Transistors, memory cells and semiconductor constructions

Information

  • Patent Grant
  • 11594611
  • Patent Number
    11,594,611
  • Date Filed
    Friday, February 19, 2021
    3 years ago
  • Date Issued
    Tuesday, February 28, 2023
    a year ago
Abstract
Some embodiments include a semiconductor construction having a gate extending into a semiconductor base. Conductively-doped source and drain regions are within the base adjacent the gate. A gate dielectric has a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material. In some embodiments the ferroelectric material is within each of the first, second and third segments. In some embodiments, the ferroelectric material is within the first segment or the third segment. In some embodiments, a transistor has a gate, a source region and a drain region; and has a channel region between the source and drain regions. The transistor has a gate dielectric which contains ferroelectric material between the source region and the gate.
Description
TECHNICAL FIELD

Transistors, memory cells and semiconductor constructions.


BACKGROUND

Memory is one type of integrated circuitry, and is used in computer systems for storing data. Integrated memory is usually fabricated in one or more arrays of individual memory cells. The memory cells may be volatile, semi-volatile, or nonvolatile. Nonvolatile memory cells can store data for extended periods of time, and in some instances can store data in the absence of power. Volatile memory dissipates and is therefore refreshed/rewritten to maintain data storage.


The memory cells are configured to retain or store information in at least two different selectable states. In a binary system, the states are considered as either a “0” or a “1”. In other systems, at least some individual memory cells may be configured to store more than two selectable states of information.


Dynamic random access memory (DRAM) is one type of memory, and is utilized in numerous electronic systems. A DRAM cell may comprise a transistor in combination with a charge storage device (for instance, a capacitor). DRAM has an advantage of having rapid read/write; but has disadvantages of being highly volatile (often requiring refresh of several hundreds of times per second) and of being erased in the event of power loss.


It is desired to develop improved memory devices.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic cross-sectional view of a portion of a semiconductor construction illustrating an example embodiment transistor incorporated into an example embodiment memory cell.



FIG. 2 diagrammatically illustrates the memory cell of FIG. 1 in two different example memory states.



FIGS. 3-7 diagrammatically illustrate example embodiment transistors incorporated into example embodiment memory cells.



FIG. 8 illustrates another embodiment memory cell comprising the example embodiment transistor of FIG. 1.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

Some embodiments include transistors which comprise ferroelectric material incorporated into gate dielectric. In some embodiments, such transistors may be incorporated into memory cells. Example embodiments are described with reference to FIGS. 1-8.


Referring to FIG. 1, an example embodiment memory cell 40 is illustrated as part of a semiconductor construction 10.


The construction 10 includes a base 12. The base 12 may comprise semiconductor material, and in some embodiments may comprise, consist essentially of, or consist of monocrystalline silicon. In some embodiments, base 12 may be considered to comprise a semiconductor substrate. The term “semiconductor substrate” means any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductor substrates described above. In some embodiments, base 12 may correspond to a semiconductor substrate containing one or more materials associated with integrated circuit fabrication. Some of the materials may be under the shown region of base 12 and/or may be laterally adjacent the shown region of base 12; and may correspond to, for example, one or more of refractory metal materials, barrier materials, diffusion materials, insulator materials, etc.


A transistor gate 14 extends into base 12. The transistor gate comprises gate material 16. Such gate material may be any suitable composition or combination of compositions; and in some embodiments may comprise, consist essentially of, or consist of one or more of various metals (for example, tungsten, titanium, etc.), metal-containing compositions (for instance, metal nitride, metal carbide, metal silicide, etc.), and conductively-doped semiconductor materials (for instance, conductively-doped silicon, conductively-doped germanium, etc.). In some example embodiments, the gate material 16 may comprise, consist essentially of, or consist of one or more of titanium nitride, titanium aluminum nitride, tungsten nitride, copper and tantalum nitride.


Gate dielectric 18 is between gate material 14 and base 12. The gate dielectric is configured as an upwardly-opening container 24 along the cross-section of FIG. 1, and the gate 14 is within such container. The gate dielectric comprises two separate materials 20 and 22 in the embodiment of FIG. 1, which may be referred to as a first material and a second material, respectively. The first material 20 forms an outer boundary of the container 24, and is directly against the semiconductor base 12. The second material 22 is between the first material 20 and the gate 14. In some embodiments, the first material 20 is a non-ferroelectric material, and the second material is a ferroelectric material. In such embodiments, the first material 20 may comprise, consist essentially of, or consist of one or both of silicon dioxide and silicon nitride; and the second material 22 may comprise, consist essentially of, or consist of one or more of yttrium-doped zirconium oxide, yttrium-doped hafnium oxide, magnesium-doped zirconium oxide, magnesium-doped hafnium oxide, silicon-doped hafnium oxide, silicon-doped zirconium oxide and barium-doped titanium oxide. Accordingly, in some embodiments the first material 20 may comprise one or more of silicon, nitrogen and oxygen; and the second material 22 may comprise one or more of Hf, Zr, Si, O, Y, Ba, Mg and Ti.


In some embodiments, the ferroelectric material 22 may have a thickness within a range of from about 10 angstroms to about 200 angstroms, and the non-ferroelectric material 20 may have a thickness within a range of from about 10 angstroms to about 20 angstroms.


Construction 10 comprises a conductively-doped source region 26 extending into base 12, and a conductively-doped drain region 28 extending into the base. Lower boundaries of the source and drain regions are diagrammatically illustrated with dashed lines. The source and drain regions are both adjacent to gate 14, and are spaced from the gate by the gate dielectric 18. The source and drain regions are spaced from one another by a channel region 30 that extends under the gate 14.


In some embodiments, the source region 26 may be referred to as a first region of the base adjacent to the gate 14, and the drain region 28 may be referred to as a second region of the base adjacent to the gate. Such first and second regions of the base are spaced from one another by an intervening region of the base comprising the channel region 30.


The gate dielectric 18 may be considered to comprise a first segment 23 between the source region 26 and the gate 14, a second segment 25 between the drain region 28 and the gate 14, and a third segment 27 between the first and second segments. In some embodiments, the segment 23 may be considered to correspond to a first substantially vertical leg of container 24, the segment 25 may be considered to correspond to a second substantially vertical leg of the container, and the segment 27 may be considered to comprise a bottom of the container.


In the shown embodiment, all of the first, second and third segments (23, 25 and 27) of gate dielectric 18 comprise ferroelectric material 22. In other embodiments (some of which are discussed below with reference to FIGS. 4-6), the ferroelectric material 22 may be omitted from one or more of such segments.


In some embodiments, the non-ferroelectric material 20 provides a barrier between ferroelectric material 22 and base 12 to avoid undesired diffusion of constituents between the ferroelectric material and the base and/or to avoid undesired reaction or other interaction between the ferroelectric material and the base. In such embodiments, the non-ferroelectric material 20 may be provided entirely along an outer edge of the gate dielectric (as shown) to form a boundary of the container 24 against the semiconductor base 12 (with source and drain regions 26 and 28 being considered to be part of the base). In some embodiments, diffusion and/or other interactions are not problematic relative to the ferroelectric material 22 even in the absence of at least some of the non-ferroelectric material, and accordingly some or all the non-ferroelectric material 20 may be omitted from one or more of the segments 23, 25 and 27.


In the shown embodiment, the non-ferroelectric material 20 is a substantially consistent thickness along an entirety of container 24. In other embodiments (one of which is discussed below with reference to FIG. 7), the non-ferroelectric material 20 may have a different thickness along one region of container 24 as compared to another region.


In the shown embodiment, source region 26 is electrically coupled to circuitry 32, drain region 28 is electrically coupled to circuitry 34, and gate 14 is electrically coupled to circuitry 36. A transistor 38 comprises the gate 14 together with the source/drain regions 26 and 28, and such transistor is incorporated into an integrated circuit through circuitry 32, 34 and 36.


Although the embodiment of FIG. 1 utilizes transistor 38 as part of a memory cell 40, in other embodiments the transistor 38 may be utilized in other applications. For instance, transistor 38 may be utilized in logic or other circuitry in place of a conventional transistor.


The ferroelectric material 22 of gate dielectric 18 may be polarized into either of two stable orientations, which may enable two selectable states of memory cell 40. Example memory states are shown in FIG. 2, with the memory states being labeled as “MEMORY STATE 1” and “MEMORY STATE 2”. The illustrated memory cell of FIG. 2 has n-type doped source and drain regions 26 and 28, and a p-type doped channel region. In other embodiments, the source and drain regions may be p-type doped and the channel region may be n-type doped.


MEMORY STATE 1 and MEMORY STATE 2 differ from one another relative to the orientation of charge within ferroelectric material 22. Such charge orientation is diagrammatically illustrated with “+” and “−” in the diagrammatic illustrations of FIG. 2. Specifically, the memory states of FIG. 2 are shown to differ from one another relative to charge polarization within ferroelectric material 22. A double-headed arrow 41 is provided in FIG. 2 to diagrammatically illustrate that the memory cell 40 may be reversibly transitioned between the shown memory states.


In the shown embodiment, the polarization change within ferroelectric material 22 specifically occurs within the region 23 between gate 14 and source region 26 (the polarization change may also occur in other regions, such as adjacent the channel in some embodiments; or may occur only in the region 23 as shown in FIG. 2). The MEMORY STATE 1 comprises a “+” component of the polarized ferroelectric material along the n-type doped source region 26, and the MEMORY STATE 2 comprises a “−” component of the polarized ferroelectric material along the n-type doped source region 26. The “−” component of the ferroelectric material is shown to induce a depletion region 42 within the n-type doped source region 26 (a boundary of the depletion region is diagrammatically illustrated with the dashed line 43). In the illustrated embodiment, the depletion region 42 is deep within the source region 26, and specifically is along a portion of the source region that interfaces with channel region 30. The transistor 38 may have an increased effective channel length relative to an analogous transistor lacking the depletion region, which may reduce short channel effects and thereby improve scalability of the memory cell for higher levels of integration.


In the shown embodiment, the non-ferroelectric material 20 is between ferroelectric material 22 and source region 26, and accordingly the depletion region 42 is spaced from the ferroelectric material 22 by a segment of non-ferroelectric material 20. In other embodiments, the non-ferroelectric material 20 may be omitted, and the depletion region 42 may directly contact the ferroelectric material 22.


The memory cell 40 of FIG. 2 may have advantages of being substantially nonvolatile, and of retaining stored information in the absence of power.


The memory cell 40 may be programmed with any suitable operation, and in some example embodiments may be programmed utilizing voltage differentials between gate 14 and source 26 of less than or equal to about 10 volts; in some example embodiments utilizing voltage differentials of less than or equal to about 5 volts; and in some example embodiments utilizing voltage differentials of from about 0.5 volts to about 5 volts.


The dopant concentrations utilized within source region 26 and drain region 28 may be any suitable dopant concentrations. In some embodiments, the drain region may be more heavily doped than at least some of the source region; and in some embodiments the entirety of the drain region may be more heavily doped than any portion of the source region. In some embodiments, relatively heavy doping of the drain region alleviates influence of ferroelectric polarization on operation of the drain side of transistor 38, while relatively light doping of at least some of the source region enables the influence of the ferroelectric polarization on the source side of the transistor to be enhanced relative to the influence that would occur with heavier doping of the source region. The terms “relatively heavy doping” and “relatively light doping” are utilized with reference to one another, and thus the term “relatively heavy doping” means doping heavier than the doping indicated by the term “relatively light doping”.


In some embodiments the drain region 28 may be n-type doped, and some or all of the drain region may comprise a dopant concentration of at least about 1×1020 atoms/centimeter3; such as, for example, a dopant concentration within a range of from about 1×1018 atoms/centimeter3 to about 1×1020 atoms/centimeter3. In some embodiments the source region 26 may be n-type doped, and at least some of the source region may comprise a dopant concentration of less than about 1×1020 atoms/centimeter3; such as, for example, a dopant concentration within a range of from about 1×1016 atoms/centimeter3 to about 1×1019.5 atoms/centimeter3.


In some embodiments, the source region 26 may comprise a gradient of dopant concentration, with dopant concentration being lighter at deeper locations of the source region as compared to shallower locations of the source region. FIG. 3 shows a construction 10a illustrating an example embodiment memory cell 40a having decreasing dopant concentration with increasing depth in the source region, (the dopant concentration is illustrated as [DOPANT]). The construction of FIG. 3 advantageously may comprise the lighter dopant concentration within the source region at a location where the depletion region 42 forms during programming of a memory state analogous to the MEMORY STATE 2 of FIG. 2.


The example embodiment memory cell 40 shown in FIG. 1 comprises both ferroelectric material 22 and non-ferroelectric material 20 within all of the segments 23, 25 and 27 of dielectric material 18. FIG. 4 shows an alternative example embodiment memory cell 40b having ferroelectric material 22 only within segment 23.


The memory cell 40b is part of a construction 10b, and comprises a transistor 38b containing gate dielectric 18b. The gate dielectric 18b comprises the non-ferroelectric material 20 between ferroelectric material 22 and source region 26, and comprises additional non-ferroelectric material 50 throughout the segments 25 and 27 (i.e., the segments along drain region 28 and channel region 30). The non-ferroelectric material 50 may comprise any suitable composition or combination of compositions. In some embodiments, the non-ferroelectric material 50 may comprise a same composition as non-ferroelectric material 20, and in other embodiments may comprise a different composition than non-ferroelectric material 20. In some embodiments, non-ferroelectric material 50 may comprise, consist essentially of, or consist of one or both of second dioxide and second nitride.


The memory cell 40b of FIG. 4, like the above-discussed embodiment of FIG. 1, comprises non-ferroelectric material entirely along an interface of the source region 26 and the gate dielectric, and entirely along an interface of the drain region 28 and the gate dielectric. FIG. 5 shows a memory cell analogous to that of FIG. 4, but in which an interface of the gate dielectric with the source region comprises ferroelectric material. Specifically, FIG. 5 shows a construction 10c comprising a memory cell 40c having a transistor 38c with gate dielectric 18c. The gate dielectric 18c comprises ferroelectric material 22 and non-ferroelectric material 50. The ferroelectric material 22 directly contacts both the source region 26 and the gate 14.


In the shown embodiment, a portion of the segment of the gate dielectric between the source region and the transistor gate (i.e., a portion of the segment 23 of the gate dielectric) consists of ferroelectric material, and the remainder of the gate dielectric (i.e., the remainder segment 23, together with segments 25 and 27) consists of non-ferroelectric material. In the shown embodiment, only a portion of an interface between the gate dielectric 18c and the source region 26 consists of ferroelectric material 22. In other embodiments, an entirety of the interface between the gate dielectric and the source region may consist of the ferroelectric material.



FIG. 6 shows a construction 10d illustrating another example embodiment memory cell 40d. The memory cell comprises a transistor 38d having gate dielectric 18d. The gate dielectric comprises non-ferroelectric material 50 throughout the entirety of the segment between the source region 26 and the gate 14 (i.e., the segment 23), and throughout the entirety of the segment between the drain region 28 and the gate 14 (i.e., the segment 25). The gate dielectric further comprises ferroelectric material 22 within at least some of the segment along the channel region 30 (i.e., the segment 27). Such may enable selective coupling of the ferroelectric material with the channel region, exclusive of coupling between the ferroelectric material and the source region and/or drain region, which may enable operational characteristics of the memory cell to be tailored for particular applications. Further, if transistor 38d is utilized in place of a conventional transistor in an integrated circuit application other than as a part of a memory cell, the selective coupling to the channel region may enable operational aspects of such transistor to be tailored for specific applications.


The embodiment of FIG. 6 shows the non-ferroelectric material 20 provided between ferroelectric material 22 and base 12. In other embodiments, the non-ferroelectric material 20 may be omitted so that ferroelectric material 22 directly contacts base 12.


Another example embodiment memory cell 40e is shown in FIG. 7 as part of a construction 10e comprising a transistor 38e with gate dielectric 18e. The memory cell 40e of FIG. 7 is similar to the memory cell 40 of FIG. 1, in that the memory cell 40e comprises both the non-ferroelectric material 20 and the ferroelectric material 22 within all of the segments 23, 25 and 27 of the gate dielectric. However, unlike the embodiment of FIG. 1, that of FIG. 7 has the non-ferroelectric material 20 thicker within the segment 27 (i.e. along the bottom of the container 24 defined by the gate dielectric) than within the segments 23 and 25 (i.e., along the substantially vertical legs of the container 24 defined by the gate dielectric). Such can alleviate or eliminate coupling between the ferroelectric material 22 and the channel 30, which may be desired in some embodiments. In some embodiments, the non-ferroelectric material 20 may have a thickness within segments 23 and 25 within a range of from about 10 angstroms to about 20 angstroms, and may have a thickness along the bottom of container 24 within a range of from about 25 angstroms to about 50 angstroms.


In some embodiments, the memory cells described above may comprise DRAM-type cells. For instance, the circuitry 34 may correspond to a charge-storage device (such as, for example, a capacitor), the circuitry 32 may include an access/sense line (such as, for example, a bitline), and the circuitry 36 may include a wordline that extends in and out of the page relative to the cross-sections of FIGS. 1-7. FIG. 8 shows a construction 10f comprising the transistor 38 of FIG. 1 incorporated into a DRAM-type memory cell 80.


The DRAM-type cell of FIG. 8 may be, in a sense, considered to include both a volatile memory storage component (the capacitor 70, with such component storing data by utilizing different charge states of the capacitor as different memory states) and a nonvolatile memory storage component (the transistor 38, with such component storing data by utilizing different polarization orientations of ferroelectric material 22 as different memory states, as discussed above with reference to FIG. 2).


The volatile memory storage component may have rapid read/write characteristics analogous to those of a conventional DRAM, and the nonvolatile memory storage component may enable the cell to have capabilities beyond those of conventional DRAM. For instance, in some embodiments the cell may be configured so that the nonvolatile memory storage component backs up information from the volatile memory storage component so that the information is stable in the event of power failure. As another example, in some embodiments the cell may be configured so that the nonvolatile memory storage component is utilized for operations separate from those conducted by the volatile memory storage component and/or for operations that modify or overlap those of the volatile memory storage component. Such may enable a DRAM array comprising memory cells 80 of the type shown in FIG. 8 to perform operations that would otherwise comprise both logic and memory aspects of conventional integrated circuitry, which may enable a DRAM array comprising memory cells 40 of the type shown in FIG. 8 to be scaled to higher levels of integration than may be achieved with conventional DRAM circuitry.


The devices discussed above may be incorporated into electronic systems. Such electronic systems may be used in, for example, memory modules, device drivers, power modules, communication modems, processor modules, and application-specific modules, and may include multilayer, multichip modules. The electronic systems may be any of a broad range of systems, such as, for example, clocks, televisions, cell phones, personal computers, automobiles, industrial control systems, aircraft, etc.


The particular orientation of the various embodiments in the drawings is for illustrative purposes only, and the embodiments may be rotated relative to the shown orientations in some applications. The description provided herein, and the claims that follow, pertain to any structures that have the described relationships between various features, regardless of whether the structures are in the particular orientation of the drawings, or are rotated relative to such orientation.


The cross-sectional views of the accompanying illustrations only show features within the planes of the cross-sections, and do not show materials behind the planes of the cross-sections in order to simplify the drawings.


When a structure is referred to above as being “on” or “against” another structure, it can be directly on the other structure or intervening structures may also be present. In contrast, when a structure is referred to as being “directly on” or “directly against” another structure, there are no intervening structures present. When a structure is referred to as being “connected” or “coupled” to another structure, it can be directly connected or coupled to the other structure, or intervening structures may be present. In contrast, when a structure is referred to as being “directly connected” or “directly coupled” to another structure, there are no intervening structures present.


In some embodiments, a semiconductor construction includes a semiconductor base and a gate extending into the base. A first region of the base adjacent the gate is a conductively-doped source region, and a second region of the base adjacent the gate and spaced from the first region is a conductively-doped drain region. A gate dielectric comprises a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material.


In some embodiments, a transistor comprises a gate, a source region, a drain region, and a channel region between the source and drain regions. The transistor also comprises a gate dielectric between the gate and the source, drain and channel regions. The gate dielectric comprises ferroelectric material between the source region and the gate.


In some embodiments, a semiconductor construction comprises a semiconductor base and a gate extending into the base. A region of the base on one side of the gate is a conductively-doped source region, and a region of the base on an opposing side of the gate relative to said one side is a conductively-doped drain region. The drain region is more heavily doped than the source region. The construction includes gate dielectric which comprises a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. The gate dielectric, along a cross-section, is configured as an upwardly-opening container having the gate therein. The first segment of the gate dielectric comprises a first substantially vertical leg of the container. The second segment of the gate dielectric comprises a second substantially vertical leg of the container. The third segment of the gate dielectric comprises a bottom of the container. The gate dielectric comprises non-ferroelectric material directly against ferroelectric material, with the non-ferroelectric material being a boundary of the container directly against the semiconductor base. The non-ferroelectric material is thicker along the bottom of the container than along the first and second substantially vertical legs of the container.


In compliance with the statute, the subject matter disclosed herein has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the claims are not limited to the specific features shown and described, since the means herein disclosed comprise example embodiments. The claims are thus to be afforded full scope as literally worded, and to be appropriately interpreted in accordance with the doctrine of equivalents.

Claims
  • 1. A semiconductor construction, comprising: a semiconductor base having a recess extending into the base through an upper surface, the base having a source region on a first side of the recess and a drain region on a second side of the recess;a metal gate material disposed within the recess between the source region and the drain region;a gate dielectric material disposed between the source region and the gate material and between the drain region and the gate material, the gate dielectric material being non-ferroelectric and in direct physical contact with the semiconductor base along the source region and the drain region within the recess; anda ferroelectric material between the gate dielectric material and the gate material along the source region and the drain region, the ferroelectric material comprising one or more materials selected from the group consisting of yttrium-doped zirconium oxide, yttrium-doped hafnium oxide, magnesium-doped hafnium oxide, and magnesium-doped zirconium oxide, a bottom of the recessed gate extending into an n-type doped region of the substrate and being in direct physical contact with the ferroelectric material.
  • 2. The semiconductor construction of claim 1 wherein the ferroelectric material is in direct physical contact with the gate dielectric material.
  • 3. The semiconductor construction of claim 1 wherein the ferroelectric material is in direct physical contact with the gate material.
  • 4. The semiconductor construction of claim 1 wherein the gate dielectric comprises SiON.
  • 5. The semiconductor construction of claim 1 wherein the ferroelectric material comprises one or more of Hf, Zr, Si, O, Y, Ba, Mg and Ti.
  • 6. The semiconductor construction of claim 1 wherein the ferroelectric material comprises hafnium oxide.
  • 7. The semiconductor construction of claim 1 wherein the gate dielectric material lines an entirety of the semiconductor base within the recess, along a cross section.
  • 8. The semiconductor construction of claim 7 wherein the gate dielectric material has an outer surface contacting the semiconductor base and an opposing inner surface, and wherein the ferroelectric material is present along an entirety of the inner surface along the cross section.
  • 9. The semiconductor construction of claim 1 wherein an entirety of the gate material is within the recess and does not extend above the upper surface.
  • 10. A transistor, comprising: a recessed gate comprising a metal material;a source region;a drain region; anda gate dielectric between the gate and the source and drain regions; the gate dielectric comprising a non-ferroelectric material and a ferroelectric material between the source region and the recessed gate, the ferroelectric material comprising one or more materials selected from the group consisting of yttrium-doped zirconium oxide, yttrium-doped hafnium oxide, magnesium-doped hafnium oxide, and magnesium-doped zirconium oxide, the recessed gate extending into an n-type doped region of the substrate and being in direct physical contact with the ferroelectric material.
  • 11. The transistor of claim 10 wherein the gate dielectric further comprises a non-ferroelectric material and a ferroelectric material between the drain region and the recessed gate.
  • 12. The transistor of claim 10 wherein the ferroelectric material comprises one or more of Hf, Zr, Si, O, Y, Ba, Mg and Ti.
  • 13. The transistor of claim 10 wherein the ferroelectric material comprises hafnium oxide.
  • 14. The transistor of claim 10 wherein the non-ferroelectric material comprises SiON.
  • 15. The transistor of claim 10 wherein the recessed gate is disposed within a recess in a semiconductive material and wherein the gate dielectric lines an entirety of the recess along a cross section.
  • 16. The transistor of claim 10 wherein the gate dielectric is in direct physical contact with the semiconductive material.
RELATED PATENT DATA

This patent resulted from a continuation of U.S. patent application Ser. No. 15/859,122 filed Dec. 29, 2017, which is a continuation of U.S. patent application Ser. No. 15/411,886 which was filed Jan. 20, 2017, which issued as U.S. Pat. No. 9,882,016, which is hereby incorporated herein by reference; which is a continuation of U.S. patent application Ser. No. 14/991,792, which was filed Jan. 8, 2016, which issued as U.S. Pat. No. 9,590,066, and which is hereby incorporated herein by reference; which resulted from a continuation of U.S. patent application Ser. No. 14/331,026, which was filed Jul. 14, 2014, which issued as U.S. Pat. No. 9,263,672, and which is hereby incorporated herein by reference; which resulted from a divisional of U.S. patent application Ser. No. 13/682,190, which was filed Nov. 20, 2012, which issued as U.S. Pat. No. 8,796,751, and which is hereby incorporated herein by reference.

US Referenced Citations (139)
Number Name Date Kind
4243997 Natori Jan 1981 A
4920397 Ishijima Apr 1990 A
5225363 Riemenschneider Jul 1993 A
5270231 Sameshima Dec 1993 A
5327374 Krautschneider Jul 1994 A
5471417 Krautschneider Nov 1995 A
5589814 Xiang et al. Dec 1996 A
5757042 Evans, Jr. et al. May 1998 A
6066880 Kusunoki May 2000 A
6069381 Black et al. May 2000 A
6075270 Okihara et al. Jun 2000 A
6159782 Xiang et al. Dec 2000 A
6197600 Kijima et al. Mar 2001 B1
6278164 Hieda et al. Aug 2001 B1
6278165 Oowaki et al. Aug 2001 B1
6285577 Nakamura Sep 2001 B1
6313033 Chiang Nov 2001 B1
6323525 Noguchi et al. Nov 2001 B1
6335550 Miyoshi et al. Jan 2002 B1
6376313 Goebel Apr 2002 B1
6452229 Krivokapic Sep 2002 B1
6492676 Kusunoki Dec 2002 B2
6509234 Krivokapic Jan 2003 B1
6555872 Dennen Apr 2003 B1
6664592 Inumiya et al. Dec 2003 B2
6690047 Oowaki et al. Feb 2004 B2
6815297 Krivokapic et al. Nov 2004 B1
6963100 Kusunoki Nov 2005 B2
6979846 Yagishita et al. Dec 2005 B2
7050330 Forbes May 2006 B2
7132300 Tatsunari et al. Nov 2006 B2
7220634 Prall et al. May 2007 B2
7238599 Forbes Jul 2007 B2
7241691 Yong et al. Jul 2007 B2
7269071 Prall et al. Sep 2007 B2
7269072 Prall et al. Sep 2007 B2
7301804 Prall et al. Nov 2007 B2
7303965 Oowaki et al. Dec 2007 B2
7371642 Prall et al. May 2008 B2
7535048 Prall et al. May 2009 B2
7541242 Prall et al. Jun 2009 B2
7750389 Prall et al. Jul 2010 B2
7911028 Lin et al. Mar 2011 B2
7960779 Toba et al. Jun 2011 B2
8097911 Keller Jan 2012 B2
8173506 Jung et al. May 2012 B2
8338887 Lindsay et al. Dec 2012 B2
8441056 Prall et al. May 2013 B2
8462249 Shinohara Jun 2013 B2
8610191 Moon et al. Dec 2013 B2
8829583 Taketani Sep 2014 B2
8987799 Taketani Mar 2015 B2
9305926 Taketani Apr 2016 B2
10283184 Kim May 2019 B2
10515698 Kim Dec 2019 B2
20020038402 Kanaya Mar 2002 A1
20020061604 Sitaram et al. May 2002 A1
20020135030 Horikawa Sep 2002 A1
20020153572 Kusunoki Oct 2002 A1
20030034520 Kusunoki Feb 2003 A1
20030107088 Inumiya et al. Jun 2003 A1
20030235076 Forbes Dec 2003 A1
20040041176 Prall Mar 2004 A1
20040041214 Prall Mar 2004 A1
20040042290 Tarui Mar 2004 A1
20040057274 Dimmler et al. Mar 2004 A1
20040099922 Yamaguchi May 2004 A1
20040130934 Prall Jul 2004 A1
20040227171 Watanabe Nov 2004 A1
20040229424 Fischer Nov 2004 A1
20050035398 Williams et al. Feb 2005 A1
20050054166 Hsu et al. Mar 2005 A1
20050059172 Kim Mar 2005 A1
20050087832 Park Apr 2005 A1
20050121709 Ozaki Jun 2005 A1
20050128804 Forbes Jun 2005 A1
20060030110 Kumura Feb 2006 A1
20060043457 Baik Mar 2006 A1
20060091458 Kim et al. May 2006 A1
20060124967 Prall et al. Jun 2006 A1
20060124992 Prall et al. Jun 2006 A1
20060124998 Prall et al. Jun 2006 A1
20060126398 Prall et al. Jun 2006 A1
20060128103 Prall et al. Jun 2006 A1
20060128104 Prall et al. Jun 2006 A1
20060152978 Forbes Jul 2006 A1
20060166443 Forbes Jul 2006 A1
20060216934 Yong et al. Sep 2006 A1
20060263946 Kreipl Nov 2006 A1
20070007571 Lindsay et al. Jan 2007 A1
20070015325 Goldbach et al. Jan 2007 A1
20070045689 Lim et al. Mar 2007 A1
20070048941 Tang et al. Mar 2007 A1
20070082454 Stommer et al. Apr 2007 A1
20070090467 Zhu Apr 2007 A1
20070120182 Rouh et al. May 2007 A1
20070166920 Tang et al. Jul 2007 A1
20070187774 Goldbach et al. Aug 2007 A1
20070200183 Rueb Aug 2007 A1
20070228427 Matsui Oct 2007 A1
20070228432 Ishihara Oct 2007 A1
20070272960 Hsu et al. Nov 2007 A1
20080054407 Ko Mar 2008 A1
20080079046 Ozaki Apr 2008 A1
20080157212 Lavoie et al. Jul 2008 A1
20080203443 Wilson et al. Aug 2008 A1
20080303119 Watanabe Dec 2008 A1
20090010075 Prall et al. Jan 2009 A9
20090072303 Prall et al. Mar 2009 A9
20090242953 Booth, Jr. et al. Oct 2009 A1
20090261395 Boescke Oct 2009 A1
20100006928 Pan et al. Jan 2010 A1
20100025815 Lin et al. Feb 2010 A1
20100041196 Rouh Feb 2010 A1
20100041223 Chen et al. Feb 2010 A1
20100052067 Hsu et al. Mar 2010 A1
20100110753 Slesazeck May 2010 A1
20100240184 Jung et al. Sep 2010 A1
20100244117 Prall et al. Sep 2010 A1
20110001180 Masuda Jan 2011 A1
20110049593 Schulze et al. Mar 2011 A1
20110092062 Tang et al. Apr 2011 A1
20110169066 Moon et al. Jul 2011 A1
20110182102 Minami Jul 2011 A1
20110187911 Shinohara Aug 2011 A1
20110297927 Ramaswamy et al. Dec 2011 A1
20120028425 Lu et al. Feb 2012 A1
20120033478 Kang Feb 2012 A1
20120061749 Sakai Mar 2012 A1
20120161153 Yumoto et al. Jun 2012 A1
20120211813 Taketani Aug 2012 A1
20120261744 Wang et al. Oct 2012 A1
20130049090 Lindsay et al. Feb 2013 A1
20130059424 Lindsay et al. Mar 2013 A1
20130154021 Chuang et al. Jun 2013 A1
20130292698 Then et al. Nov 2013 A1
20140084343 Dewey et al. Mar 2014 A1
20140346595 Taketani Nov 2014 A1
20150171089 Taketani Jun 2015 A1
Foreign Referenced Citations (35)
Number Date Country
1675770 Sep 2005 CN
201380059900.7 Nov 2011 CN
201810003717.X Jun 2020 CN
10008580 Sep 2000 DE
1089341 Apr 2001 EP
13856981 May 2016 EP
13856981 Jul 2016 EP
19215638 Apr 2020 EP
H05-175509 Jul 1993 JP
H06-104447 Apr 1994 JP
H07-099310 Apr 1995 JP
H09-055495 Feb 1997 JP
H10-189966 Jul 1998 JP
H11-040683 Feb 1999 JP
H11-068104 Mar 1999 JP
H11-068105 Mar 1999 JP
2000-012708 Jan 2000 JP
2000-058684 Feb 2000 JP
2000-082814 Mar 2000 JP
2000-252372 Sep 2000 JP
2002-203958 Jul 2002 JP
2004-079659 Mar 2004 JP
2007-005510 Jan 2007 JP
2007-043166 Feb 2007 JP
2007-110125 Apr 2007 JP
2008-027955 Feb 2008 JP
2008-535246 Aug 2008 JP
2012-174866 Sep 2012 JP
2002-0015761 Mar 2002 KR
10-0680978 Feb 2007 KR
10-2009-0009561 Jan 2009 KR
102138953 May 2015 TW
WO 2006104585 Oct 2006 WO
PCTUS2013065102 Jan 2014 WO
PCTUS2013065102 Jun 2015 WO
Related Publications (1)
Number Date Country
20210175340 A1 Jun 2021 US
Divisions (1)
Number Date Country
Parent 13682190 Nov 2012 US
Child 14331026 US
Continuations (4)
Number Date Country
Parent 15859122 Dec 2017 US
Child 17180270 US
Parent 15411886 Jan 2017 US
Child 15859122 US
Parent 14991792 Jan 2016 US
Child 15411886 US
Parent 14331026 Jul 2014 US
Child 14991792 US