparatus, a cooling structure, and an electric vehicle or hybrid electric vehicle.
Conventionally, as one of the power modules, there have been known power modules in which a power device(s) (power chip (s)) including semiconductor device (s) as an Insulated Gate Bipolar Transistor (IGBT) is mounted on a leadframe, and the whole system is molded with a resin. Since such a semiconductor device produces heat during an operating state, it is common to dispose a heat sink for dissipating heat on a back side surface of the leadframe in order to cool the semiconductor device.
Moreover, in order to improve cooling performance, there have been known: inverter apparatuses for water-cooling of whole of a heat sink (or also referred to as “liquid cooling”) with a coolant passage formed on a back side surface of the heat sink; and semiconductor devices configured so that a rectangular parallelepiped having four side surfaces on which switching devices having large frequencies are respectively arranged in a hollow form in order to suppress a temperature increase of the devices.
The embodiments provide: a power module apparatus and a cooling structure which are capable of being efficiently cooled by attaching a heat radiator to an opening formed at an upper surface portion of a cooling device, thereby reducing degradation due to overheating; and an electric vehicle or hybrid electric vehicle in which such a power module apparatus is mounted.
According to one aspect of the embodiments, there is provided a power module apparatus comprising: a power module comprising a semiconductor device configured to switch electric power, a sealing body configured to seal a perimeter of the semiconductor device, and a heat radiator bonded to one surface of the sealing body; and a cooling device comprising a coolant passage through which coolant water flows, in which the heat radiator of the power module is attached to an opening provided on a way of the coolant passage, wherein the heat radiator of the power module is attached to the opening of the cooling device so that a height from an inner surface of one side of the coolant passage where the opening is formed to an inner surface of another side of the coolant passage opposite to the one side where the opening is formed and a height from the other side of the coolant passage opposite to the one side of the coolant passage where the opening is formed to a surface of the heat radiator opposite to a contact surface of the coolant passage with the sealing body are substantially identical to each other.
According to another aspect of the embodiments, there is provided a power module apparatus comprising: a power module comprising a semiconductor device configured to switch electric power, a sealing body configured to seal a perimeter of the semiconductor device, and a heat radiator bonded to a one surface of the sealing body; and a cooling device for power modules comprising an inlet port and an outlet port, a coolant passage through which coolant water flows from the inlet port to the outlet port, and an opening for attaching the heat radiator, the opening provided on a way of the coolant passage, wherein a plurality of the cooling devices are three-dimensionally assembled so that the inlet port and the outlet port of the coolant passage are connected to one another.
According to still another aspect of the embodiments, there is provided a cooling structure comprising: a plurality of cooling devices each including a coolant passage, the plurality of cooling devices to which power modules are respectively attached, wherein the plurality of cooling devices are three-dimensionally assembled so as to connect the coolant passages to one another.
According to yet another aspect of the embodiments, there is provided an electric vehicle or hybrid electric vehicle comprising: the above-mentioned power module apparatus; and an engine control unit configured to control an operation of the power module apparatus.
According to the embodiments, there can be provided: the power module apparatus and the cooling structure which are capable of being efficiently cooled by attaching the heat radiator to the opening formed at the upper surface portion of the cooling device, thereby reducing degradation due to overheating; and the electric vehicle or hybrid electric vehicle in which such a power module apparatus is mounted.
Next, certain embodiments will now be explained with reference to drawings. In the description of the following drawings to be explained, the identical or similar reference numeral is attached to the identical or similar part. However, it should be noted that the drawings, such as a top view diagram, a side view diagram, a bottom view diagram, a cross-sectional diagram, are merely schematic and the relation between thickness and the plane size and the ratio of the thickness of each component part differs from an actual thing. Therefore, detailed thickness and size should be determined in consideration of the following explanation. Of course, the part from which the relation and ratio of a mutual size differ also in mutually drawings is included.
Moreover, the embodiments described hereinafter merely exemplify the device and method for materializing the technical idea; and the embodiments do not specify the material, shape, structure, placement, etc. of each component part as the following. The embodiments may be changed without departing from the spirit or scope of claims.
As shown in
More specifically, the power module apparatus 10 according to the first embodiment includes: a power module 100 including a semiconductor package device 112 including a package (sealing body) 110 configured to seal a perimeter of a semiconductor device mentioned below, a heat radiator 40 bonded to a lower surface of the package 110, and a gate drive substrate 20 mounted on an upper surface of the package 110; and a cooling device (cooling body) 30 including a coolant passage 33, the cooling device 30 to which the power module 100 is attached via the heat radiator 40.
In the power module apparatus 10, the power module 100 is attached thereto so that the heat radiator 40 is attached to an opening formed at an upper surface portion of the cooling device 30, and is fixed with a fixing member 104, e.g. a screw or a bolt.
As shown in
The gate drive substrate 20 is a substrate configured to package a control circuit for gate drives for controlling a drive of a power element etc. to be applied as a chip with a mold resin, for example, and includes an insertion hole 22 into which a lead terminal is inserted so as to be bent upwards. The gate drive substrate 20 is connected to the lead terminal by inserting the lead terminal into the insertion hole 22.
The gate drive substrate 20 may be disposed on the upper surface of the package 110 of the semiconductor package device 112 via a heat radiating resin sheet etc., for example.
The heat radiator 40 includes: an attaching portion 40a functioned also as a heat sink; and a plurality of cooling fins (heat radiation fins or flat plate fins) 40c disposed by including a stepped portion 40d at a lower surface (back side surface) side of the attaching portion 40a. The heat radiator 40 is attached to the opening 35 opened in the mounting portion 31a on the upper surface of the cooling device 30 mentioned below so that the stepped portion 40d is contained therein, and thereby the cooling fin 40c is exposed in the coolant passage 33.
As shown in
In the semiconductor package device 112, a drain terminal electrode P and a ground (earth) potential terminal electrode N provided along a first side of the package 110, an output terminal electrode O provided at a third side opposite to the first side, and lead terminals (G1, S1 and G4, S4) provided along second and fourth sides respectively orthogonal to the first and third sides are respectively extended to an outside of the package 110.
In the semiconductor package device 112, two-chip semiconductor devices Q1 and Q4 are respectively disposed on first and second patterns D (K1) and D (K4) disposed on a surface of the ceramics substrate 120; and the semiconductor devices Q1 and Q4 are connected to each other in parallel. More specifically, gate electrodes of the two-chip semiconductor devices Q1 are wire-bonding connected to the gate signal terminal electrode (lead terminal) G1; source sense electrodes of the 2-chip semiconductor devices Q1 are wire-bonding connected to the source signal terminal electrode (lead terminal) S1; drain electrodes of the 2-chip semiconductor devices Q1 are connected to the first pattern D (K1) via a back surface electrode of each chip; and source electrodes of the 2-chip semiconductor devices Q1 are connected to the output terminal electrode O via wirings (not illustrated) provided on upper surfaces of the respective chips. Similarly, gate electrodes of the two-chip semiconductor devices Q4 are wire-bonding connected to the gate signal terminal electrode (lead terminal) G4; source sense electrodes of the 2-chip semiconductor devices Q4 are wire-bonding connected to the source signal terminal electrode (lead terminal) S4; drain electrodes of the 2-chip semiconductor devices Q4 are connected to the second pattern D (K4) via a back surface electrode of each chip; and source electrodes of the 2-chip semiconductor devices Q4 are connected to a third pattern EP disposed on the surface of the ceramics substrate 120 via wirings (not illustrated) provided on upper surfaces of the respective chips.
The first pattern D (K1) is connected to the drain terminal electrode P, the second pattern D (K4) is connected to the output terminal electrode O, and the third pattern EP is connected to the ground (earth) potential terminal electrode N. A pillar electrode for wiring and for Coefficient of Thermal Expansion (CTE) adjustment may be disposed on the third pattern EP.
Although illustration is omitted, a first upper surface plate electrode is disposed via a pillar electrode on the two-chip semiconductor device Q1 and the diode DI1. Similarly, a second upper surface plate electrode is disposed via a pillar electrode on the two-chip semiconductor device Q4 and the diode DI4.
Moreover, a copper plate layer (not illustrated) functioned as a heat spreader is exposed, by being connected to the ceramics substrate 120, to the package 110 of the back surface side of the semiconductor package device 112 to which the heat radiator 40 is bonded shown in
In the power module 100 to be applied to the power module apparatus 10 according to the first embodiment,
The copper plate layer (not illustrated) exposed from the package 110 of the back surface side of the semiconductor package device 112 is bonded via the bonding material 102 on an upper surface of the attaching portion 40a of the heat radiator 40. Moreover, the stepped portion 40d, a plurality of the cooling fins 40c disposed using the stepped portion 40d as a base edge FB, and a groove portion 40e for O ring formed so as to enclose a periphery of the stepped portion 40d are formed on a side of a surface (non-contact surface) opposite to the bonded surface. Moreover, a through hole 40b into which a fixing member 104, e.g. a screw or a bolt, is inserted is provided at each of four corners of the attaching portion 40a.
In addition, the heat radiator 40 is disposed so that a direction of each cooling fin 40c is identical to a flowing water direction of a coolant water which flows through an inside of the coolant passage 33 of the cooling device 30, and thereby the cooling fin 40c does not interfere with flow of the coolant water. Although details are mentioned below, the heat radiator 40 is attached thereto so that a base edge (non-bonded surface) FB of the cooling fin 40c shown with the dashed line in
The bonding material 102 having a coefficient of thermal conductivity within a range of 0.5 W/mK to 300 W/mK is preferable, for example, and an organic material of any one of an epoxy resin, an acrylic resin, a silicone resin, a urethane resin, or polyimide can be used as a simple substance for the bonding material 102. Moreover, the bonding material 102 may be a synthetic resin with which a metal powder or various ceramic powders are mixed in any one of the above-mentioned organic materials. Alternatively, various solder, firing silver, etc. used by being cured by heating may also be used as the bonding material 102.
The heat radiator 40 may be integrally formed of a metal(s) having high thermal conductivity, for example, or can also be formed by bonding the attaching portion 40a and the cooling fin 40c after separately forming the attaching portion 40a and the cooling fin 40c.
As a power module 100A applicable to a power module apparatus 10 according to a first modified example of the first embodiment, as shown in
More specifically,
The copper plate layer (not illustrated) exposed from the package 110 of the back surface side of the semiconductor package device 112 is bonded via the bonding material 102 on an upper surface of the attaching portion 42a of the heat radiator 42. Moreover, the stepped portion 42d, a plurality of the cooling pins 42c disposed using the stepped portion 42d as a base edge PB, and a groove portion 42e for O ring formed so as to enclose a periphery of the stepped portion 42d are formed on a side of a surface (non-contact surface) opposite to the bonded surface. Moreover, a through hole 42b into which a fixing member 104, e.g. a screw or a bolt, is inserted is provided at each of four corners of the attaching portion 42a.
In the heat radiator 42, a plurality of cooling pins 42c are arranged so as to form a checkered pattern. Although details are mentioned below, the heat radiator 42 is attached thereto so that a base edge (non-bonded surface) PB of the cooling pin 42c is provided at the substantially same plane as that of an uppermost portion of the coolant passage 33 in the cooling device 30 (internal wall surface of the mounting portion 31a).
More specifically, the cooling device 30 circulates coolant water from an outside of the cooling device 30 into an inside of the coolant passage 33 in order to cool the power modules 100 and 100A via the cooling fins 40c or cooling pins 42c with the coolant water. The cooling device 30 has a cooling body unit 31 having a box-like rectangular parallelepiped shape, for example. The cooling device 30 includes: an inlet port (inlet) 32 provided at one side surface of the cooling body unit 31, the inlet port 32 configured to take in the coolant water to the coolant passage 33; and an outlet port (outlet) 34 provided at another side surface opposite to the one side surface thereof, the outlet port 34 configured to take the coolant water out of the coolant passage 33. The inlet port 32 is disposed on an extension of one sidewall of the coolant passage 33 along a flowing water direction of the coolant water, and the outlet port 34 is disposed on an extension of another sidewall of the coolant passage 33 along the flowing water direction of the coolant water.
Moreover, the mounting portion (upper surface portion) 31a composes the cooling body unit 31 of the cooling device 30, and the power modules 100 and 100A are attached to the mounting portion 31a. Opening 35 according to a size of the stepped portion 40d or 42d of the heat radiator 40 or 42 for attaching the cooling fin 40c or cooling pin 42c so as to be exposed in the coolant passage 33 is opened at a substantially center portion of the mounting portion (upper surface portion) 31a. Furthermore, a groove portion 36 for O ring 106 is formed on the mounting portion 31a so that a periphery of the opening 35 is enclosed.
In
For the coolant water, water or a mixed solution to which water and ethylene glycol are mixed at each rate of 50% is used, for example.
In the power module apparatus 10 according to the first modified example of the first embodiment, as shown in
In the case of the attachment, a thickness of the mounting portion 31a in the opening 35 of the cooling body unit 31 and a thickness of the stepped portion 42d of the heat radiator 42 are formed so as to be the same degree as each other, and thereby it is possible to attach the heat radiator 42 to the cooling device 30 so that the base edge PB of the cooling pin 42c is provided at the substantially same plane as that of an internal wall surface of the mounting portion 31a.
More specifically, in
On the other hand, in a power module apparatus 200 according to a comparative example, as shown in
Not only in the case of the power module apparatus 10 according to the first modified example but also the case of the power module apparatus 10 according to the first embodiment, it becomes possible similarly to attach the heat radiator 40 to the cooling device 30 so that the base edge FB of the cooling fin 40c is provided at the substantially same plane as that of the uppermost portion of the coolant passage 33. Accordingly, it can inhibit interference with the flow of the coolant, and thereby it can uniformly cool the whole cooling fins 40c with the coolant water which flows through the inside of the coolant passage 33. As a result, the power module 100 in which the heat radiator 40 is attached to the opening 35 formed at the upper surface portion of the cooling device 30 can also be efficiently cooled, and thereby it becomes possible to reduce degradation due to overheating.
As shown in
Next, there will now be explained concrete examples (divided leadframe structure) of the power modules 100, 100A, and 100B applicable to the power module apparatus 10 according to the first embodiment.
There will now be explained a semiconductor package device 112 (the so-called 2-in-1 type of module) in which two semiconductor devices Q1 and Q4 are molded into one package 100, as a power module 100 applicable to the power module apparatus according to the first embodiment.
More specifically, as shown in
Although each of the SiC MOSFETs Q1 and Q4 in the module is described as one transistor, a plurality of chips may be connected in parallel. Alternatively, a plurality of sets of transistor circuits can also be included in the module. More specifically, there are a 1-in-1 module, a 2-in-1 module, a 4-in-1 module, a 6-in-1, etc. as the module. For example, a module containing two pieces of transistors (chips) on one module is called the 2-in-1 module, a module containing two pieces of 2-in-1 modules on one module is called the 4-in-1 module, and a module containing three pieces of 2-in-1 modules on one module is called the 6-in-1 module.
As shown in
Moreover,
As shown in
As the power module 100 applicable to the power module apparatus 10 according to the first embodiment,
As shown in
Although the SiC MOSFET 112A is composed by including a planar-gate-type n channel vertical SiC MOSFET in
Alternatively, a GaN-based FET etc. instead of the SiC MOSFET 112A can also be adopted to the semiconductor device (Q1, Q4) which can be applied to the power module 100 to be applied to the power module apparatus according to the first embodiment. Specifically, as the semiconductor devices Q1 and Q4 to be applied to the power module 100 applicable to the power module apparatus 10 according to the first embodiment, any one of a SiC-based or GaN-based power element can be adopted.
Furthermore, a semiconductor of which the bandgap energy is within a range from 1.1 eV to 8 eV, for example, can be used for the semiconductor devices Q1 and Q4 to be applied to the power module 100 applicable to the power module apparatus 10 according to the first embodiment. Accordingly, since a calorific value becomes large in many cases if using wideband gap semiconductors, e.g. GaN or diamond, it is especially effective.
Similarly, as the power module 100 applicable to the power module apparatus 10 according to the first embodiment, as shown in
In
As an example of the semiconductor devices Q1 and Q4 to be applied to the power module 100 applicable to the power module apparatus 10 according to the first embodiment,
The gate pad electrode GP is connected to the gate electrode 238 disposed on the gate insulating film 232, and the source pad electrode SP is connected to the source electrode 234 connected to the source region 230 and the p body region 228. Moreover, as shown in
In addition, a microstructural transistor structure (not shown) may be formed in the semiconductor substrate 226 below the gate pad electrode GP and the source pad electrode SP in the same manner as the center portion shown in
Furthermore, as shown in
The gate pad electrode GP is connected to the gate electrode 238 disposed on the gate insulating film 232, and the emitter pad electrode EP is connected to the emitter electrode 234E connected to the emitter region 230E and the p body region 228. Moreover, as shown in
In addition, an IGBT transistor structure (not shown) may be formed in the semiconductor substrate 226 below the gate pad electrode GP and the emitter pad electrode EP in the same manner as the center portion shown in
Furthermore, as shown in
SiC based power devices, e.g. SiC DIMOSFET and SiC TMOSFET, or GaN based power devices, e.g. GaN based High Electron Mobility Transistor (HEMT), are applicable as the semiconductor devices Q1 and Q4. In some instances, power devices, e.g. Si based MOSFETs and IGBT, are also applicable thereto.
—SiC Double Implanted MOSFET (SiC DIMOSFET)—
As shown in
In the SiC DIMOSFET 112D shown in
A gate pad electrode GP (not shown) is connected to the gate electrode 238 disposed on the gate insulating film 232. Moreover, as shown in
As shown in
—SiC TMOSFET—
As shown in
In
A gate pad electrode GP (not shown) is connected to the trench gate electrode 238TG disposed on the gate insulating film 232. Moreover, as shown in
In the SiC TMOSFET 112C, channel resistance RJFET accompanying the junction type FET (JFET) effect as the SiC DIMOSFET 112D is not formed. Moreover, body diodes BD are respectively formed between the p body regions 228 and the semiconductor substrates 226N, in the same manner as
Although the detailed description is omitted, also the case of the power modules 100A and 100B applicable to the power module apparatus 10 according to the first and second modified examples of the first embodiment is the same as the case of the above-mentioned power module 100, except for the structure of the heat radiators 42 and 44.
As shown in
Since a configuration of the power module 100 applicable to the power module apparatus 10A according to the second embodiment is fundamentally the same as that of the above-mentioned power module 100 according to the first embodiment, the detailed description is omitted.
More specifically, as shown in
In addition, the power module 100 applicable to the power module apparatus 10A according to the second embodiment can also have a configuration (integral-type gate drive substrate) with which the gate drive substrate 20 included in each power module 100 is integrated.
Moreover, it is applicable not only to the power module 100 but also to the power modules 100A and 100B, similarly.
Similarly,
Since a switching speed of the SiC MOSFET or IGBT is fast when connecting the power module apparatus 10A according to the second embodiment to a power source E, large surge voltage Ldi/dt is produced due to an inductance L which the connection line has. For example, the surge voltage Ldi/dt is expressed as follows: Ldi/dt=3×109 (A/s), where a current change di=300 A, and a time variation accompanying switching dt=100 ns.
Although a value of the surge voltage Ldi/dt changes dependent on a value of the inductance L, the surge voltage Ldi/dt is superimposed on the power source E. Such a surge voltage Ldi/dt can be absorbed or suppressed by the snubber capacitor C connected between the power terminal PL and the earth terminal (ground terminal) NL.
Next, there will now be explained the three-phase AC inverter application circuit 140 composed using the power module apparatus 10A according to the second embodiment to which the SiC MOSFET is applied as the semiconductor device, with reference to
As shown in
Each output from each gate drive substrate 20 is supplied to a gate electrode of each of the SiC MOSFETs Q1 and Q4, SiC MOSFETs Q2 and Q5, and the SiC MOSFETs Q3 and Q6.
The power module apparatus 10A includes the SiC MOSFETs (Q1 and Q4), (Q2 and Q5), and (Q3 and Q6) having inverter configurations connected between a positive terminal (+) and a negative terminal (−) to which the converter 148 in a power supply or a storage battery (E) 146 is connected. Moreover, flywheel diodes DI1 to DI6 are respectively connected reversely in parallel between the source and the drain of the SiC MOSFETs Q1 to Q6.
Next, there will now be explained the three-phase AC inverter application circuit 140A composed using the power module apparatus 10A according to the second embodiment to which the IGBT is applied as the semiconductor device, with reference to
As shown in
Each output from each gate drive substrate 20 is supplied to a gate electrode of each of the IGBTs Q1 and Q4, IGBTs Q2 and Q5, and the IGBTs Q3 and Q6.
The power module apparatus 10A includes the IGBTs (Q1 and Q4), (Q2 and Q5), and (Q3 and Q6) having inverter configurations connected between a positive terminal (+) and a negative terminal (−) to which the converter 148A in a storage battery (E) 146A is connected. Moreover, flywheel diodes DI1 to DI6 are respectively connected reversely in parallel between the emitter and the collector of the IGBTs Q1 to Q6.
As shown in
More specifically, as shown in
In order to realize more firmly connecting, a connecting portion between the cooling body block 3A and the cooling body block 3D, a connecting portion between the cooling body block 3D and the cooling body block 3B, a connecting portion between the cooling body block 3B and the cooling body block 3C, and a connecting portion between the cooling body block 3C and the cooling body block 3A may be fixed, by means of an L-shaped fastener (not shown) etc., for example.
Moreover, a water injection port (injection port) 7 for injecting coolant water in the coolant passage 333 is provided at the cooling body block 3A, and a water discharge port (discharge port) 9 for discharging the coolant water which flows through an inside of the coolant passage 333 is provided at the opposite cooling body block 3B.
Accordingly, as shown with the arrows in
In addition, the cooling structure 1 according to the third embodiment includes a side surface cover 5 provided so as to cover the cooling body blocks 3A to 3D, as shown in
For example, when the three-phase AC inverter is composed by using the cooling structure 1 according to the third embodiment, the cooling body blocks 3B to 3D are used for the power modules, and the cooling body block 3A is used for capacitor module.
As shown in
Furthermore, the water discharge port 9 for discharging the coolant water out of the coolant passage 333 is provided at a surface 331b opposite to the mounting portion 331a of the cooling body unit 331.
Since other configurations are the same as those of the power module apparatus 10 shown in the above-mentioned first embodiment, detailed explanation is omitted.
Since the configurations of the cooling body blocks 3C and 3D the cooling devices 330C and 330D are the same as those of the cooling device 330B of the cooling body block 3B other than not providing the water discharge port 9, detailed explanation is omitted.
Moreover, although a wall thickness of a part of the side surface of the cooling body unit 331 is thick, in the cross section shown in
As shown in
Furthermore, the water injection port 7 for injecting the coolant water to the coolant passage 333 is provided at a surface 331b opposite to the mounting portion 331a of the cooling body unit 331.
Although the capacitor module 300 by which the respective terminals for U phase, V phase, and W phases are extracted to an outside of the case is attached to the mounting portion 331a, if an opening for attaching the capacitor module 300 is provided in a similar manner to the opening for power modules, it can cool much more effectively, and a volumetric capacity can also be appropriately changed.
Since the cooling body block (fourth unit) 3A becomes excessive, for example, when a 6-in-1 module is composed in quadrangular shape by using the cooling body blocks (first to third units) 3B to 3D, it is preferred to be used for attaching electronic components required for being cooled other than the power chip.
As the capacitor module 300, capacitors corresponding to U phase, V phase, and W phase are not only mounted, but a snubber capacitor for power modules may be mounted.
In the cross section shown in
In the case of composing the three-phase AC inverter, the cooling structure 1 is configured so that the cooling devices 330B, 330C and 330D for power modules to which the power modules 100 are attached are three-dimensionally assembled so as to connect the coolant passages 333 included in the cooling devices 330B, 330C and 330D to one another.
Moreover, the cooling structure 1 further includes the cooling device 330A having the coolant passage 333 for capacitor module to which the capacitor module 300 is attached, and is configured so that the cooling device 330A for capacitor module and three cooling devices 330B, 330C and 330D for power modules are three-dimensionally assembled so as to connect the coolant passages 333 included in the cooling devices 330A, 330B, 330C and 330D to one another.
In this way, a cooling structure 1 according to the third embodiment can compose the 6-in-1 type three-phase AC inverter containing three sets of the 2-in-1 modules by using the power modules 100 attached to the cooling body blocks 3B to 3D as 2-in-1 type modules. Accordingly, as explained above, in each power module 100, the heat radiator 40 is attached thereto so that a height (ha) from a lowermost portion of the coolant passage 333 to an uppermost portion thereof and a height (hb) from the lowermost portion of the coolant passage 333 to a base edge FB is substantially identical to each other. Thereby, the power module 100 in which the heat radiator 40 is attached to the opening 335 formed at the upper surface portion of each cooling device 330B, 330C, 330D can also be efficiently cooled, and thereby it becomes possible to reduce degradation due to overheating.
In addition, since other electronic components required for thermal dissipation, e.g. the capacitor module 300, can be attached to the cooling body block 3A except for the cooling body blocks 3B to 3D, a cooling performance as the cooling structure 1 can also be remarkably improved.
According in particular to the cooling structure 1 according to the third embodiment, since the three-phase AC inverter can be arranged to space substantially equivalent to space in the case of arranging the power module apparatus 10 according to the first embodiment, significantly reduction of the arrangement area can be realized as compared with the case of being planarly arranged.
Alternatively, the power module 100A according to the first modified example can also be applied thereto instead of the power module 100.
Alternatively, in the cooling structure 1 according to the third embodiment, the cooling devices 330A, 330B, 330C and 330D may have the same configuration. For example, if the cooling structure 1 is composed by including only the cooling device 330B, the water discharge port 9 in each cooling body block 3C, 3D except for the cooling body block 3A may be sealed, and the opening 335 may be sealed in the cooling body block 3A by using the water discharge port 9 for the water injection port 7. More specifically, if the water injection port 7, the water discharge port 9, and the opening 335 are properly used in accordance with the cooling body blocks 3A to 3D to be applied, the cooling structure 1 according to the third embodiment can be composed by using the cooling devices 330B having identical shape.
Moreover, in the case of the power module 100B according to the second modified example shown in
As shown in
In the cooling mechanism unit 12, the module cooling system 14 includes a radiator 16 and a pump 18. The radiator 16 reduces an increased temperature of a coolant water down to a certain temperature by absorbing heat by means of the cooling structure 1. The pump 18 repeatedly supplies the coolant water held at a certain temperature by means of the radiator 16 to the coolant passage 333 of the cooling structure 1.
The cooling mechanism unit 12 including such a configuration may be controlled by an Engine Control Unit (ECU) 502 configured to control a drive of the motor 504, etc., for example, in the power control unit 500 of the electric vehicle, or may be capable of always cooling the cooling structure 1 regardless of control by the ECU 502.
Alternatively, if the cooling mechanism unit 12 is applied to a power control unit 510 of a hybrid electric vehicle mounting not the motor 504 but a vehicle engine, as shown in
Not only the cooling structure 1 but also the power module apparatuses 10 and 10A according to each embodiment can be applied to the power control unit 500 of the electric vehicle or the power control unit 510 of the hybrid electric vehicle. However, in consideration of the arrangement to the limited space of the vehicle, applying of the cooling structure 1 capable of significantly reducing an arrangement area is effective.
As explained above, according to the embodiments, in the power module apparatus having the configuration of fitting a part of the heat radiator to the upper surface of the cooling device, interference with flow of the coolant water can be inhibited by fitting the heat radiator thereto. Accordingly, there can be provided: the power module 100 capable of suppressing that the chip is broken down due to overheating or wiring is fused; the cooling structure for implementing such a power module 100; and the electric vehicle or hybrid electric vehicle to which such a cooling structure is mounted.
In the embodiments, as the semiconductor package device applicable to the power module, as shown in
In the semiconductor package device 600,
More specifically, the semiconductor package device 600 has a configuration of a module with the built-in half-bridge in which 2 pairs of a plurality of SiC MOSFETs Q1 and Q4, as shown in
The semiconductor package device 600 includes: a positive side power input terminal P (D1) and a negative side power input terminal N (S4) disposed at a first side of a ceramics substrate 604 covered with a package 602; a gate terminal (gate signal terminal electrode) GT1 and a source sense terminal (source signal terminal electrode) SST1 disposed at a second side adjacent to the first side; output terminal electrodes O (S1) and O (D4) disposed at a third side opposite to the first side; and a gate terminal GT4 and a source sense terminal SST4 disposed at a fourth side opposite to the second side.
As shown in
From the SiC MOSFETs Q1 and Q4 toward the gate signal electrode patterns GL1 and GL4 and the source signal electrode patterns SL1 and SL4 which are respectively disposed on the signal substrates 6241 and 6244, wires for gate GW1 and GW4 and wires for source sense SSW1 and SSW4 are respectively connected. Moreover, gate terminals GT1 and GT4 and source sense terminals SST1 and SST4 for external extraction are connected to the gate signal electrode patterns GL1 and GL4 and the source sense signal electrode patterns SL1 and SL4 by soldering etc.
The sources S1 and S4 of 4 chips of the SiC MOSFETs Q1 and Q4 respectively disposed in parallel are commonly connected with the upper surface plate electrodes 6221 and 6224.
Although illustration is omitted in
Moreover, as the semiconductor device applicable to the power module of the power module apparatus according to the embodiments, not only the SiC system power device but also GaN-based or Si-based power devices can be adopted.
Moreover, it can be applied to not only molded-type semiconductor package devices by which resin molding is performed but also semiconductor package devices packaged with case type packages.
Moreover, it is applicable also to various power modules which contain one or more power elements.
Furthermore, when the power module is attached to the cooling device, thermal compounds, e.g. silicon, and bonding materials, e.g. a solder, can be used.
As explained above, the embodiments have been described with the modified examples, as a disclosure including associated description and drawings to be construed as illustrative, not restrictive. This disclosure makes clear a variety of alternative embodiments, working examples, and operational techniques for those skilled in the art.
Such being the case, the embodiments cover a variety of embodiments, whether described or not.
The power module apparatus according to the embodiments can be used for manufacturing techniques for semiconductor modules, e.g. IGBT modules, diode modules, MOS modules (Si, SiC, GaN), etc., and can be applied to wide applicable fields, e.g. inverter for Hybrid Electric Vehicle (HEV)/Electric Car (EV), inverters or converters for industry, etc.
Number | Date | Country | Kind |
---|---|---|---|
2015-237458 | Dec 2015 | JP | national |
This is a continuation application (CA) of Ser. No. 16/511,696, filed on Jul. 15, 2019, which is a continuation application (CA) of Ser. No. 15/997,195, filed on Jun. 4, 2018, which is a continuation application (CA) of PCT Application No. PCT/JP2016/080658, filed on Oct. 17, 2016, which claims priority to Japan Patent Application No. P2015-237458 filed on Dec. 4, 2015 and is based upon and claims the benefit of priority from prior Japanese Patent Applications No. P2015-237458 filed on Dec. 4, 2015 and PCT Application No. PCT/JP2016/080658, filed on Oct. 17, 2016, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3930114 | Hodge | Dec 1975 | A |
4157611 | Ohwaki | Jun 1979 | A |
4340902 | Honda | Jul 1982 | A |
4611238 | Lewis | Sep 1986 | A |
5289344 | Gagnon | Feb 1994 | A |
5586004 | Green et al. | Dec 1996 | A |
5703752 | Woo | Dec 1997 | A |
6208513 | Fitch | Mar 2001 | B1 |
7081670 | Shibuya et al. | Jul 2006 | B2 |
7215012 | Harnden | May 2007 | B2 |
7449780 | Hua et al. | Nov 2008 | B2 |
7977776 | Galera | Jul 2011 | B2 |
8680666 | Hauenstein | Mar 2014 | B2 |
9134076 | Yoshihara | Sep 2015 | B2 |
9202765 | Wang | Dec 2015 | B2 |
9892992 | Sanda | Feb 2018 | B2 |
10431538 | Kucharski | Oct 2019 | B2 |
10553523 | Kamiyama | Feb 2020 | B2 |
10622287 | Kogawa | Apr 2020 | B2 |
11211320 | Milo | Dec 2021 | B2 |
11552006 | Koduri | Jan 2023 | B2 |
20020063328 | Baek et al. | May 2002 | A1 |
20030038382 | Combs | Feb 2003 | A1 |
20030057573 | Sekine et al. | Mar 2003 | A1 |
20040173894 | Glenn et al. | Sep 2004 | A1 |
20050067719 | Hayashi | Mar 2005 | A1 |
20050082690 | Hayashi | Apr 2005 | A1 |
20050082692 | Park et al. | Apr 2005 | A1 |
20060096299 | Mamitsu et al. | May 2006 | A1 |
20060250765 | Yamabuchi et al. | Nov 2006 | A1 |
20090032916 | Shin | Feb 2009 | A1 |
20090091892 | Otsuka et al. | Apr 2009 | A1 |
20090147479 | Mori et al. | Jun 2009 | A1 |
20100180441 | Otsuka et al. | Jul 2010 | A1 |
20100187680 | Otsuka et al. | Jul 2010 | A1 |
20110108963 | Balakrishnan | May 2011 | A1 |
20110310585 | Suwa | Dec 2011 | A1 |
20130278090 | Matsuo | Oct 2013 | A1 |
20140141718 | Stromberg | May 2014 | A1 |
20140265743 | Chamberlin et al. | Sep 2014 | A1 |
20150097281 | Adachi | Apr 2015 | A1 |
20160197028 | Yamada et al. | Jul 2016 | A1 |
20170117208 | Kasztelan | Apr 2017 | A1 |
20210021065 | Chang | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
102012200863 | Sep 2012 | DE |
10 2011 121 064 | Jun 2013 | DE |
102012206271 | Oct 2013 | DE |
H08-505985 | Jun 1996 | JP |
H10-248198 | Sep 1998 | JP |
11-274771 | Oct 1998 | JP |
H11-346480 | Dec 1999 | JP |
2004-247684 | Sep 2004 | JP |
2005-143151 | Jun 2005 | JP |
2005-354000 | Dec 2005 | JP |
2006-165534 | Jun 2006 | JP |
2006-304522 | Nov 2006 | JP |
2009-081273 | Apr 2009 | JP |
2009-182261 | Aug 2009 | JP |
2012-10540 | Jan 2012 | JP |
2012-147564 | Aug 2012 | JP |
2014-512678 | May 2014 | JP |
Entry |
---|
International Search Report and Written Opinion, International Patent Application No. PCT/JP2016/080658, dated Dec. 27, 2016, with English translation of Search Report (11 pages). |
Office Action issued in the counterpart German Patent Application No. 11 2016 005 528.5, dated Dec. 23, 2020, 15 pages including English translation. |
Office Action issued for German Patent Application No. 11 2016 005 528.5, dated Jul. 3, 2023, 15 pages including English translation. |
Number | Date | Country | |
---|---|---|---|
20210111099 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16511696 | Jul 2019 | US |
Child | 17114020 | US | |
Parent | 15997195 | Jun 2018 | US |
Child | 16511696 | US | |
Parent | PCT/JP2016/080658 | Oct 2016 | US |
Child | 15997195 | US |