Embodiments of the present invention relate to structures of reliable packages.
Thin wafer handling in 2.5D and 3D technologies adds cost and complexity in assembly. In particular, wafer bow and cracking of thin wafers, including the interposer, can cause great difficulty during assembly. Current Chip-on-Wafer-on-Substrate (CoWoS) technologies also face challenges with wafer bow and interposer cracking during fabrication. Furthermore, thermal issues in 2.5D and 3D technologies may also lead to warpage and cracking of the components.
Therefore, there is a need for better management of the assembly of packages.
In accordance with aspects of the present invention a method of forming a device includes etching one or more crack arresting cavities in a first side of a substrate device to form crack arrests, the substrate device including conductive vias formed in a substrate; mounting chip devices to the first side of the substrate device to electrically contact the vias; depositing an encapsulation layer over the chip devices and filling the crack arrests cavities; planarizing a second side to reveal the vias on the second side; and singulating through the cavities to form separated packages, with each package having one or more chip devices mounted on each singulated substrate device.
In some embodiments, a method of forming a device includes mounting a wafer to a first side of the substrate device to electrically contact with conducting vias formed in the substrate device; planarizing a second side of the substrate device to reveal the conducting vias on the second side; etching one or more cavities in the second side of the substrate; depositing an encapsulation layer on the side side of the substrate; and singulating through the cavities to form separated packages, with each package having one or more chip devices mounted on each singulated substrate device.
In some embodiments, a device can include a substrate device with conductive vias formed in a substrate, the conductive vias being exposed on a second side of the substrate; cavities formed in the substrate device; chip devices mounted to a first side of the substrate device in electrical contact with the conductive vias; and an encapsulation layer covering the chip devices and filling the cavities.
In some embodiments, a device can include a substrate device with conductive vias formed in a substrate, the conductive vias being exposed on a second side of the substrate; a wafer mounted on a first side; cavities formed in the substrate device; and an encapsulation layer covering the second side and filling the cavities.
These and other embodiments are further discussed below with respect to the following figures.
In the following description, specific details are set forth describing some embodiments of the present invention. It will be apparent, however, to one skilled in the art that some embodiments may be practiced without some or all of these specific details. The specific embodiments disclosed herein are meant to be illustrative but not limiting. One skilled in the art may realize other elements that, although not specifically described here, are within the scope and the spirit of this disclosure.
This description and the accompanying drawings that illustrate inventive aspects and embodiments should not be taken as limiting—the claims define the protected invention. Various mechanical, compositional, structural, and operational changes may be made without departing from the spirit and scope of this description and the claims. In some instances, well-known structures and techniques have not been shown or described in detail in order not to obscure the invention.
Additionally, the drawings are not to scale. Relative sizes of components are for illustrative purposes only and do not reflect the actual sizes that may occur in any actual embodiment of the invention. Like numbers in two or more figures represent the same or similar elements. Further, descriptive elements such as “above” or “below” are relative to the other elements of the drawing on the drawing page and are not meant to denote absolute directionality. For example, a film described as being above a substrate may, when the substrate is turned over, actually be below the substrate. Therefore, terms such as “above” and ‘below” should not be interpreted as limiting but as providing only relative positioning.
Assembly according to some embodiments of the present invention can lead to encapsulation and isolation of devices throughout the assembly. In such cases, there can be little or no thin wafer handling concerns and thermal management can be enhanced. In some embodiments, crack propagation within the wafer or substrate can be arrested. Further, assembly processes according to some embodiments can be highly scalable to large devices or interposer structures.
As shown in
In step 106 of process 100, as illustrated in
In step 112 of process 100, as illustrated in
In step 114, as illustrated in
As shown in step 116 and illustrated in
In step 114, as shown in
Forming crack arrests 210 in device substrate 200 and then encapsulating chip devices 212 with encapsulation layer 214 protects chip devices 212 and substrate device 200 from cracking and warping throughout the assembly process. Further, such processes help to thermally manage the process so that thermal effects do not add to the warpage and cracking of the components.
In step 304 a wafer or chip device may be mounted on RDL layer 206.
In step 306, the backside of substrate device 400 may be ground to planarize the device and reveal vias 204, as is shown in
In step 310, and as shown in
In step 314, and as shown in
In step 316, and as illustrated in
As shown in process 300, in some embodiments multiple layers can be stacked and backside etching can be performed. It should be noted that aspects of process 300 can be included in process 100 in order to stack multiple components. Further, the stacked combination of substrate device 412 with substrate device 400 can be separated by cutting through crack arrests 420 and crack arrest 410.
In the preceding specification, various embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set for in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
This application is a continuation of, and hereby claims priority to, pending U.S. patent application Ser. No. 15/649,457, filed on Jul. 13, 2017, which is a divisional of, and claims priority to, U.S. patent application Ser. No. 14/749,529, filed on Jun. 24, 2015, issued as U.S. Pat. No. 9,741,620, the entirety of each of which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4467342 | Tower | Aug 1984 | A |
4998665 | Hayashi | Mar 1991 | A |
5019673 | Juskey et al. | May 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5322593 | Hasegawa et al. | Jun 1994 | A |
5399898 | Rostoker | Mar 1995 | A |
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
5956605 | Akram et al. | Sep 1999 | A |
5985739 | Plettner et al. | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6121688 | Akagawa | Sep 2000 | A |
6265775 | Seyyedy | Jul 2001 | B1 |
6322903 | Siniaguine et al. | Nov 2001 | B1 |
6374770 | Lee | Apr 2002 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6437434 | Sugizaki | Aug 2002 | B1 |
6448153 | Siniaguine | Sep 2002 | B2 |
6465892 | Suga | Oct 2002 | B1 |
6582991 | Maeda et al. | Jun 2003 | B1 |
6887769 | Kellar et al. | May 2005 | B2 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6958285 | Siniaguine | Oct 2005 | B2 |
6964915 | Farnworth et al. | Nov 2005 | B2 |
6984889 | Kimura | Jan 2006 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7078811 | Suga | Jul 2006 | B2 |
7098542 | Hoang et al. | Aug 2006 | B1 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7126212 | Enquist et al. | Oct 2006 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7354798 | Pogge et al. | Apr 2008 | B2 |
7452743 | Oliver et al. | Nov 2008 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
7902643 | Tuttle | Mar 2011 | B2 |
8008764 | Joseph et al. | Aug 2011 | B2 |
8178963 | Yang | May 2012 | B2 |
8178964 | Yang | May 2012 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8237289 | Urakawa | Aug 2012 | B2 |
8241961 | Kim et al. | Aug 2012 | B2 |
8258633 | Sezi et al. | Sep 2012 | B2 |
8314007 | Vaufredaz | Nov 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8377798 | Peng et al. | Feb 2013 | B2 |
8409927 | Yim | Apr 2013 | B1 |
8441131 | Ryan | May 2013 | B2 |
8476146 | Chen et al. | Jul 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8536693 | Dungan et al. | Sep 2013 | B2 |
8618659 | Sato et al. | Dec 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8703542 | Lin et al. | Apr 2014 | B2 |
8704364 | Banijamali | Apr 2014 | B2 |
8704384 | Wu et al. | Apr 2014 | B2 |
8710648 | Xue | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8810006 | Yu et al. | Aug 2014 | B2 |
8816404 | Kim et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
8872349 | Chiu et al. | Oct 2014 | B2 |
8912648 | Lin et al. | Dec 2014 | B2 |
8988299 | Kam et al. | Mar 2015 | B2 |
9006873 | Nikitin et al. | Apr 2015 | B2 |
9018094 | Kosenko et al. | Apr 2015 | B2 |
9048306 | Chi et al. | Jun 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9136219 | Iwase et al. | Sep 2015 | B2 |
9142517 | Liu | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184104 | Chia et al. | Nov 2015 | B1 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9202769 | Lin et al. | Dec 2015 | B2 |
9224669 | Xue | Dec 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9331149 | Tong et al. | May 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9355997 | Katkar et al. | May 2016 | B2 |
9368563 | Lin et al. | Jun 2016 | B2 |
9368866 | Yu | Jun 2016 | B2 |
9379091 | England et al. | Jun 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9402312 | Shen et al. | Jul 2016 | B2 |
9412662 | Lin et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9466586 | Choi et al. | Oct 2016 | B1 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9704824 | Lin et al. | Jul 2017 | B2 |
9722098 | Chung et al. | Aug 2017 | B1 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9881882 | Hsu et al. | Jan 2018 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10008844 | Wang et al. | Jun 2018 | B2 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10727219 | Uzoh et al. | Jul 2020 | B2 |
20020000328 | Motomura et al. | Jan 2002 | A1 |
20020003307 | Suga | Jan 2002 | A1 |
20020004288 | Nishiyama | Jan 2002 | A1 |
20040070045 | Suguro et al. | Apr 2004 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20040238927 | Miyazawa | Dec 2004 | A1 |
20050040530 | Shi | Feb 2005 | A1 |
20050153522 | Hwang et al. | Jul 2005 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20070045798 | Horie et al. | Mar 2007 | A1 |
20070096294 | Ikeda et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070158024 | Addison et al. | Jul 2007 | A1 |
20070222048 | Huang | Sep 2007 | A1 |
20070295456 | Gudeman et al. | Dec 2007 | A1 |
20080237782 | Williams et al. | Oct 2008 | A1 |
20080244902 | Blackwell et al. | Oct 2008 | A1 |
20080265421 | Brunnbauer et al. | Oct 2008 | A1 |
20090039523 | Jiang et al. | Feb 2009 | A1 |
20090068831 | Enquist et al. | Mar 2009 | A1 |
20090072357 | Tang et al. | Mar 2009 | A1 |
20090102002 | Chia et al. | Apr 2009 | A1 |
20090149023 | Koyanagi | Jun 2009 | A1 |
20090227089 | Plaut | Sep 2009 | A1 |
20090252939 | Park | Oct 2009 | A1 |
20090283898 | Janzen | Nov 2009 | A1 |
20100123268 | Menard | May 2010 | A1 |
20100176482 | Dennard et al. | Jul 2010 | A1 |
20100213603 | Smeys et al. | Aug 2010 | A1 |
20100225005 | Nishio et al. | Sep 2010 | A1 |
20100230806 | Huang et al. | Sep 2010 | A1 |
20100314741 | Lee et al. | Dec 2010 | A1 |
20110062549 | Lin | Mar 2011 | A1 |
20110074033 | Kaltalioglu | Mar 2011 | A1 |
20110095403 | Lee et al. | Apr 2011 | A1 |
20110108943 | Dennard et al. | May 2011 | A1 |
20110163457 | Mohan et al. | Jul 2011 | A1 |
20110290552 | Palmateer et al. | Dec 2011 | A1 |
20120001339 | Malatkar | Jan 2012 | A1 |
20120049332 | Chen | Mar 2012 | A1 |
20120212384 | Kam et al. | Aug 2012 | A1 |
20120319300 | Kim et al. | Dec 2012 | A1 |
20130037962 | Xue | Feb 2013 | A1 |
20130069239 | Kim et al. | Mar 2013 | A1 |
20130122655 | Yu et al. | May 2013 | A1 |
20130161836 | Yeom et al. | Jun 2013 | A1 |
20130187292 | Semmelmeyer | Jul 2013 | A1 |
20130217188 | Wang et al. | Aug 2013 | A1 |
20130249045 | Kang et al. | Sep 2013 | A1 |
20130249106 | Lin et al. | Sep 2013 | A1 |
20130299997 | Sadaka | Nov 2013 | A1 |
20130320572 | Chang et al. | Dec 2013 | A1 |
20140001652 | Chen et al. | Jan 2014 | A1 |
20140013606 | Nah et al. | Jan 2014 | A1 |
20140015109 | Lei et al. | Jan 2014 | A1 |
20140124957 | Iwase | May 2014 | A1 |
20140134804 | Kelly | May 2014 | A1 |
20140154839 | Ahn et al. | Jun 2014 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20140225246 | Henderson et al. | Aug 2014 | A1 |
20140225795 | Yu | Aug 2014 | A1 |
20140299981 | Goh et al. | Oct 2014 | A1 |
20140312511 | Nakamura | Oct 2014 | A1 |
20140370658 | Tong et al. | Dec 2014 | A1 |
20150021754 | Lin | Jan 2015 | A1 |
20150041980 | Ahn et al. | Feb 2015 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150102468 | Kang et al. | Apr 2015 | A1 |
20150115448 | Maier | Apr 2015 | A1 |
20150123240 | Bowman | May 2015 | A1 |
20150179481 | Lin | Jun 2015 | A1 |
20150228632 | Yu | Aug 2015 | A1 |
20150262928 | Shen et al. | Sep 2015 | A1 |
20150303170 | Kim et al. | Oct 2015 | A1 |
20150327367 | Shen | Nov 2015 | A1 |
20150340285 | Enquest et al. | Nov 2015 | A1 |
20160020193 | Lee et al. | Jan 2016 | A1 |
20160042998 | Pueschner et al. | Feb 2016 | A1 |
20160133571 | Lee et al. | May 2016 | A1 |
20160172302 | Song | Jun 2016 | A1 |
20160247761 | Song et al. | Aug 2016 | A1 |
20160300817 | Do et al. | Oct 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20160379885 | Uzoh et al. | Dec 2016 | A1 |
20170148764 | Wang et al. | May 2017 | A1 |
20170194271 | Hsu et al. | Jul 2017 | A1 |
20170200711 | Uzoh et al. | Jul 2017 | A1 |
20170316998 | Marutani et al. | Nov 2017 | A1 |
20180012787 | Oka | Jan 2018 | A1 |
20180096931 | Huang et al. | Apr 2018 | A1 |
20180122774 | Huang et al. | May 2018 | A1 |
20180130769 | Tan et al. | May 2018 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180219038 | Gambino | Aug 2018 | A1 |
20180226375 | Enquist et al. | Aug 2018 | A1 |
20180273377 | Katkar et al. | Sep 2018 | A1 |
20180286805 | Huang et al. | Oct 2018 | A1 |
20180323177 | Yu | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20180366442 | Gu et al. | Dec 2018 | A1 |
20180366446 | Haba et al. | Dec 2018 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190096842 | Fountain, Jr. et al. | Mar 2019 | A1 |
20190115277 | Yu | Apr 2019 | A1 |
20190131277 | Yang | May 2019 | A1 |
20190198407 | Huang et al. | Jun 2019 | A1 |
20190198409 | Katkar et al. | Jun 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190348336 | Katkar et al. | Nov 2019 | A1 |
20190371763 | Agarwal et al. | Dec 2019 | A1 |
20190385966 | Gao et al. | Dec 2019 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200075534 | Gao et al. | Mar 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
103681646 | Mar 2014 | CN |
0 065 425 | Nov 1982 | EP |
2 685 491 | Jan 2014 | EP |
04-337694 | Nov 1992 | JP |
H11-135675 | May 1999 | JP |
2000-100679 | Apr 2000 | JP |
2001-102479 | Apr 2001 | JP |
2002-353416 | Dec 2002 | JP |
2004-193493 | Jul 2004 | JP |
2011-171614 | Sep 2011 | JP |
2013-33786 | Feb 2013 | JP |
2018-160519 | Oct 2018 | JP |
10-2001-0104643 | Nov 2001 | KR |
10-2010-0123755 | Nov 2010 | KR |
10-2015-0097798 | Aug 2015 | KR |
WO 0234019 | Apr 2002 | WO |
WO 2005043584 | May 2005 | WO |
WO 2006100444 | Sep 2006 | WO |
WO 2010024678 | Mar 2010 | WO |
WO 2013119309 | Aug 2013 | WO |
WO 2017034654 | Mar 2017 | WO |
WO 2017052652 | Mar 2017 | WO |
WO 2017151442 | Sep 2017 | WO |
Entry |
---|
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of The Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698. |
Chinese Office Action dated Jun. 5, 2019, in Chinese Application No. 201780030482.7, 10 pages. |
Chung et al., “Room temperature GaAseu + Si and InPeu + Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206. |
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812. |
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955. |
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77. |
Fukushima, T. et al., “New three-dimensional integration technology using self-assembly technique,” International Electron Devices Meeting 5-7.12.2005, IEEE, Dec. 5, 2005, pp. 348-351. |
Gösele et al., “Semiconductor Wafer Bonding: A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32. |
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258. |
Hosoda et al., “Room temperature GaAs—Si and InP—Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. And Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206. |
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, pp. 7-pp. |
Howlader et al., “Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference On, pp. 272-275. |
Howlader et al., “Characterization of the bonding strength and interface current of p-Si/ n-InP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066. |
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118. |
International Search Report and Written Opinion dated Apr. 17, 2017, issued in International Application No. PCT/US2016/068577, 16 pages. |
International Search Report and Written Opinion dated Sep. 22, 2017, issued in International Application No. PCT/US2017/029187, 20 pages. |
International Search Report and Written Opinion dated Mar. 7, 2019, in International Application No. PCT/US2018/060044, 14 pages. |
International Search Report and Written Opinion dated Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages. |
International Search Report and Written Opinion dated Oct. 25, 2019, issued in International Application No. PCT/US2019/040622, 12 pages. |
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224. |
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467. |
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318. |
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195. |
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453. |
Kim et al., “Wafer-scale activated bonding of Cu—Cu, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247. |
Marinov, Val et al., “Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Apr. 2012, vol. 2, No. 4, pp. 569-577. |
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(l), 6 pages. |
Office Action for U.S. Appl. No. 15/159,649, dated Sep. 14, 2017, 9 pages. |
Office Action for U.S. Appl. No. 15/389,157, dated Oct. 6, 2017, 18 pages. |
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444. |
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606. |
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852. |
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760. |
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” Tranducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525. |
Suga et al., “A new approach to Cu—Cu direct bump bonding,” IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference, Apr. 16-18, 1997, IEEE, pp. 146-151. |
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256. |
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018. |
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008. |
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—A new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705. |
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80. |
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, The American Ceramic Society, 1993, pp. 323-331. |
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111. |
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089. |
Supplemental European Search Report dated Jun. 19, 2019 in European Application No. 17799846.5, 16 pages. |
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197. |
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, Transducers '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660. |
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387. |
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196. |
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348. |
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: An International Journal, 2002, vol. 50, Issue 1, pp. 53-59. |
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996). |
Takagi et al, “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63. |
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102. |
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectomechanical systems, Mar. 1994, vol. 3, No. 1, pp. 29-35. |
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938. |
Uhrmann, T. et al., “Heterogeneous integration by collective die-to-wafer bonding,” Chip Scale Review, Nov./Dec. 2018, vol. 22, No. 6, pp. 10-12. |
Wang et al., “Reliability and microstructure of Au—Al and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919. |
Wang et al., “Reliability of Au bump—Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756. |
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106. |
Xu et al., “New Au—Al interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483. |
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389. |
European Patent Office, Patent Abstracts of Japan for H11-135675, 1999, 1 page. |
International Search Report and Written Opinion dated Aug. 27, 2015, International Application No. PCT/US2015/030416, 11 pages. |
International Search Report and Written Opinion dated Mar. 13, 2017, International Application No. PCT/US2016/037430, 15 pages. |
U.S. Appl. No. 14/214,365, titled “Integrated Circuits Protected by Substrates with Cavities, and Methods of Manufacture,” filed Mar. 14, 2014, 40 pages. |
Number | Date | Country | |
---|---|---|---|
20200126861 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14749529 | Jun 2015 | US |
Child | 15649457 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15649457 | Jul 2017 | US |
Child | 16718820 | US |