(Not Applicable)
(Not Applicable)
The present invention relates generally to integrated circuit chip package technology, and more particularly to a unique manufacturing methodology for a micro lead frame (MLF) package adapted to improve the longevity of and feed rate for the cutting blades used in a saw singulation process employed during the manufacture of the chip package, and to eliminate the quality reducing sawing burrs which are normally created as a result of the saw singulation process.
Integrated circuit dies are conventionally enclosed in plastic packages that provide protection from hostile environments and enable electrical interconnection between the integrated circuit die and an underlying substrate such as a printed circuit board (PCB). The elements of such a package include a metal lead frame, an integrated circuit die, bonding material to attach the integrated circuit die to the lead frame, bond wires which electrically connect pads on the integrated circuit die to individual leads of the lead frame, and a hard plastic encapsulant material which covers the other components and forms the exterior of the package.
The lead frame is the central supporting structure of such a package. A portion of the lead frame is internal to the package, i.e., completely surrounded by the plastic encapsulant. Portions of the leads of the lead frame extend externally from the package or are partially exposed within the encapsulant material for use in electrically connecting the chip package to another component. In certain chip packages, a portion of the die pad of the lead frame also remains exposed within the exterior of the package for use as a heat sink.
For purposes of high-volume, low-cost production of chip packages, a current industry practice is to etch or stamp a thin sheet of metal material to form a panel or strip which defines multiple lead frames. A single strip may be formed to include multiple arrays, with each such array including a multiplicity of lead frames in a particular pattern. In a typical chip package manufacturing process, the integrated circuit dies are mounted and wire bonded to respective ones of the lead frames, with the encapsulant material then being applied to the strip so as to encapsulate the integrated circuit dies, bond wires, and portions of each of the lead frames in the above-described manner. The hardening of the encapsulant material facilitates the formation of a mold cap upon the lead frames.
Upon the hardening of the encapsulant material, the lead frames within the strip are cut apart or singulated for purposes of producing the individual chip packages. Such singulation is typically accomplished via a saw singulation process. In this process, a saw blade is advanced along “saw streets” which extend in prescribed patterns between the lead frames as required to facilitate the separation of the lead frames from each other in the required manner. The advancement of the saw blade along the saw streets concurrently cuts the molded plastic mold cap, thus facilitating the formation of a molded plastic package body upon each of the separated lead frames.
One of the drawbacks associated with the saw singulation process used in relation to the manufacture of chip packages is that the saw blade used in the saw singulation process cuts through copper (i.e., the metal material typically used to fabricate the strip) one hundred percent of the time. As will be recognized, this level of sawing through copper as occurs as a result of the configuration of the strip often results in the premature wear of the costly saw singulation blades. Another drawback of the saw singulation process is that the same also typically results in the burring of the leads of the separated lead frames. Saw generated burrs at the seating plan of each lead in the lead frame adversely affect solder mounting and joint reliability. In current chip package fabrication methodologies, lead burrs are controlled by limiting the feed rate of the saw blade along the saw streets and by using specifically developed, high cost saw blades. However, as will be recognized, the use of the high cost saw blades is undesirable due to the resultant increase in production costs, with the reduced feed rates needed to control burring adversely affecting production speed, and thus efficiency.
The present invention addresses these drawbacks by providing a unique manufacturing methodology for a chip package wherein the singulation process employed in the manufacturing methodology resolves the issues of slow sawing speed, blade wear and sawing burrs on the leads. In this regard, the singulation process is accomplished in the present invention in a two-step process wherein the saw blade is used to cut only the plastic mold cap applied to the lead frames, with an etching technique being employed to facilitate the separation of the copper lead frames from each other. Since the saw blade is sawing only through the molded plastic of the mold cap, the sawing speed can be set to six inches per second or greater, which represents a substantial increase of the sawing speed of about 0.5 inches per second which is used when the saw blade concurrently cuts through the mold cap and lead frame strip. The sawing of only the mold cap further reduces blade wear of the saw blade, with the etching process used to separate the lead frames from each other leaving no burr on the leads of each lead frame. Thus, the present methodology provides significant cost benefits, and eliminates many of the drawbacks of current saw singulation processes which are often deemed to represent a significant bottleneck in chip package manufacturing methodologies. These, and other advantages of the present invention, will be discussed in more detail below.
In accordance with a first embodiment of the present invention, there is provided a method of fabricating semiconductor packages from a lead frame strip which includes a mold cap applied to one side or face thereof, and defines a multiplicity of lead frames integrally connected to each other by connecting bars which extend in multiple rows and columns and define saw streets. In the singulation method of the first embodiment of the present invention, the plastic mold cap, and not the metallic lead frame, is sawed along the saw streets to expose the connecting bars. Thereafter, the connecting bars are chemically etched to separate the lead frames from each other.
Since the saw blade is sawing only through the molded plastic of the mold cap, the sawing speed can be set to six inches per second or greater, which represents a substantial increase of the sawing speed of about 0.5 inches per second common to conventional saw singulation techniques wherein the saw blade concurrently cuts through the mold cap and the lead frame strip. The sawing of only the mold cap further reduces blade wear of the saw blade, with the etching process used to separate the lead frames from each other leaving no burrs on the leads of each lead frame.
In accordance with a second embodiment of the present invention, the leadframe strip includes a plurality of package bodies formed on one side or face thereof, with the connecting bars being exposed between the package bodies. In the singulation method of the second embodiment of the present invention, the connecting bars are chemically etched to separate the leadframes from each other.
These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same,
As seen in
Each lead frame 18 further comprises a multiplicity of leads 28 which are integrally connected to the outer frame portion 20 and protrude therefrom into the opening 22 toward the peripheral edge of the die pad 24. The leads 28 are segregated into four sets, with each set being disposed in spaced relation to a respective one of the four peripheral edge segments defined by the die pad 24. The leads 28 of each set are typically equidistantly spaced from each other, with narrow gaps of equal width being defined therebetween. As indicated above, the free distal ends of the leads 28 are disposed in spaced relation to the peripheral edge of the die pad 24.
The lead frame 18 is not always fabricated to be of uniform thickness. In this regard, regions of the die pad 24 and/or leads 28 may be formed to have a thinner thickness than that of the remainder of the lead frame 18. As shown in
As indicated above, each array of the strip 10 defines a multiplicity of lead frames 18. In each array, the outer frame portions 20 of the lead frames 18 are integrally connected to each other such that the lead frames 18 are arranged in a matrix wherein the outer frame portions 20 thereof collectively define connecting bars 29 which extend in multiple rows and columns. Certain ones of the connecting bars 29 define lateral saw streets 31 which extend perpendicularly between the longitudinal peripheral edge segments 12 of the strip 10, with certain ones of the connecting bars 29 defining longitudinal saw streets 33 which extend perpendicularly between the lateral peripheral edge segments 14 of the strip 10. The lateral saw streets 31 are defined by respective columns of the connecting bars 29, with the longitudinal saw streets 33 being defined by respective rows of the connecting bars 29.
As best seen in
In fabricating chip packages via the implementation of the singulation methodology of the present invention, a multiplicity of integrated circuit dies 34 are disposed upon the top surfaces of respective ones of the die pads 24. The top surface of each die pad 24 is opposed to the bottom surface which contacts the first layer 30. The die 34 is bonded to the top surface of the corresponding die pad 24, with such bonding typically being accomplished through the use of an epoxy, an adhesive film 36 (as shown in FIGS. 4 and 6), or adhesive tape. Each integrated circuit die 34 includes a plurality of input-output pads 35 disposed on the surface thereof opposite that bonded to the top surface of the die pad 24. The input-output pads 35 of each die 34 are mechanically and electrically connected to respective ones of the leads 28 of the corresponding lead frame 18 through the use of conductive wires 38, such as gold, copper, or aluminum wires.
Those portions of each lead frame 18 which are not in contact with the first layer 30, the dies 34 and conductive wires 38 are encapsulated or sealed with a sealing material, such as an epoxy or plastic molding compound. In accordance with a first embodiment of the present invention, the hardened sealing material defines a mold cap 40. As best seen in
As indicated above, in conventional saw singulation techniques, the first and second layers 30, 32 and mold cap 40 would be simultaneously cut by the advancement of a saw blade along the saw streets 31, 33 to facilitate the separation of the lead frames 18 from each other and the formation of individual chip packages. As also explained above, the necessity of cutting through the copper second layer 32 in addition to the first layer 30 and mold cap 40 would require that the saw blades be advanced along the saw streets at a relatively slow sawing speed of about 0.5 inches per second. The cutting of the metallic second layer 32 would also give rise to blade wear in relation to the saw blades, and sawing burrs on the cut ends of the leads 28 exposed within the package body of each chip package. These sawing burrs adversely impact second level reliability (i.e., the integrity of the solder bond between the chip package and an underlying substrate such as a printed circuit board), with a typical requirement being that such saw burr be of a size of forty microns or less. The format-ion of saw burrs via the conventional saw singulation process often requires follow-up burr removal or push-down procedures.
In the singulation method of the present invention, the saw blade is used to cut only the plastic mold cap 40 along the lateral and longitudinal saw streets 31, 33 (FIGS. 3 and 4). Thus, neither the metallic second layer 32 nor the first layer 30 are cut by the saw blade. Since the saw blade is only cutting through the material of the mold cap 40, the sawing speed can be increased to eight inches per second or higher. Additionally, blade wear is substantially reduced since the saw blade cuts only through the material of the mold cap 40 (e.g., plastic), and not the metallic material (e.g., copper) of the second layer 32 defining the lead frames 18.
The sawing of the mold cap 40 in the above-described manner causes one side or face of each of the connecting bars 29 extending along the lateral and longitudinal saw streets 31, 33 to be exposed. In the singulation method of the present invention, the connecting bars 29 are chemically etched (
Advantageously, the use of etching to separate the lead frames 18 from each other completely avoids the undesirable formation of sawing burrs which, as indicated above, occur as a result of the conventional saw singulation process. As seen in
Referring now to
Upon the formation of the package bodies 46, the exposed connecting bars 29 extending along the lateral and longitudinal saw streets 31, 33 are chemically etched (
In the fabrication methodologies of the first and second embodiments described above, subsequent to the formation of the mold cap 40 or the individual package bodies 46, a marking process may be carried out on portions of the mold cap 40 and the package bodies 46 to indicate information of option, maker, and the like on the completed chip packages 42, 48. After such marking, the singulation via saw and chemical etching or chemical etching alone is preferably completed. The etching method through the use of an etching solution may be carried out in a manner wherein the leadframe strip 10 including the formed package bodies 44, 46 is dipped in a bath filled with the etching solution, or through the spraying of the etching solution upon the connecting bars 29 through the use of a spray nozzle. In both the first and second embodiments of the present invention, the chemical etching of the metallic second layer 30 of the leadframe strip 10 to separate the leadframes 18 from each other, in addition to eliminating burr formation, minimizes or eliminates the physical impact of the saw blade against the metallic second layer 32, thus reducing susceptibility for “chip-out” or “die crack” of the die 34. As will be recognized, such impact is eliminated in the second embodiment of the present invention where no sawing process at all takes place.
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3838984 | Crane et al. | Oct 1974 | A |
4054238 | Lloyd et al. | Oct 1977 | A |
4530152 | Roche et al. | Jul 1985 | A |
4707724 | Suzuki et al. | Nov 1987 | A |
4756080 | Thorp, Jr. et al. | Jul 1988 | A |
4812896 | Rothgery et al. | Mar 1989 | A |
4907067 | Derryberry | Mar 1990 | A |
5029386 | Chao et al. | Jul 1991 | A |
5041902 | McShane | Aug 1991 | A |
5087961 | Long et al. | Feb 1992 | A |
5157480 | McShane et al. | Oct 1992 | A |
5172213 | Zimmerman | Dec 1992 | A |
5172214 | Casto | Dec 1992 | A |
5200362 | Lin et al. | Apr 1993 | A |
5200809 | Kwon | Apr 1993 | A |
5214845 | King et al. | Jun 1993 | A |
5216278 | Lin et al. | Jun 1993 | A |
5221642 | Burns | Jun 1993 | A |
5258094 | Furui et al. | Nov 1993 | A |
5273938 | Lin et al. | Dec 1993 | A |
5277972 | Sakumoto et al. | Jan 1994 | A |
5278446 | Nagaraj et al. | Jan 1994 | A |
5279029 | Burns | Jan 1994 | A |
5294897 | Notani et al. | Mar 1994 | A |
5332864 | Liang et al. | Jul 1994 | A |
5336931 | Juskey et al. | Aug 1994 | A |
5343076 | Katayama et al. | Aug 1994 | A |
5406124 | Morita et al. | Apr 1995 | A |
5410180 | Fujii et al. | Apr 1995 | A |
5424576 | Djennas et al. | Jun 1995 | A |
5428248 | Cha | Jun 1995 | A |
5435057 | Bindra et al. | Jul 1995 | A |
5474958 | Djennas et al. | Dec 1995 | A |
5521429 | Aono et al. | May 1996 | A |
5581122 | Chao et al. | Dec 1996 | A |
5604376 | Hamburgen et al. | Feb 1997 | A |
5608267 | Mahulikar et al. | Mar 1997 | A |
5625222 | Yoneda et al. | Apr 1997 | A |
5639990 | Nishihara et al. | Jun 1997 | A |
5640047 | Nakashima | Jun 1997 | A |
5641997 | Ohta et al. | Jun 1997 | A |
5646831 | Manteghi | Jul 1997 | A |
5650663 | Parthasarathi | Jul 1997 | A |
5683806 | Sakumoto et al. | Nov 1997 | A |
5696666 | Miles et al. | Dec 1997 | A |
5701034 | Marrs | Dec 1997 | A |
5710064 | Song et al. | Jan 1998 | A |
5736432 | Mackessy | Apr 1998 | A |
5776798 | Quan et al. | Jul 1998 | A |
5783861 | Son | Jul 1998 | A |
5835988 | Ishii | Nov 1998 | A |
5844306 | Fujita et al. | Dec 1998 | A |
5859471 | Kuraishi et al. | Jan 1999 | A |
5866939 | Shin et al. | Feb 1999 | A |
5877043 | Alcoe et al. | Mar 1999 | A |
5886398 | Low et al. | Mar 1999 | A |
5894108 | Mostafazadeh et al. | Apr 1999 | A |
5942794 | Okumura et al. | Aug 1999 | A |
5959356 | Oh | Sep 1999 | A |
5973388 | Chew et al. | Oct 1999 | A |
5977613 | Takata et al. | Nov 1999 | A |
5977615 | Yamaguchi et al. | Nov 1999 | A |
5977630 | Woodworth et al. | Nov 1999 | A |
5981314 | Glenn et al. | Nov 1999 | A |
5986885 | Wyland | Nov 1999 | A |
6001671 | Fjelstad | Dec 1999 | A |
6025640 | Yagi et al. | Feb 2000 | A |
6034423 | Mostafazadeh et al. | Mar 2000 | A |
6072228 | Hinkle et al. | Jun 2000 | A |
6130115 | Okumura et al. | Oct 2000 | A |
6130473 | Mostafazadeh et al. | Oct 2000 | A |
6140154 | Hinkle et al. | Oct 2000 | A |
6143981 | Glenn | Nov 2000 | A |
6184465 | Corisis | Feb 2001 | B1 |
6198171 | Huang et al. | Mar 2001 | B1 |
6225146 | Yamaguchi et al. | May 2001 | B1 |
6229200 | Mclellan et al. | May 2001 | B1 |
6242281 | Mclellan et al. | Jun 2001 | B1 |
6281566 | Magni | Aug 2001 | B1 |
6281568 | Glenn et al. | Aug 2001 | B1 |
6294100 | Fan et al. | Sep 2001 | B1 |
6384472 | Huang | May 2002 | B1 |
6399415 | Bayan et al. | Jun 2002 | B1 |
6468832 | Mostafazadeh | Oct 2002 | B1 |
6489218 | Kim et al. | Dec 2002 | B1 |
20010040276 | Yasunaga et al. | Nov 2001 | A1 |
20020197826 | Kim | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
19734794 | Aug 1997 | DE |
0794572 | Oct 1997 | EP |
5745959 | Mar 1982 | JP |
59208756 | Nov 1984 | JP |
59227143 | Dec 1984 | JP |
60195957 | Oct 1985 | JP |
60231349 | Nov 1985 | JP |
6139555 | Feb 1986 | JP |
629639 | Jan 1987 | JP |
63205935 | Aug 1988 | JP |
63233555 | Sep 1988 | JP |
1106456 | Apr 1989 | JP |
6092076 | Apr 1994 | JP |
7312405 | Nov 1995 | JP |
8125066 | May 1996 | JP |
8306853 | Nov 1996 | JP |
98205 | Jan 1997 | JP |
98206 | Jan 1997 | JP |
98207 | Jan 1997 | JP |
992775 | Apr 1997 | JP |
941979 | Jan 1994 | KR |
9772358 | Nov 1997 | KR |