The present application describes an interposer such as that which can be incorporated into a microelectronic assembly which may include an unpackaged semiconductor die or packaged semiconductor die, as well as methods for making such interposer. Specifically, an interposer and a method of making an interposer are described herein which incorporates a bond via array, e.g., an array of vertically extending wire bonds having ends uncovered at a major surface of an encapsulation such as a molded encapsulation.
Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent to each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.
Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.
Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.
An interposer can be provided as an interconnection element having contacts and top and bottom surfaces thereof electrically connected with one or more packaged or unpackaged semiconductor dies at one of the top or bottom surface thereof, and electrically connected with another component at the other one of the top or bottom surfaces. The other component may in some cases be a package substrate which in turn may be electrically connected with another component which may be or may include a circuit panel.
Despite all of the above-described advances in the art, still further improvements in interposers and methods of making interposers would be desirable.
In accordance with an aspect of the invention, a method for making an interposer is provided. In accordance with such aspect, a plurality of wire bonds having first extremities may be formed. The first extremities may include bases bonded to one or more surfaces of a first element. The wire bonds may include second extremities opposite from the first extremities. The wire bonds may have edge surfaces extending between the first and second extremities. In accordance with such aspect, a dielectric encapsulation may contact the edge surfaces and separate adjacent wire bonds from one another.
At least portions of the first element may then be removed during further processing. After the further processing, the interposer having first and second opposite sides separated from one another by at least the encapsulation may be provided. The interposer may have first contacts and second contacts at the first and second opposite sides, respectively, for connection with first and second components, respectively. The first contacts of the interposer may be electrically connected with the second contacts through the wire bonds.
In some aspects, the first element may include a metal layer having the one or more surfaces. In such aspects, the metal layer may be partially removed during the removal of the portions of the first element such that the bases remain bonded to second portions of the metal layer remaining after the portions of the first element are removed.
In some aspects, the metal may be patterned when the metal layer is removed to form first conductive elements insulated from one another by at least portions of the encapsulation layer during the partial removal of the metal layer. In such aspects, the bases of at least some of the wire bonds may remain bonded to the first conductive elements.
In some aspects, the first element may include a metal layer having the one or more surfaces. In such aspects, the metal layer may be fully removed during the removal of the portions of the first element are removed so as to expose at least portions of the bases.
In some aspects, the first element may include a metal layer having the one or more surfaces. In such aspects, the encapsulation may be subjected to grinding, lapping or polishing at a surface of the encapsulation during the removal of the portions of the first element.
In some aspects, at least portions of the bases of the wire bonds are at one of the first or second sides of the interposer as the first contacts or the second contacts.
In some aspects, at least portions of at least one of the first and second extremities of the wire bonds other than the bases are at at least one of the first and second sides of the interposer as at least one of the first contacts and the second contacts.
In some aspects, electrically conductive structure may be formed electrically connecting the first extremities of the wire bonds with the first contacts.
In some aspects, a dielectric layer overlying the encapsulation may be formed. In such aspects, a surface of the dielectric layer may be at the first side of the interposer. In such aspects, the electrically conductive structure may be formed extending along the dielectric layer.
In some aspects, each of at least some first contacts may be offset from the first extremity of the wire bond to which it may be electrically connected. In such aspects, the conductive structure may have at least a portion extending in a lateral direction between the first contact and the wire bond connected to the first contact.
In some aspects, the electrically conductive structure may be formed electrically connecting the second extremities of the wire bonds with the second contacts.
In such aspects, a dielectric layer overlying the encapsulation may be formed. In such aspects, a surface of the dielectric layer may be at the first side of the interposer. In such aspects, the electrically conductive structure may be formed extending along the dielectric layer.
In such aspects, each of at least some second contacts may be offset from the second extremity of the wire bond to which it may be electrically connected. In such aspects, at least a portion of the conductive structure may be formed extending in a lateral direction between the second contact and the wire bond connected to the second contact.
In some aspects, electrically conductive structure may be formed electrically connecting the second extremities of the wire bonds with the second contacts.
In some aspects, a dielectric layer overlying the encapsulation may be formed. In such aspects, a surface of the dielectric layer may be at the first side of the interposer. In such aspects, the electrically conductive structure may be formed extending along the dielectric layer.
In some aspects, each of at least some second contacts may be offset from the second extremity of the wire bond to which it may be electrically connected. In such aspects, the conductive structure may have at least a portion extending in a lateral direction between the second contact and the wire bond connected to the second contact.
In some aspects, at least some of the second extremities of the wire bonds may be displaced in at least one lateral direction parallel to the second surface from their respective first extremities of the wire bonds.
In some aspects, the bases may be arranged in a first pattern that may have a first minimum pitch. In such aspects, the unencapsulated portions of the wire bonds may be arranged in a pattern having a second minimum pitch that is greater than the first minimum pitch.
In some aspects, the bases may be arranged in a first pattern having a first minimum pitch. In such aspects, the unencapsulated portions of the wire bonds may be arranged in a pattern having a second minimum pitch that is less than the first minimum pitch.
In some aspects, the bases of the wire bonds may be in the form of ball bonds.
In some aspects, first conductive elements may formed during the selective removal of portions of the conductive layer as contact pads to which bases of wire bonds that are not electrically connected with other elements of the first element are electrically connected.
In some aspects, the first element is thinned by one of grinding or polishing.
In some aspects, the encapsulation layer may be formed having an initial thickness such that the end surfaces of the wire bonds are substantially covered. In such aspects, a portion of the encapsulation layer may be removed during the thinning of the first element such that the end surfaces are unencapsulated by the encapsulation layer.
In some aspects, an encapsulant may be molded during the forming of the encapsulation layer in contact with the first element and at least edge surfaces of the wire bonds.
In some aspects, the metal layer may have a thickness of less than 20 microns.
In some aspects, the dielectric encapsulation may have first and second oppositely-facing surfaces. In such aspects, the interposer may have a through opening extending between the first and second oppositely-facing sides. The opening may be dimensioned to receive an entire major surface of a microelectronic element.
In some aspects, the interposer may have at least one peripheral edge surface extending between the first and second sides. In such aspects, the wire bonds may be disposed within a portion of the encapsulation between the through opening and the at least one peripheral edge surface.
In some aspects, the one or more peripheral edge surfaces may be defined by first and second oppositely-facing outer faces and third and fourth oppositely-facing outer faces intersecting each of the first and second oppositely-facing outer surfaces. In such aspects, the through opening may be defined by first and second oppositely-facing inner faces and third and fourth oppositely-facing inner faces intersecting each of the first and second oppositely-facing inner faces.
In accordance with an aspect of the invention, an interposer is provided. The interposer may include a dielectric encapsulation that may have first and second oppositely facing surfaces. The interposer may further include a plurality of wire bonds each separated from one another by the encapsulation. Each of the wire bonds may have first and second opposite extremities not fully covered by the encapsulation at the first and second surfaces, respectively. Each of the wire bonds may have an edge surface between the first and second extremities that may be contacted by the encapsulation and that may be separated from the edge surfaces of adjacent wire bonds by the encapsulation. At least one of the extremities of each wire bond may be a base of such wire bond.
The interposer may have first and second opposite sides. The interposer may further have first contacts and second contacts at the first and second opposite sides, respectively, for electrical connection with first and second components, respectively. The first contacts may be electrically connected with the second contacts through the wire bonds.
In some aspects, at least portions of the bases of the wire bonds may be at one of the first or second sides of the interposer as the first contacts or the second contacts.
In some aspects, at least portions of at least one of the first or second extremities of the wire bonds other than the bases may be at at least one of the first or second sides of the interposer as at least one of the first contacts or the second contacts.
In some aspects, a dielectric layer may overly the first surface of the encapsulation. In such aspects, the dielectric layer may have an exposed surface. In such aspects, the interposer further may include conductive structure electrically connecting the first extremities of the wire bonds with the first contacts.
In some aspects, each of at least some first contacts may be offset from the first extremity of the wire bond to which it may be electrically connected. In such aspects, the conductive structure may have at least a portion extending in a lateral direction between the first contact and the wire bond connected to the first contact.
In some aspects, a dielectric layer may overly the second surface of the encapsulation. In such aspects, the dielectric layer may have an exposed surface. In such aspects, the interposer further may include conductive structure electrically connecting the second extremities of the wire bonds with the second contacts.
In some aspects, each of at least some second contacts may be offset from the second extremity of the wire bond to which it may be electrically connected. In such aspects, the conductive structure may have at least a portion extending in a lateral direction between the second contact and the wire bond connected to the second contact.
In some aspects, a second dielectric layer may overly the second surface of the encapsulation. In such aspects, the second dielectric layer may have an exposed surface. In such aspects, the interposer further may include conductive structure electrically connecting the second extremities of the wire bonds with the second contacts.
In such aspects, each of at least some second contacts may be offset from the second extremity of the wire bond to which it may be electrically connected. In such aspects, the conductive structure may have at least a portion extending in a lateral direction between the second contact and the wire bond connected to the second contact.
In some aspects, at least some of the second extremities of the wire bonds may be displaced in at least one lateral direction parallel to the second surface from their respective first extremities thereof.
In some aspects, a microelectronic assembly may be provided. The microelectronic assembly may include the interposer in accordance with one or more aspects of the invention. The microelectronic assembly may further include a first component that may have first component contacts electrically connected with the first contacts. The microelectronic assembly may further include a second component. The second component may have a face and a plurality of second component contacts on the face facing and electrically connected with the second contacts.
In some aspects, the second component may be a microelectronic element. In such aspects, the second component contacts may be element contacts at the face of the microelectronic element.
In some aspects, the microelectronic element may be a first microelectronic element. In such aspects, the microelectronic assembly may further include a second microelectronic element. The second microelectronic element may have a face and a plurality of second element contacts on the face facing and electrically connected with the second contacts.
In some aspects in which a microelectronic assembly is provided, the interposer further may include electrically conductive structure on the interposer. The electrically conductive structure may extend in a lateral direction parallel to the first and second sides. At least some of the first element contacts may be electrically connected with at least some of the second element contacts through the structure.
In some aspects in which a microelectronic assembly is provided, a thickness of the interposer between the first and second sides may be less than one millimeter.
In some aspects, the first component may be a circuit panel.
In some aspects, the contacts of the circuit panel may face the first contacts. Such contacts may be bonded to the first contacts with an electrically conductive bond material.
In some aspects, the electrically conductive bond material may include at least one reflowable bond metal.
In some aspects, the second component may be a microelectronic package. In such aspects, the second component contacts may be a plurality of terminals at the face of the microelectronic package. In such aspects, the microelectronic package may include a microelectronic element having a plurality of element contacts on a face of the microelectronic element electrically connected with the second component contacts.
In some aspects, a system may be provided that includes the microelectronic assembly and one or more third components electrically connected with the microelectronic assembly.
In accordance with an aspect of the invention, an interposer is provided. The interposer may include a dielectric encapsulation that may have first and second oppositely-facing surfaces. The dielectric encapsulation may have a through opening that may extend between the first and second oppositely-facing surfaces. The opening may be dimensioned to receive an entire major surface of a microelectronic element.
The interposer further may include a plurality of wire bonds for electrical connection with first and second components. The wire bonds may be separated from one another by the encapsulation. Each of the wire bonds may have first and second opposite extremities at least not completely covered by the encapsulation at at least one of the first and second oppositely-facing surfaces, respectively. Each of the wire bonds further may have an edge surface between the first and second extremities contacted by the encapsulation. Each of the wire bonds may be separated from edge surfaces of adjacent wire bonds by the encapsulation.
In some aspects, the interposer may include first and second oppositely-facing sides separated from one another by at least the first and second oppositely-facing surfaces of the dielectric encapsulation, respectively.
In some aspects, the interposer may include first and second contacts at the first and second opposite sides, respectively, for electrical connection with first and second components, respectively. The first contacts may be electrically connected with the second contacts through the wire bonds.
In some aspects, the interposer may include at least one conductive structure. At least some of the conductive structures may have at least a portion that may extend in a lateral direction from and that may electrically connect one of the plurality of first extremities of the plurality of wire bonds to a corresponding one of the first contacts. In such aspects, the corresponding one of the first contacts may be offset from the one of the plurality of first extremities.
In some aspects, the interposer may include at least a second conductive structure. The second conductive structure may include at least a portion that may extend in a lateral direction from and that may electrically connect one of the plurality of second extremities of the plurality of wire bonds to a corresponding one of the second contacts. In such aspects, the corresponding one of the second contacts may be offset from the one of the plurality of second extremities.
In some aspects, the thickness of the interposer between the first and second oppositely-facing sides may be less than one millimeter.
In some aspects, a stacked microelectronic assembly may be provided. The stacked microelectronic assembly may include the interposer for electrical connection with the first and second components in accordance with one or more aspects of the invention. In such aspects, the first component may be a first microelectronic package. The microelectronic package may include a plurality of first terminals. In such aspects, the second component may be a second microelectronic package. The second microelectronic package may include a plurality of second terminals. The second microelectronic package may be electrically connected with the first microelectronic package through the interposer.
The first microelectronic package may include a surface facing the first side of the interposer. The second microelectronic package may include a surface facing the second side of the interposer. At least some of the respective plurality of first terminals of the first microelectronic package may be electrically connected with corresponding first extremities of the plurality of wire bonds of the interposer. At least some of the respective plurality of second terminals of the second microelectronic package may be electrically connected with corresponding second extremities of the plurality of wire bonds of the interposer.
In some aspects, the first microelectronic package may include a first microelectronic element. A major surface of the first microelectronic element may be received within the through opening. The first microelectronic element may include first element contacts electrically connected to the second microelectronic package through the interposer.
In some aspects, the second microelectronic package may include a second microelectronic element. The second microelectronic element may include second element contacts electrically connected to the first microelectronic package through the interposer.
In some aspects, the first element contacts may be electrically connected to the interposer through a plurality of first conductive elements at least one of overlying and embedded at least partially within a redistribution structure. The redistribution structure may include a redistribution dielectric layer overlying the dielectric encapsulation of the interposer and may include a plurality of second conductive elements through the redistribution dielectric layer.
In such aspects, the first element contacts may be electrically connected to joining elements on an opposite side of the redistribution structure.
In some aspects, the through opening may be filled with encapsulation to fix the location of the interposer relative to the first microelectronic element.
In some aspects, the first microelectronic package may be a circuit panel.
In accordance with an aspect of the invention, a method of forming a stacked microelectronic assembly is provided. In accordance with such aspect, a first component may be placed to face a first side of an interposer. A plurality of first terminals may be on the first component. The interposer may have a second side facing in an opposite direction from the first side. The first and second sides of the interposer may be separated by at least first and second oppositely-facing surfaces of a dielectric encapsulation, respectively.
The interposer may include a through opening extending between the first and second oppositely-facing sides. The opening may be dimensioned to receive an entire major surface of a microelectronic element. The interposer may include a plurality of wire bonds for electrical connection with first and second components. The wire bonds may be separated from one another by the encapsulation. Each of the wire bonds may have first and second opposite extremities at least not completely covered by the encapsulation at at least one of the first and second oppositely-facing surfaces, respectively. Each of the wire bonds may have an edge surface between the first and second extremities that may be contacted by the encapsulation and that may be separated from edge surfaces of adjacent wire bonds by the encapsulation.
The first extremities of at least some wire bonds of the interposer may be connected to at least some of the plurality of first terminals on the first component.
A second component may be placed to face the second side of the interposer. A plurality of second terminals may be on the second component.
The second component may be connected to the second extremities of at least some of the plurality of wire bonds.
In some aspects, the first component may be a first microelectronic package. The plurality of first terminals may be located along a first connection surface of the microelectronic package. The first extremities of at least some of the plurality of wire bonds may be physically connected to at least some of the plurality of first terminals of the first microelectronic package.
In some aspects, the second component may be a second microelectronic package. The second microelectronic package may have a conductive layer along a second connection surface of the second microelectronic package. A plurality of second terminals may be located along a third connection surface of the second microelectronic package. In such aspects, the second extremities of at least some of the plurality of wire bonds may be physically connected to the second microelectronic package at the conductive layer of the second microelectronic package.
In some aspects, the interposer may include first and second contacts at the first and second opposite sides, respectively. The first contacts may be electrically connected with the second contacts through the wire bonds. In such aspects, at least one conductive structure may be formed. The one or more conductive structures may have at least a portion that may extend in a lateral direction from and that may electrically connect one of the plurality of first extremities of the plurality of wire bonds to a corresponding one of the first contacts. The corresponding one of the first contacts may be offset from such plurality of first extremities.
In such aspects, at least a second conductive structure may be formed. The second conductive structure may have at least a portion that may extend in a lateral direction from and that may electrically connect one of the plurality of second extremities of the plurality of wire bonds to a corresponding one of the second contacts. The corresponding one of the second contacts may be offset from the one of the plurality of second extremities.
In some aspects, the first microelectronic package may include a first microelectronic element. In such aspects, the first microelectronic element may be mounted on a portion of the first component exposed within the through opening of the interposer.
In some aspects, the first microelectronic element may be thinned to a predetermined thickness no greater than the thickness of the interposer.
In such aspects, the thinning of the microelectronic element may be performed prior to or after insertion into the interposer.
In some aspects, the first connection surface of the first microelectronic package may be abutted with the first surface of the interposer such that the first connection surface is flush against the interposer.
Turning now to the figures, where similar numeric references are used to indicate similar features, there is shown in
As shown in
As an alternative to the arrangement shown in
A package substrate 20 or other component interconnected with the interposer 10 can, in turn be mounted to contacts 52 of a circuit panel 50, as shown in
Referring to
Referring again to
In a particular example, a bonding tool can bond the metal wire to an exposed surface of a layered structure which includes an unpatterned or patterned metal sheet, and which may include one or more finish metal layers thereon. Thus, in one example, wire bonds can be formed on a base having a metal layer of aluminum, copper or alloy thereof or the like, and the finish layers in one example, may include an “ENIG” finish, such as a layer of nickel deposited on the base metal by electroless deposition, followed by a layer of gold deposited on the nickel layer by an immersion process. In another example, the base metal layer can have an “ENEPIG” finish, such as may be a combination of a layer of electrolessly deposited nickel deposited on the base metal, followed by a layer of electrolessly deposited palladium deposited thereon, and followed by a layer of gold deposited on the palladium by an immersion process.
Wire bonds can be formed by bonding a metal wire to a surface by a technique as previously described in one or more of the aforementioned commonly owned and incorporated United States Applications. As used herein, the “base” 34 of a wire bond means a portion of a wire bond other than a typically cylindrically shaped shaft of a wire bond which results from bonding such portion of a metal wire to a surface. The base 34 can be formed by ball bonding a metal wire to the surface, such as by heating the wire at a tip thereof to form a ball of molten metal and contacting the surface with the ball to form the ball bond so as to form a bulbous portion of the wire as a base 34, as shown in
Alternatively, as seen in
In the examples of
As shown in
In some examples, when the base is formed by any of stitch bonding, wedge bonding, or ball bonding, a portion of the shaft of the wire bond adjacent to the base may extend away from the base in a direction not orthogonal to the surface, i.e. such that the portion of the shaft extends in a lateral direction away from the surface.
Often, the end of a metal wire is bonded to a surface by ball bonding or stitch or wedge bonding the wire at an end location of the wire, either before or after the wire is severed to define the end. However, techniques also exist for bonding a metal wire to a surface at a location of the wire other than an end location thereof. For example, a portion of a wire remote from the ends of the wire can be stitch bonded to a surface with the wire extending away from the bonded portion towards each end.
It can be observed that the metal wire has metal grains therein which can be elongated in a direction of the length of the wire, i.e., in a direction transverse to the diameter of the generally cylindrical shaft of the wire. In some examples, the wire can be made of gold, aluminum, copper, or copper alloy, among others. In some cases, as seen in
As further shown in
The above-described embodiments of interposers or microelectronic assemblies incorporating the same can be further incorporated into a system such as that shown and described relative to
As further shown in
Still referring to
With the substrate 82 in a fixed position, the interposer 310 then may be placed onto and joined to the substrate 82 with the through opening 65 of the interposer 310 circumscribing the second microelectronic element 85. Alternatively, with the interposer 310 in a fixed position, the substrate 82 may be placed against and joined to the interposer 310 with the second microelectronic element 85 placed within the through opening 65 of the interposer 310. In either arrangement, the first surface 83 of the substrate 82 may be placed flush against the second side 114 of the interposer 310. As shown by a contrast of
The first surface 83 of the substrate 82 of the second microelectronic package 81 may face the second side 14 of the interposer 310. The interposer 310 may be electrically interconnected with the second microelectronic package 81 through a connection between contacts 86 at the first surface 83 and bases 34 of respective wire bonds 32 of the interposer 310 that may overlie and interconnect with the respective contacts 86. Alternatively, the interposer 310 may include contacts (not shown) offset from the respective bases 34 of the wire bonds 32 that may be positioned to face and be joined with the respective contacts 86 at the first surface 83 of the substrate 82, such as through a bond metal such as described above for connections in a “flip-chip” mounting arrangement.
The second microelectronic package 81 may include terminals 59 at the second surface 84 of the substrate 82 electrically interconnected through conductive connections (not shown) through the substrate 82. Joining elements 57, which may be solder balls, among other possible structure, may be joined to the terminals 59 of the second microelectronic package 81 such that the second microelectronic package 81, and thus the microelectronic assembly 103 may be electrically interconnected to other devices or subassemblies.
As shown, a redistribution structure 121 may be formed overlying the major surface 14 of the encapsulation at the second side 114 of the interposer 310. The redistribution structure 121 may have a structure according to the examples of
As further shown an encapsulation 191 may be added to the through opening 65, which may fill the through opening to fix the position of the second microelectronic element 85 relative to the interposer 310 as described further herein. Encapsulation 192 may be added to circumscribe the interposer 310 to provide additional support and rigidity for the interposer 310. As further illustrated in
Referring to
After the encapsulation has been cured or otherwise set, the assembly of the interposer 310, the second microelectronic element 85, the encapsulation 191, and the encapsulation 192 may be released from the carrier with the second microelectronic element 85 and the interposer 310 in fixed relative positions to each other. In some arrangements, the traces 54 may then be applied to overlie the encapsulation 191 and the major surface 14 of the encapsulation of the interposer 310 from the bumps 87 to the bases 34 of the wire bonds 32 to electrically connect the second microelectronic element 85 to the interposer 310. This entire assembly may then be placed onto the dielectric layer of the redistribution structure 121. Where either or both of the bumps 87 of the second microelectronic element 85 and the bases 34 of the wire bonds 32 are not in alignment, traces 54 may extend between and electrically connect these conductive elements to respective vias of the redistribution structure 121.
It is to be understood that features shown and discussed with respect to one aspect, embodiment, arrangement or configuration of the invention may be used in conjunction with any other aspect, embodiment, arrangement or configuration of the invention. For example, although certain figures and their corresponding descriptions illustrate vertical wire bonds, it is to be understood that the non-vertical wire bonds shown in other figures may also be used in accordance with any embodiment shown or described.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements and combinations of the embodiments provided herein are contemplated by the present application. Further enhancements may be devised without departing from the spirit and scope of the present invention as defined in the embodiments described herein.
This application is a continuation of U.S. patent application Ser. No. 13/795,756, filed on Mar. 12, 2013, which claims the benefit of the filing date of U.S. Provisional Application No. 61/679,653, filed on Aug. 3, 2012, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2230663 | Alden | Feb 1941 | A |
3289452 | Koellner | Dec 1966 | A |
3358897 | Christensen | Dec 1967 | A |
3430835 | Grable et al. | Mar 1969 | A |
3623649 | Keisling | Nov 1971 | A |
3795037 | Luttmer | Mar 1974 | A |
3900153 | Beerwerth et al. | Aug 1975 | A |
4067104 | Racy | Jan 1978 | A |
4072816 | Gedney et al. | Feb 1978 | A |
4213556 | Ersson et al. | Jul 1980 | A |
4327860 | Kirshenboin et al. | May 1982 | A |
4422568 | Elles et al. | Dec 1983 | A |
4437604 | Razon et al. | Mar 1984 | A |
4604644 | Beckham et al. | Aug 1986 | A |
4642889 | Grabbe | Feb 1987 | A |
4667267 | Hernandez et al. | May 1987 | A |
4695870 | Patraw | Sep 1987 | A |
4716049 | Patraw | Dec 1987 | A |
4725692 | Ishii et al. | Feb 1988 | A |
4771930 | Gillotti et al. | Sep 1988 | A |
4793814 | Zifcak et al. | Dec 1988 | A |
4804132 | DiFrancesco | Feb 1989 | A |
4845354 | Gupta et al. | Jul 1989 | A |
4902600 | Tamagawa et al. | Feb 1990 | A |
4924353 | Patraw | May 1990 | A |
4925083 | Farassat et al. | May 1990 | A |
4955523 | Carlommagno et al. | Sep 1990 | A |
4975079 | Beaman et al. | Dec 1990 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
4998885 | Beaman | Mar 1991 | A |
4999472 | Neinast et al. | Mar 1991 | A |
5067007 | Otsuka et al. | Nov 1991 | A |
5067382 | Zimmerman et al. | Nov 1991 | A |
5083697 | Difrancesco | Jan 1992 | A |
5095187 | Gliga | Mar 1992 | A |
5133495 | Angulas et al. | Jul 1992 | A |
5138438 | Masayuki et al. | Aug 1992 | A |
5148265 | Khandros et al. | Sep 1992 | A |
5148266 | Khandros et al. | Sep 1992 | A |
5186381 | Kim | Feb 1993 | A |
5189505 | Bartelink | Feb 1993 | A |
5196726 | Nishiguchi et al. | Mar 1993 | A |
5203075 | Angulas et al. | Apr 1993 | A |
5214308 | Nishiguchi et al. | May 1993 | A |
5220489 | Barreto et al. | Jun 1993 | A |
5222014 | Lin | Jun 1993 | A |
5238173 | Ura et al. | Aug 1993 | A |
5241454 | Ameen et al. | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5316788 | Dibble et al. | May 1994 | A |
5340771 | Rostoker | Aug 1994 | A |
5346118 | Degani et al. | Sep 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5397997 | Tuckerman et al. | Mar 1995 | A |
5438224 | Papageorge et al. | Aug 1995 | A |
5455390 | DiStefano et al. | Oct 1995 | A |
5468995 | Higgins, III | Nov 1995 | A |
5476211 | Khandros | Dec 1995 | A |
5494667 | Uchida et al. | Feb 1996 | A |
5495667 | Farnworth et al. | Mar 1996 | A |
5518964 | DiStefano et al. | May 1996 | A |
5531022 | Beaman et al. | Jul 1996 | A |
5536909 | DiStefano et al. | Jul 1996 | A |
5541567 | Fogel et al. | Jul 1996 | A |
5571428 | Nishimura et al. | Nov 1996 | A |
5578869 | Hoffman et al. | Nov 1996 | A |
5608265 | Kitano et al. | Mar 1997 | A |
5615824 | Fjelstad et al. | Apr 1997 | A |
5635846 | Beaman et al. | Jun 1997 | A |
5656550 | Tsuji et al. | Aug 1997 | A |
5659952 | Kovac et al. | Aug 1997 | A |
5679977 | Khandros et al. | Oct 1997 | A |
5688716 | DiStefano et al. | Nov 1997 | A |
5718361 | Braun et al. | Feb 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5731709 | Pastore et al. | Mar 1998 | A |
5736780 | Murayama | Apr 1998 | A |
5736785 | Chiang et al. | Apr 1998 | A |
5766987 | Mitchell et al. | Jun 1998 | A |
5787581 | DiStefano et al. | Aug 1998 | A |
5801441 | DiStefano et al. | Sep 1998 | A |
5802699 | Fjelstad et al. | Sep 1998 | A |
5811982 | Beaman et al. | Sep 1998 | A |
5821763 | Beaman et al. | Oct 1998 | A |
5830389 | Capote et al. | Nov 1998 | A |
5831836 | Long et al. | Nov 1998 | A |
5839191 | Economy et al. | Nov 1998 | A |
5854507 | Miremadi et al. | Dec 1998 | A |
5874781 | Fogal et al. | Feb 1999 | A |
5898991 | Fogel et al. | May 1999 | A |
5908317 | Heo | Jun 1999 | A |
5912505 | Itoh et al. | Jun 1999 | A |
5948533 | Gallagher et al. | Sep 1999 | A |
5953624 | Bando et al. | Sep 1999 | A |
5971253 | Gilleo et al. | Oct 1999 | A |
5973391 | Bischoff et al. | Oct 1999 | A |
5977618 | DiStefano et al. | Nov 1999 | A |
5977640 | Bertin et al. | Nov 1999 | A |
5980270 | Fjelstad et al. | Nov 1999 | A |
5989936 | Smith et al. | Nov 1999 | A |
5994152 | Khandros et al. | Nov 1999 | A |
6000126 | Pai | Dec 1999 | A |
6002168 | Bellaar et al. | Dec 1999 | A |
6032359 | Carroll | Mar 2000 | A |
6038136 | Weber | Mar 2000 | A |
6052287 | Palmer et al. | Apr 2000 | A |
6054337 | Solberg | Apr 2000 | A |
6054756 | DiStefano et al. | Apr 2000 | A |
6077380 | Hayes et al. | Jun 2000 | A |
6117694 | Smith et al. | Sep 2000 | A |
6121676 | Solberg | Sep 2000 | A |
6124546 | Hayward et al. | Sep 2000 | A |
6133072 | Fjelstad | Oct 2000 | A |
6145733 | Streckfuss et al. | Nov 2000 | A |
6157080 | Tamaki et al. | Dec 2000 | A |
6158647 | Chapman et al. | Dec 2000 | A |
6164523 | Fauty et al. | Dec 2000 | A |
6168965 | Malinovich et al. | Jan 2001 | B1 |
6177636 | Fjelstad | Jan 2001 | B1 |
6180881 | Isaak | Jan 2001 | B1 |
6194250 | Melton et al. | Feb 2001 | B1 |
6194291 | DiStefano et al. | Feb 2001 | B1 |
6202297 | Faraci et al. | Mar 2001 | B1 |
6206273 | Beaman et al. | Mar 2001 | B1 |
6208024 | DiStefano | Mar 2001 | B1 |
6211572 | Fjelstad et al. | Apr 2001 | B1 |
6211574 | Tao et al. | Apr 2001 | B1 |
6215670 | Khandros | Apr 2001 | B1 |
6218728 | Kimura | Apr 2001 | B1 |
6225688 | Kim et al. | May 2001 | B1 |
6238949 | Nguyen et al. | May 2001 | B1 |
6258625 | Brofman et al. | Jul 2001 | B1 |
6260264 | Chen et al. | Jul 2001 | B1 |
6262482 | Shiraishi et al. | Jul 2001 | B1 |
6268662 | Test et al. | Jul 2001 | B1 |
6295729 | Beaman et al. | Oct 2001 | B1 |
6300780 | Beaman et al. | Oct 2001 | B1 |
6303997 | Lee et al. | Oct 2001 | B1 |
6313528 | Solberg | Nov 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6329224 | Nguyen et al. | Dec 2001 | B1 |
6332270 | Beaman et al. | Dec 2001 | B2 |
6334247 | Beaman et al. | Jan 2002 | B1 |
6358627 | Benenati et al. | Mar 2002 | B2 |
6362520 | DiStefano | Mar 2002 | B2 |
6362525 | Rahim | Mar 2002 | B1 |
6376769 | Chung | Apr 2002 | B1 |
6388333 | Taniguchi et al. | May 2002 | B1 |
6395199 | Krassowski et al. | May 2002 | B1 |
6399426 | Capote et al. | Jun 2002 | B1 |
6407448 | Chun | Jun 2002 | B2 |
6407456 | Ball | Jun 2002 | B1 |
6410431 | Bertin et al. | Jun 2002 | B2 |
6413850 | Ooroku et al. | Jul 2002 | B1 |
6439450 | Chapman et al. | Aug 2002 | B1 |
6458411 | Goossen et al. | Oct 2002 | B1 |
6469260 | Horiuchi et al. | Oct 2002 | B2 |
6476503 | Imamura et al. | Nov 2002 | B1 |
6476506 | O'Connor et al. | Nov 2002 | B1 |
6476583 | McAndrews | Nov 2002 | B2 |
6486545 | Glenn et al. | Nov 2002 | B1 |
6489182 | Kwon | Dec 2002 | B2 |
6495914 | Sekine et al. | Dec 2002 | B1 |
6507104 | Ho et al. | Jan 2003 | B2 |
6509639 | Lin | Jan 2003 | B1 |
6514847 | Ohsawa et al. | Feb 2003 | B1 |
6515355 | Jiang et al. | Feb 2003 | B1 |
6522018 | Tay et al. | Feb 2003 | B1 |
6526655 | Beaman et al. | Mar 2003 | B2 |
6531784 | Shim et al. | Mar 2003 | B1 |
6545228 | Hashimoto | Apr 2003 | B2 |
6550666 | Chew et al. | Apr 2003 | B2 |
6555918 | Masuda et al. | Apr 2003 | B2 |
6560117 | Moon | May 2003 | B2 |
6563205 | Fogal et al. | May 2003 | B1 |
6573458 | Matsubara et al. | Jun 2003 | B1 |
6578754 | Tung | Jun 2003 | B1 |
6581276 | Chung | Jun 2003 | B2 |
6581283 | Sugiura et al. | Jun 2003 | B2 |
6624653 | Cram | Sep 2003 | B1 |
6630730 | Grigg | Oct 2003 | B2 |
6639303 | Siniaguine | Oct 2003 | B2 |
6647310 | Yi et al. | Nov 2003 | B1 |
6650013 | Yin et al. | Nov 2003 | B2 |
6653170 | Lin | Nov 2003 | B1 |
6684007 | Yoshimura et al. | Jan 2004 | B2 |
6686268 | Farnworth | Feb 2004 | B2 |
6687988 | Sugiura et al. | Feb 2004 | B1 |
6696305 | Kung et al. | Feb 2004 | B2 |
6699730 | Kim et al. | Mar 2004 | B2 |
6708403 | Beaman et al. | Mar 2004 | B2 |
6720783 | Satoh et al. | Apr 2004 | B2 |
6730544 | Yang | May 2004 | B1 |
6733711 | Durocher et al. | May 2004 | B2 |
6734539 | Degani et al. | May 2004 | B2 |
6734542 | Nakatani et al. | May 2004 | B2 |
6740980 | Hirose | May 2004 | B2 |
6741085 | Khandros et al. | May 2004 | B1 |
6746894 | Fee et al. | Jun 2004 | B2 |
6759738 | Fallon et al. | Jul 2004 | B1 |
6762078 | Shin et al. | Jul 2004 | B2 |
6765287 | Lin | Jul 2004 | B1 |
6774467 | Horiuchi et al. | Aug 2004 | B2 |
6774473 | Shen | Aug 2004 | B1 |
6774494 | Arakawa | Aug 2004 | B2 |
6777787 | Shibata | Aug 2004 | B2 |
6777797 | Egawa | Aug 2004 | B2 |
6778406 | Eldridge et al. | Aug 2004 | B2 |
6787926 | Chen et al. | Sep 2004 | B2 |
6790757 | Chittipeddi et al. | Sep 2004 | B1 |
6812575 | Furusawa | Nov 2004 | B2 |
6815257 | Yoon et al. | Nov 2004 | B2 |
6828668 | Smith et al. | Dec 2004 | B2 |
6844619 | Tago | Jan 2005 | B2 |
6856235 | Fjelstad | Feb 2005 | B2 |
6864166 | Yin et al. | Mar 2005 | B1 |
6867499 | Tabrizi | Mar 2005 | B1 |
6874910 | Sugimoto et al. | Apr 2005 | B2 |
6897565 | Pflughaupt et al. | May 2005 | B2 |
6900530 | Tsai | May 2005 | B1 |
6902869 | Appelt et al. | Jun 2005 | B2 |
6902950 | Ma et al. | Jun 2005 | B2 |
6906408 | Cloud et al. | Jun 2005 | B2 |
6908785 | Kim | Jun 2005 | B2 |
6930256 | Huemoeller et al. | Aug 2005 | B1 |
6933608 | Fujisawa | Aug 2005 | B2 |
6946380 | Takahashi | Sep 2005 | B2 |
6962282 | Manansala | Nov 2005 | B2 |
6962864 | Jeng et al. | Nov 2005 | B1 |
6977440 | Pflughaupt et al. | Dec 2005 | B2 |
6979599 | Silverbrook | Dec 2005 | B2 |
6987032 | Fan et al. | Jan 2006 | B1 |
6989122 | Pham et al. | Jan 2006 | B1 |
7009297 | Chiang et al. | Mar 2006 | B1 |
7045884 | Standing | May 2006 | B2 |
7051915 | Mutaguchi | May 2006 | B2 |
7053485 | Bang et al. | May 2006 | B2 |
7061079 | Weng et al. | Jun 2006 | B2 |
7061097 | Yokoi | Jun 2006 | B2 |
7067911 | Lin et al. | Jun 2006 | B1 |
7071547 | Kang et al. | Jul 2006 | B2 |
7071573 | Lin | Jul 2006 | B1 |
7119427 | Kim | Oct 2006 | B2 |
7121891 | Cherian | Oct 2006 | B2 |
7170185 | Hogerton et al. | Jan 2007 | B1 |
7176506 | Beroz et al. | Feb 2007 | B2 |
7176559 | Ho et al. | Feb 2007 | B2 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7190061 | Lee | Mar 2007 | B2 |
7198980 | Jiang et al. | Apr 2007 | B2 |
7198987 | Warren et al. | Apr 2007 | B1 |
7205670 | Oyama | Apr 2007 | B2 |
7215033 | Lee et al. | May 2007 | B2 |
7225538 | Eldridge et al. | Jun 2007 | B2 |
7227095 | Roberts et al. | Jun 2007 | B2 |
7229906 | Babinetz et al. | Jun 2007 | B2 |
7233057 | Hussa | Jun 2007 | B2 |
7242081 | Lee | Jul 2007 | B1 |
7246431 | Bang et al. | Jul 2007 | B2 |
7262124 | Fujisawa | Aug 2007 | B2 |
7262506 | Mess et al. | Aug 2007 | B2 |
7268421 | Lin | Sep 2007 | B1 |
7276785 | Bauer et al. | Oct 2007 | B2 |
7276799 | Lee et al. | Oct 2007 | B2 |
7287322 | Mathieu et al. | Oct 2007 | B2 |
7290448 | Shirasaka et al. | Nov 2007 | B2 |
7294920 | Chen et al. | Nov 2007 | B2 |
7294928 | Bang et al. | Nov 2007 | B2 |
7301770 | Campbell et al. | Nov 2007 | B2 |
7323767 | James et al. | Jan 2008 | B2 |
7327038 | Kwon et al. | Feb 2008 | B2 |
7344917 | Gautham | Mar 2008 | B2 |
7355289 | Hess et al. | Apr 2008 | B2 |
7365416 | Kawabata et al. | Apr 2008 | B2 |
7371676 | Hembree | May 2008 | B2 |
7372151 | Fan et al. | May 2008 | B1 |
7391105 | Yeom | Jun 2008 | B2 |
7391121 | Otremba | Jun 2008 | B2 |
7416107 | Chapman et al. | Aug 2008 | B2 |
7453157 | Haba et al. | Nov 2008 | B2 |
7456091 | Kuraya et al. | Nov 2008 | B2 |
7459348 | Saeki | Dec 2008 | B2 |
7462936 | Haba et al. | Dec 2008 | B2 |
7476608 | Craig et al. | Jan 2009 | B2 |
7476962 | Kim | Jan 2009 | B2 |
7485562 | Chua et al. | Feb 2009 | B2 |
7495179 | Kubota et al. | Feb 2009 | B2 |
7495342 | Beaman et al. | Feb 2009 | B2 |
7517733 | Camacho et al. | Apr 2009 | B2 |
7528474 | Lee | May 2009 | B2 |
7535090 | Furuyama et al. | May 2009 | B2 |
7537962 | Jang et al. | May 2009 | B2 |
7538565 | Beaman et al. | May 2009 | B1 |
7550836 | Chou et al. | Jun 2009 | B2 |
7560360 | Cheng et al. | Jul 2009 | B2 |
7576415 | Cha et al. | Aug 2009 | B2 |
7576439 | Craig et al. | Aug 2009 | B2 |
7578422 | Lange et al. | Aug 2009 | B2 |
7582963 | Gerber et al. | Sep 2009 | B2 |
7589394 | Kawano | Sep 2009 | B2 |
7592638 | Kim | Sep 2009 | B2 |
7595548 | Shirasaka et al. | Sep 2009 | B2 |
7612638 | Chung et al. | Nov 2009 | B2 |
7621436 | Mii et al. | Nov 2009 | B2 |
7625781 | Beer | Dec 2009 | B2 |
7633154 | Dai et al. | Dec 2009 | B2 |
7633765 | Scanlan et al. | Dec 2009 | B1 |
7642133 | Wu et al. | Jan 2010 | B2 |
7646102 | Boon | Jan 2010 | B2 |
7659617 | Kang et al. | Feb 2010 | B2 |
7663226 | Cho et al. | Feb 2010 | B2 |
7670940 | Mizukoshi et al. | Mar 2010 | B2 |
7671457 | Hiner et al. | Mar 2010 | B1 |
7671459 | Corisis et al. | Mar 2010 | B2 |
7675152 | Gerber et al. | Mar 2010 | B2 |
7677429 | Chapman et al. | Mar 2010 | B2 |
7682960 | Wen | Mar 2010 | B2 |
7682962 | Hembree | Mar 2010 | B2 |
7683460 | Heitzer et al. | Mar 2010 | B2 |
7692931 | Chong et al. | Apr 2010 | B2 |
7696631 | Beaulieu et al. | Apr 2010 | B2 |
7706144 | Lynch | Apr 2010 | B2 |
7709968 | Damberg et al. | May 2010 | B2 |
7719122 | Tsao et al. | May 2010 | B2 |
7728443 | Hembree | Jun 2010 | B2 |
7737545 | Fjelstad et al. | Jun 2010 | B2 |
7750483 | Lin et al. | Jul 2010 | B1 |
7757385 | Hembree | Jul 2010 | B2 |
7777238 | Nishida et al. | Aug 2010 | B2 |
7777328 | Enomoto | Aug 2010 | B2 |
7777351 | Berry et al. | Aug 2010 | B1 |
7780064 | Wong et al. | Aug 2010 | B2 |
7781877 | Jiang et al. | Aug 2010 | B2 |
7795717 | Goller | Sep 2010 | B2 |
7800233 | Kawano et al. | Sep 2010 | B2 |
7808093 | Kagaya et al. | Oct 2010 | B2 |
7808439 | Yang et al. | Oct 2010 | B2 |
7842541 | Rusli et al. | Nov 2010 | B1 |
7850087 | Hwang et al. | Dec 2010 | B2 |
7851259 | Kim | Dec 2010 | B2 |
7855462 | Boon et al. | Dec 2010 | B2 |
7857190 | Takahashi et al. | Dec 2010 | B2 |
7872335 | Khan et al. | Jan 2011 | B2 |
7876180 | Uchimura | Jan 2011 | B2 |
7880290 | Park | Feb 2011 | B2 |
7892889 | Howard et al. | Feb 2011 | B2 |
7902644 | Huang et al. | Mar 2011 | B2 |
7910385 | Kweon et al. | Mar 2011 | B2 |
7911805 | Haba | Mar 2011 | B2 |
7919846 | Hembree | Apr 2011 | B2 |
7928552 | Cho et al. | Apr 2011 | B1 |
7932170 | Huemoeller et al. | Apr 2011 | B1 |
7934313 | Lin et al. | May 2011 | B1 |
7939934 | Haba et al. | May 2011 | B2 |
7960843 | Hedler et al. | Jun 2011 | B2 |
7964956 | Bet-Shliemoun | Jun 2011 | B1 |
7967062 | Campbell et al. | Jun 2011 | B2 |
7974099 | Grajcar | Jul 2011 | B2 |
7977597 | Roberts et al. | Jul 2011 | B2 |
7990711 | Andry et al. | Aug 2011 | B1 |
8008121 | Choi et al. | Aug 2011 | B2 |
8012797 | Shen et al. | Sep 2011 | B2 |
8018065 | Lam | Sep 2011 | B2 |
8020290 | Sheats | Sep 2011 | B2 |
8035213 | Lee et al. | Oct 2011 | B2 |
8039316 | Chi et al. | Oct 2011 | B2 |
8039970 | Yamamori et al. | Oct 2011 | B2 |
8053814 | Chen et al. | Nov 2011 | B2 |
8053879 | Lee et al. | Nov 2011 | B2 |
8058101 | Haba et al. | Nov 2011 | B2 |
8071424 | Haba et al. | Dec 2011 | B2 |
8071431 | Hoang et al. | Dec 2011 | B2 |
8071470 | Khor et al. | Dec 2011 | B2 |
8076770 | Kagaya | Dec 2011 | B2 |
8080445 | Pagaila | Dec 2011 | B1 |
8084867 | Tang et al. | Dec 2011 | B2 |
8092734 | Jiang et al. | Jan 2012 | B2 |
8093697 | Haba et al. | Jan 2012 | B2 |
8115283 | Bolognia et al. | Feb 2012 | B1 |
8120054 | Seo et al. | Feb 2012 | B2 |
8138584 | Wang et al. | Mar 2012 | B2 |
8143141 | Sugiura et al. | Mar 2012 | B2 |
8174119 | Pendse | May 2012 | B2 |
8198716 | Periaman et al. | Jun 2012 | B2 |
8207604 | Haba et al. | Jun 2012 | B2 |
8213184 | Knickerbocker | Jul 2012 | B2 |
8217502 | Ko | Jul 2012 | B2 |
8232141 | Choi et al. | Jul 2012 | B2 |
8264091 | Cho et al. | Sep 2012 | B2 |
8278746 | Ding et al. | Oct 2012 | B2 |
8288854 | Weng et al. | Oct 2012 | B2 |
8299368 | Endo | Oct 2012 | B2 |
8304900 | Jang et al. | Nov 2012 | B2 |
8314492 | Egawa | Nov 2012 | B2 |
8315060 | Morikita et al. | Nov 2012 | B2 |
8319338 | Berry et al. | Nov 2012 | B1 |
8324633 | McKenzie et al. | Dec 2012 | B2 |
8349735 | Pagaila et al. | Jan 2013 | B2 |
8354297 | Pagaila et al. | Jan 2013 | B2 |
8362620 | Pagani | Jan 2013 | B2 |
8372741 | Co et al. | Feb 2013 | B1 |
8395259 | Eun | Mar 2013 | B2 |
8399972 | Hoang et al. | Mar 2013 | B2 |
8404520 | Chau et al. | Mar 2013 | B1 |
8409922 | Camacho et al. | Apr 2013 | B2 |
8415704 | Ivanov et al. | Apr 2013 | B2 |
8419442 | Horikawa et al. | Apr 2013 | B2 |
8476770 | Shao et al. | Jul 2013 | B2 |
8482111 | Haba | Jul 2013 | B2 |
8507297 | Pan et al. | Aug 2013 | B2 |
8508045 | Khan et al. | Aug 2013 | B2 |
8520396 | Schmidt et al. | Aug 2013 | B2 |
8525214 | Lin et al. | Sep 2013 | B2 |
8525314 | Haba et al. | Sep 2013 | B2 |
8525318 | Kim et al. | Sep 2013 | B1 |
8552556 | Kim et al. | Oct 2013 | B1 |
8558392 | Chua et al. | Oct 2013 | B2 |
8618659 | Sato et al. | Dec 2013 | B2 |
8642393 | Yu et al. | Feb 2014 | B1 |
8646508 | Kawada | Feb 2014 | B2 |
8653626 | Lo et al. | Feb 2014 | B2 |
8653668 | Uno et al. | Feb 2014 | B2 |
8659164 | Haba | Feb 2014 | B2 |
8669646 | Tabatabai et al. | Mar 2014 | B2 |
8670261 | Crisp et al. | Mar 2014 | B2 |
8680677 | Wyland | Mar 2014 | B2 |
8680684 | Haba et al. | Mar 2014 | B2 |
8686570 | Semmelmeyer et al. | Apr 2014 | B2 |
8728865 | Haba et al. | May 2014 | B2 |
8729714 | Meyer | May 2014 | B1 |
8742576 | Thacker et al. | Jun 2014 | B2 |
8742597 | Nickerson et al. | Jun 2014 | B2 |
8766436 | DeLucca et al. | Jul 2014 | B2 |
8772152 | Co et al. | Jul 2014 | B2 |
8772817 | Yao | Jul 2014 | B2 |
8791575 | Oganesian et al. | Jul 2014 | B2 |
8791580 | Park et al. | Jul 2014 | B2 |
8796135 | Oganesian et al. | Aug 2014 | B2 |
8802494 | Lee et al. | Aug 2014 | B2 |
8811055 | Yoon | Aug 2014 | B2 |
8816404 | Kim et al. | Aug 2014 | B2 |
8816505 | Mohammed et al. | Aug 2014 | B2 |
8835228 | Mohammed | Sep 2014 | B2 |
8836136 | Chau et al. | Sep 2014 | B2 |
8836147 | Uno et al. | Sep 2014 | B2 |
8841765 | Haba et al. | Sep 2014 | B2 |
8878353 | Haba et al. | Nov 2014 | B2 |
8893380 | Kim et al. | Nov 2014 | B2 |
8907466 | Haba | Dec 2014 | B2 |
8907500 | Haba et al. | Dec 2014 | B2 |
8916781 | Haba et al. | Dec 2014 | B2 |
8922005 | Hu et al. | Dec 2014 | B2 |
8923004 | Low et al. | Dec 2014 | B2 |
8927337 | Haba et al. | Jan 2015 | B2 |
8946757 | Mohammed et al. | Feb 2015 | B2 |
8948712 | Chen et al. | Feb 2015 | B2 |
8963339 | He et al. | Feb 2015 | B2 |
8975726 | Chen et al. | Mar 2015 | B2 |
8978247 | Yang et al. | Mar 2015 | B2 |
8981559 | Hsu et al. | Mar 2015 | B2 |
8987132 | Gruber et al. | Mar 2015 | B2 |
8988895 | Mohammed et al. | Mar 2015 | B2 |
8993376 | Camacho et al. | Mar 2015 | B2 |
9012263 | Mathew et al. | Apr 2015 | B1 |
9054095 | Pagaila | Jun 2015 | B2 |
9093435 | Sato et al. | Jul 2015 | B2 |
9095074 | Haba et al. | Jul 2015 | B2 |
9105483 | Chau et al. | Aug 2015 | B2 |
9117811 | Lohni | Aug 2015 | B2 |
9123664 | Haba | Sep 2015 | B2 |
9136254 | Zhao et al. | Sep 2015 | B2 |
9153562 | Haba et al. | Oct 2015 | B2 |
9167710 | Mohammed et al. | Oct 2015 | B2 |
9196586 | Chen et al. | Nov 2015 | B2 |
9196588 | Leal | Nov 2015 | B2 |
9209081 | Lim et al. | Dec 2015 | B2 |
9214434 | Kim et al. | Dec 2015 | B1 |
9224647 | Koo et al. | Dec 2015 | B2 |
9224717 | Sato et al. | Dec 2015 | B2 |
9263394 | Uzoh et al. | Feb 2016 | B2 |
9263413 | Mohammed | Feb 2016 | B2 |
9318449 | Hasch et al. | Apr 2016 | B2 |
9318452 | Chen et al. | Apr 2016 | B2 |
9324696 | Choi et al. | Apr 2016 | B2 |
9330945 | Song et al. | May 2016 | B2 |
9362161 | Chi et al. | Jun 2016 | B2 |
9378982 | Lin et al. | Jun 2016 | B2 |
9379074 | Uzoh et al. | Jun 2016 | B2 |
9379078 | Yu et al. | Jun 2016 | B2 |
9401338 | Magnus et al. | Jul 2016 | B2 |
9405064 | Herbsommer et al. | Aug 2016 | B2 |
9412661 | Lu et al. | Aug 2016 | B2 |
9418971 | Chen et al. | Aug 2016 | B2 |
9437459 | Carpenter et al. | Sep 2016 | B2 |
9443797 | Marimuthu et al. | Sep 2016 | B2 |
9449941 | Tsai et al. | Sep 2016 | B2 |
9461025 | Yu et al. | Oct 2016 | B2 |
9484331 | Paek et al. | Nov 2016 | B2 |
9508622 | Higgins, III | Nov 2016 | B2 |
9559088 | Gonzalez et al. | Jan 2017 | B2 |
9570382 | Haba | Feb 2017 | B2 |
9583456 | Uzoh et al. | Feb 2017 | B2 |
9601454 | Zhao et al. | Mar 2017 | B2 |
9653428 | Hiner et al. | May 2017 | B1 |
9653442 | Yu et al. | May 2017 | B2 |
9659877 | Bakalski et al. | May 2017 | B2 |
9663353 | Ofner et al. | May 2017 | B2 |
9735084 | Katkar et al. | Aug 2017 | B2 |
9788466 | Chen | Oct 2017 | B2 |
20010002607 | Sugiura et al. | Jun 2001 | A1 |
20010006252 | Kim et al. | Jul 2001 | A1 |
20010007370 | Distefano | Jul 2001 | A1 |
20010021541 | Akram et al. | Sep 2001 | A1 |
20010028114 | Hosomi | Oct 2001 | A1 |
20010040280 | Funakura et al. | Nov 2001 | A1 |
20010042925 | Yamamoto et al. | Nov 2001 | A1 |
20010045012 | Beaman et al. | Nov 2001 | A1 |
20010048151 | Chun | Dec 2001 | A1 |
20020014004 | Beaman et al. | Feb 2002 | A1 |
20020027257 | Kinsman et al. | Mar 2002 | A1 |
20020066952 | Taniguchi et al. | Jun 2002 | A1 |
20020096787 | Fjelstad | Jul 2002 | A1 |
20020113308 | Huang et al. | Aug 2002 | A1 |
20020117330 | Eldridge et al. | Aug 2002 | A1 |
20020125556 | Oh et al. | Sep 2002 | A1 |
20020125571 | Corisis et al. | Sep 2002 | A1 |
20020153602 | Tay et al. | Oct 2002 | A1 |
20020164838 | Moon et al. | Nov 2002 | A1 |
20020171152 | Miyazaki | Nov 2002 | A1 |
20020185735 | Sakurai et al. | Dec 2002 | A1 |
20020190738 | Beaman et al. | Dec 2002 | A1 |
20030002770 | Chakravorty et al. | Jan 2003 | A1 |
20030006494 | Lee et al. | Jan 2003 | A1 |
20030048108 | Beaman et al. | Mar 2003 | A1 |
20030057544 | Nathan et al. | Mar 2003 | A1 |
20030068906 | Light et al. | Apr 2003 | A1 |
20030094666 | Clayton et al. | May 2003 | A1 |
20030094685 | Shiraishi et al. | May 2003 | A1 |
20030094700 | Aiba et al. | May 2003 | A1 |
20030106213 | Beaman et al. | Jun 2003 | A1 |
20030107118 | Pflughaupt et al. | Jun 2003 | A1 |
20030124767 | Lee et al. | Jul 2003 | A1 |
20030162378 | Mikami | Aug 2003 | A1 |
20030164540 | Lee et al. | Sep 2003 | A1 |
20030234277 | Dias et al. | Dec 2003 | A1 |
20040014309 | Nakanishi | Jan 2004 | A1 |
20040036164 | Koike et al. | Feb 2004 | A1 |
20040038447 | Corisis et al. | Feb 2004 | A1 |
20040041757 | Yang et al. | Mar 2004 | A1 |
20040075164 | Pu et al. | Apr 2004 | A1 |
20040090756 | Ho et al. | May 2004 | A1 |
20040110319 | Fukutomi et al. | Jun 2004 | A1 |
20040119152 | Karnezos et al. | Jun 2004 | A1 |
20040124518 | Karnezos | Jul 2004 | A1 |
20040148773 | Beaman et al. | Aug 2004 | A1 |
20040152292 | Babinetz et al. | Aug 2004 | A1 |
20040160751 | Inagaki et al. | Aug 2004 | A1 |
20040164426 | Pai et al. | Aug 2004 | A1 |
20040188499 | Nosaka | Sep 2004 | A1 |
20040262728 | Sterrett et al. | Dec 2004 | A1 |
20040262734 | Yoo | Dec 2004 | A1 |
20050017369 | Clayton et al. | Jan 2005 | A1 |
20050035440 | Mohammed | Feb 2005 | A1 |
20050062173 | Vu et al. | Mar 2005 | A1 |
20050062492 | Beaman et al. | Mar 2005 | A1 |
20050082664 | Funaba et al. | Apr 2005 | A1 |
20050095835 | Humpston et al. | May 2005 | A1 |
20050116326 | Haba et al. | Jun 2005 | A1 |
20050121764 | Mallik et al. | Jun 2005 | A1 |
20050133916 | Karnezos | Jun 2005 | A1 |
20050133932 | Pohl et al. | Jun 2005 | A1 |
20050140265 | Hirakata | Jun 2005 | A1 |
20050146008 | Miyamoto et al. | Jul 2005 | A1 |
20050151235 | Yokoi | Jul 2005 | A1 |
20050151238 | Yamunan | Jul 2005 | A1 |
20050161814 | Mizukoshi et al. | Jul 2005 | A1 |
20050173805 | Damberg et al. | Aug 2005 | A1 |
20050173807 | Zhu et al. | Aug 2005 | A1 |
20050176233 | Joshi et al. | Aug 2005 | A1 |
20050181544 | Haba et al. | Aug 2005 | A1 |
20050181655 | Haba et al. | Aug 2005 | A1 |
20050212109 | Cherukuri et al. | Sep 2005 | A1 |
20050253213 | Jiang et al. | Nov 2005 | A1 |
20050266672 | Jeng et al. | Dec 2005 | A1 |
20050285246 | Haba et al. | Dec 2005 | A1 |
20060087013 | Hsieh | Apr 2006 | A1 |
20060088957 | Saeki | Apr 2006 | A1 |
20060118641 | Hwang et al. | Jun 2006 | A1 |
20060139893 | Yoshimura et al. | Jun 2006 | A1 |
20060166397 | Lau et al. | Jul 2006 | A1 |
20060197220 | Beer | Sep 2006 | A1 |
20060216868 | Yang et al. | Sep 2006 | A1 |
20060228825 | Hembree | Oct 2006 | A1 |
20060255449 | Lee et al. | Nov 2006 | A1 |
20060278682 | Lange et al. | Dec 2006 | A1 |
20060278970 | Yano et al. | Dec 2006 | A1 |
20070010086 | Hsieh | Jan 2007 | A1 |
20070013067 | Nishida et al. | Jan 2007 | A1 |
20070015353 | Craig et al. | Jan 2007 | A1 |
20070026662 | Kawano et al. | Feb 2007 | A1 |
20070035015 | Hsu | Feb 2007 | A1 |
20070045803 | Ye et al. | Mar 2007 | A1 |
20070045862 | Corisis | Mar 2007 | A1 |
20070080360 | Mirsky et al. | Apr 2007 | A1 |
20070090524 | Abbott | Apr 2007 | A1 |
20070126091 | Wood et al. | Jun 2007 | A1 |
20070145563 | Punzalan et al. | Jun 2007 | A1 |
20070148822 | Haba et al. | Jun 2007 | A1 |
20070164457 | Yamaguchi et al. | Jul 2007 | A1 |
20070181989 | Corisis et al. | Aug 2007 | A1 |
20070190747 | Humpston et al. | Aug 2007 | A1 |
20070235850 | Gerber et al. | Oct 2007 | A1 |
20070235856 | Haba et al. | Oct 2007 | A1 |
20070238289 | Tanaka | Oct 2007 | A1 |
20070241437 | Kagaya et al. | Oct 2007 | A1 |
20070246819 | Hembree et al. | Oct 2007 | A1 |
20070254406 | Lee | Nov 2007 | A1 |
20070271781 | Beaman et al. | Nov 2007 | A9 |
20070290325 | Wu et al. | Dec 2007 | A1 |
20080006942 | Park et al. | Jan 2008 | A1 |
20080017968 | Choi et al. | Jan 2008 | A1 |
20080023805 | Howard et al. | Jan 2008 | A1 |
20080029849 | Hedler et al. | Feb 2008 | A1 |
20080032519 | Murata | Feb 2008 | A1 |
20080042265 | Merilo et al. | Feb 2008 | A1 |
20080047741 | Beaman et al. | Feb 2008 | A1 |
20080048309 | Corisis et al. | Feb 2008 | A1 |
20080048690 | Beaman et al. | Feb 2008 | A1 |
20080048691 | Beaman et al. | Feb 2008 | A1 |
20080048697 | Beaman et al. | Feb 2008 | A1 |
20080054434 | Kim | Mar 2008 | A1 |
20080073769 | Wu et al. | Mar 2008 | A1 |
20080073771 | Sea et al. | Mar 2008 | A1 |
20080076208 | Wu et al. | Mar 2008 | A1 |
20080100316 | Beaman et al. | May 2008 | A1 |
20080100317 | Beaman et al. | May 2008 | A1 |
20080100318 | Beaman et al. | May 2008 | A1 |
20080100324 | Beaman et al. | May 2008 | A1 |
20080105984 | Lee | May 2008 | A1 |
20080106281 | Beaman et al. | May 2008 | A1 |
20080106282 | Beaman et al. | May 2008 | A1 |
20080106283 | Beaman et al. | May 2008 | A1 |
20080106284 | Beaman et al. | May 2008 | A1 |
20080106285 | Beaman et al. | May 2008 | A1 |
20080106291 | Beaman et al. | May 2008 | A1 |
20080106872 | Beaman et al. | May 2008 | A1 |
20080110667 | Ahn et al. | May 2008 | A1 |
20080111568 | Beaman et al. | May 2008 | A1 |
20080111569 | Beaman et al. | May 2008 | A1 |
20080111570 | Beaman et al. | May 2008 | A1 |
20080112144 | Beaman et al. | May 2008 | A1 |
20080112145 | Beaman et al. | May 2008 | A1 |
20080112146 | Beaman et al. | May 2008 | A1 |
20080112147 | Beaman et al. | May 2008 | A1 |
20080112148 | Beaman et al. | May 2008 | A1 |
20080112149 | Beaman et al. | May 2008 | A1 |
20080116912 | Beaman et al. | May 2008 | A1 |
20080116913 | Beaman et al. | May 2008 | A1 |
20080116914 | Beaman et al. | May 2008 | A1 |
20080116915 | Beaman et al. | May 2008 | A1 |
20080116916 | Beaman et al. | May 2008 | A1 |
20080117611 | Beaman et al. | May 2008 | A1 |
20080117612 | Beaman et al. | May 2008 | A1 |
20080117613 | Beaman et al. | May 2008 | A1 |
20080121879 | Beaman et al. | May 2008 | A1 |
20080123310 | Beaman et al. | May 2008 | A1 |
20080129319 | Beaman et al. | Jun 2008 | A1 |
20080129320 | Beaman et al. | Jun 2008 | A1 |
20080132094 | Beaman et al. | Jun 2008 | A1 |
20080156518 | Honer et al. | Jul 2008 | A1 |
20080164595 | Wu et al. | Jul 2008 | A1 |
20080169544 | Tanaka et al. | Jul 2008 | A1 |
20080169548 | Baek | Jul 2008 | A1 |
20080211084 | Chow et al. | Sep 2008 | A1 |
20080217708 | Reisner et al. | Sep 2008 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
20080246126 | Bowles et al. | Oct 2008 | A1 |
20080277772 | Groenhus et al. | Nov 2008 | A1 |
20080280393 | Lee et al. | Nov 2008 | A1 |
20080284001 | Mod et al. | Nov 2008 | A1 |
20080284045 | Gerber et al. | Nov 2008 | A1 |
20080303132 | Mohammed et al. | Dec 2008 | A1 |
20080303153 | Oi et al. | Dec 2008 | A1 |
20080308305 | Kawabe | Dec 2008 | A1 |
20080315385 | Gerber et al. | Dec 2008 | A1 |
20090008796 | Eng et al. | Jan 2009 | A1 |
20090014876 | Youn et al. | Jan 2009 | A1 |
20090026609 | Masuda | Jan 2009 | A1 |
20090032913 | Haba | Feb 2009 | A1 |
20090039523 | Jiang et al. | Feb 2009 | A1 |
20090045497 | Kagaya et al. | Feb 2009 | A1 |
20090050994 | Ishihara et al. | Feb 2009 | A1 |
20090079094 | Lin | Mar 2009 | A1 |
20090085185 | Byun et al. | Apr 2009 | A1 |
20090085205 | Sugizaki | Apr 2009 | A1 |
20090091009 | Corisis et al. | Apr 2009 | A1 |
20090091022 | Meyer et al. | Apr 2009 | A1 |
20090102063 | Lee et al. | Apr 2009 | A1 |
20090104736 | Haba et al. | Apr 2009 | A1 |
20090115044 | Hoshino et al. | May 2009 | A1 |
20090115047 | Raba et al. | May 2009 | A1 |
20090121351 | Endo | May 2009 | A1 |
20090127686 | Yang et al. | May 2009 | A1 |
20090128176 | Beaman et al. | May 2009 | A1 |
20090140415 | Furuta | Jun 2009 | A1 |
20090146301 | Shimizu et al. | Jun 2009 | A1 |
20090146303 | Kwon | Jun 2009 | A1 |
20090160065 | Haba et al. | Jun 2009 | A1 |
20090166664 | Park et al. | Jul 2009 | A1 |
20090166873 | Yang et al. | Jul 2009 | A1 |
20090189288 | Beaman et al. | Jul 2009 | A1 |
20090194829 | Chung et al. | Aug 2009 | A1 |
20090206461 | Yoon | Aug 2009 | A1 |
20090212418 | Gurrum et al. | Aug 2009 | A1 |
20090212442 | Chow et al. | Aug 2009 | A1 |
20090236700 | Moriya | Sep 2009 | A1 |
20090236753 | Moon et al. | Sep 2009 | A1 |
20090239336 | Lee et al. | Sep 2009 | A1 |
20090256229 | Ishikawa et al. | Oct 2009 | A1 |
20090260228 | Val | Oct 2009 | A1 |
20090261466 | Pagaila et al. | Oct 2009 | A1 |
20090302445 | Pagaila et al. | Dec 2009 | A1 |
20090315579 | Beaman et al. | Dec 2009 | A1 |
20090316378 | Haba et al. | Dec 2009 | A1 |
20100000775 | Shen et al. | Jan 2010 | A1 |
20100003822 | Miyata et al. | Jan 2010 | A1 |
20100006963 | Brady | Jan 2010 | A1 |
20100007009 | Chang et al. | Jan 2010 | A1 |
20100007026 | Shikano | Jan 2010 | A1 |
20100025835 | Oh et al. | Feb 2010 | A1 |
20100032822 | Liao et al. | Feb 2010 | A1 |
20100044860 | Raba et al. | Feb 2010 | A1 |
20100052135 | Shim et al. | Mar 2010 | A1 |
20100052187 | Lee et al. | Mar 2010 | A1 |
20100072588 | Yang | Mar 2010 | A1 |
20100078789 | Choi et al. | Apr 2010 | A1 |
20100078795 | Dekker et al. | Apr 2010 | A1 |
20100087035 | Yoo et al. | Apr 2010 | A1 |
20100090330 | Nakazato | Apr 2010 | A1 |
20100109138 | Cho | May 2010 | A1 |
20100117212 | Corisis et al. | May 2010 | A1 |
20100133675 | Yu et al. | Jun 2010 | A1 |
20100148360 | Lin et al. | Jun 2010 | A1 |
20100148374 | Castro | Jun 2010 | A1 |
20100171205 | Chen et al. | Jul 2010 | A1 |
20100193937 | Nagamatsu et al. | Aug 2010 | A1 |
20100200981 | Huang | Aug 2010 | A1 |
20100213560 | Wang et al. | Aug 2010 | A1 |
20100216281 | Pagaila et al. | Aug 2010 | A1 |
20100224975 | Shin et al. | Sep 2010 | A1 |
20100232119 | Schmidt et al. | Sep 2010 | A1 |
20100232129 | Haba et al. | Sep 2010 | A1 |
20100237471 | Pagaila et al. | Sep 2010 | A1 |
20100246141 | Leung et al. | Sep 2010 | A1 |
20100258955 | Miyagawa et al. | Oct 2010 | A1 |
20100289142 | Shim et al. | Nov 2010 | A1 |
20100314748 | Hsu et al. | Dec 2010 | A1 |
20100320585 | Jiang et al. | Dec 2010 | A1 |
20100327419 | Muthukumar et al. | Dec 2010 | A1 |
20110042699 | Park et al. | Feb 2011 | A1 |
20110057308 | Choi et al. | Mar 2011 | A1 |
20110068453 | Cho et al. | Mar 2011 | A1 |
20110068478 | Pagaila et al. | Mar 2011 | A1 |
20110115081 | Osumi | May 2011 | A1 |
20110140259 | Cho et al. | Jun 2011 | A1 |
20110147911 | Kohl et al. | Jun 2011 | A1 |
20110156249 | Chang et al. | Jun 2011 | A1 |
20110157834 | Wang | Jun 2011 | A1 |
20110175213 | Mori et al. | Jul 2011 | A1 |
20110209908 | Lin et al. | Sep 2011 | A1 |
20110215472 | Chandrasekaran | Sep 2011 | A1 |
20110220395 | Cho et al. | Sep 2011 | A1 |
20110223721 | Cho et al. | Sep 2011 | A1 |
20110237027 | Kim et al. | Sep 2011 | A1 |
20110241192 | Ding et al. | Oct 2011 | A1 |
20110241193 | Ding et al. | Oct 2011 | A1 |
20110272449 | Pirkle et al. | Nov 2011 | A1 |
20110272798 | Lee et al. | Nov 2011 | A1 |
20120001336 | Zeng et al. | Jan 2012 | A1 |
20120007232 | Haba | Jan 2012 | A1 |
20120015481 | Kim | Jan 2012 | A1 |
20120018885 | Lee et al. | Jan 2012 | A1 |
20120020026 | Oganesian et al. | Jan 2012 | A1 |
20120025365 | Haba | Feb 2012 | A1 |
20120034777 | Pagaila et al. | Feb 2012 | A1 |
20120043655 | Khor et al. | Feb 2012 | A1 |
20120056312 | Pagaila et al. | Mar 2012 | A1 |
20120061814 | Camacho et al. | Mar 2012 | A1 |
20120063090 | Hsiao et al. | Mar 2012 | A1 |
20120080787 | Shah et al. | Apr 2012 | A1 |
20120086111 | Iwamoto et al. | Apr 2012 | A1 |
20120086130 | Sasaki et al. | Apr 2012 | A1 |
20120104595 | Haba et al. | May 2012 | A1 |
20120104624 | Choi et al. | May 2012 | A1 |
20120119380 | Haba | May 2012 | A1 |
20120126431 | Kim et al. | May 2012 | A1 |
20120145442 | Gupta et al. | Jun 2012 | A1 |
20120146235 | Choi et al. | Jun 2012 | A1 |
20120153444 | Haga et al. | Jun 2012 | A1 |
20120184116 | Pawlikowski et al. | Jul 2012 | A1 |
20120280374 | Choi et al. | Nov 2012 | A1 |
20120280386 | Sato et al. | Nov 2012 | A1 |
20120286432 | Do | Nov 2012 | A1 |
20120305916 | Liu | Dec 2012 | A1 |
20120326337 | Camacho et al. | Dec 2012 | A1 |
20130001797 | Choi et al. | Jan 2013 | A1 |
20130032944 | Sato et al. | Feb 2013 | A1 |
20130037802 | England et al. | Feb 2013 | A1 |
20130040423 | Tung et al. | Feb 2013 | A1 |
20130049218 | Gong et al. | Feb 2013 | A1 |
20130049221 | Han et al. | Feb 2013 | A1 |
20130069222 | Camacho | Mar 2013 | A1 |
20130082399 | Kim et al. | Apr 2013 | A1 |
20130087915 | Warren et al. | Apr 2013 | A1 |
20130093087 | Chau et al. | Apr 2013 | A1 |
20130093088 | Chau et al. | Apr 2013 | A1 |
20130093091 | Ma et al. | Apr 2013 | A1 |
20130095610 | Chau et al. | Apr 2013 | A1 |
20130105979 | Yu et al. | May 2013 | A1 |
20130134588 | Yu et al. | May 2013 | A1 |
20130153646 | Ho | Jun 2013 | A1 |
20130182402 | Chen et al. | Jul 2013 | A1 |
20130200524 | Han et al. | Aug 2013 | A1 |
20130200533 | Chau et al. | Aug 2013 | A1 |
20130234317 | Chen et al. | Sep 2013 | A1 |
20130241083 | Yu et al. | Sep 2013 | A1 |
20130256847 | Park et al. | Oct 2013 | A1 |
20130313716 | Mohammed | Nov 2013 | A1 |
20130323409 | Read et al. | Dec 2013 | A1 |
20140021605 | Yu et al. | Jan 2014 | A1 |
20140035892 | Shenoy et al. | Feb 2014 | A1 |
20140036454 | Caskey et al. | Feb 2014 | A1 |
20140103527 | Marimuthu et al. | Apr 2014 | A1 |
20140124949 | Paek et al. | May 2014 | A1 |
20140175657 | Oka et al. | Jun 2014 | A1 |
20140220744 | Damberg et al. | Aug 2014 | A1 |
20140225248 | Henderson et al. | Aug 2014 | A1 |
20140239479 | Start | Aug 2014 | A1 |
20140239490 | Wang | Aug 2014 | A1 |
20140264945 | Yap et al. | Sep 2014 | A1 |
20140312503 | Seo | Oct 2014 | A1 |
20150017765 | Co et al. | Jan 2015 | A1 |
20150043190 | Mohammed et al. | Feb 2015 | A1 |
20150044823 | Mohammed | Feb 2015 | A1 |
20150076714 | Haba et al. | Mar 2015 | A1 |
20150130054 | Lee et al. | May 2015 | A1 |
20150340305 | Lo | Nov 2015 | A1 |
20150380376 | Mathew et al. | Dec 2015 | A1 |
20160043813 | Chen et al. | Feb 2016 | A1 |
20160225692 | Kim et al. | Aug 2016 | A1 |
20170117231 | Awujoola et al. | Apr 2017 | A1 |
20170229432 | Lin et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1352804 | Jun 2002 | CN |
1641832 | Jul 2005 | CN |
1877824 | Dec 2006 | CN |
101409241 | Apr 2009 | CN |
101449375 | Jun 2009 | CN |
101675516 | Mar 2010 | CN |
101819959 | Sep 2010 | CN |
102324418 | Jan 2012 | CN |
102009001461 | Sep 2010 | DE |
920058 | Jun 1999 | EP |
1449414 | Aug 2004 | EP |
2234158 | Sep 2010 | EP |
S51-050661 | May 1976 | JP |
59189069 | Oct 1984 | JP |
61125062 | Jun 1986 | JP |
S62158338 | Jul 1987 | JP |
62-226307 | Oct 1987 | JP |
1012769 | Jan 1989 | JP |
64-71162 | Mar 1989 | JP |
H04-346436 | Dec 1992 | JP |
06268015 | Sep 1994 | JP |
H06268101 | Sep 1994 | JP |
H06333931 | Dec 1994 | JP |
07-122787 | May 1995 | JP |
09505439 | May 1997 | JP |
H1065054 | Mar 1998 | JP |
H10-135221 | May 1998 | JP |
H10135220 | May 1998 | JP |
1118364 | Jan 1999 | JP |
11-074295 | Mar 1999 | JP |
11135663 | May 1999 | JP |
H11-145323 | May 1999 | JP |
11251350 | Sep 1999 | JP |
H11-260856 | Sep 1999 | JP |
11317476 | Nov 1999 | JP |
2000156461 | Jun 2000 | JP |
2000323516 | Nov 2000 | JP |
3157134 | Apr 2001 | JP |
2001196407 | Jul 2001 | JP |
2001326236 | Nov 2001 | JP |
2002050871 | Feb 2002 | JP |
2002289769 | Oct 2002 | JP |
2003122611 | Apr 2003 | JP |
2003-174124 | Jun 2003 | JP |
2003197668 | Jul 2003 | JP |
2003307897 | Oct 2003 | JP |
2003318327 | Nov 2003 | JP |
2004031754 | Jan 2004 | JP |
200447702 | Feb 2004 | JP |
2004047702 | Feb 2004 | JP |
2004048048 | Feb 2004 | JP |
2004-172157 | Jun 2004 | JP |
2004200316 | Jul 2004 | JP |
2004281514 | Oct 2004 | JP |
2004-319892 | Nov 2004 | JP |
2004327855 | Nov 2004 | JP |
2004327856 | Nov 2004 | JP |
2004343030 | Dec 2004 | JP |
2005011874 | Jan 2005 | JP |
2005033141 | Feb 2005 | JP |
2005093551 | Apr 2005 | JP |
2003377641 | Jun 2005 | JP |
2005142378 | Jun 2005 | JP |
2005175019 | Jun 2005 | JP |
2003426392 | Jul 2005 | JP |
2005183880 | Jul 2005 | JP |
2005183923 | Jul 2005 | JP |
2005203497 | Jul 2005 | JP |
2005302765 | Oct 2005 | JP |
2006108588 | Apr 2006 | JP |
2006186086 | Jul 2006 | JP |
2006344917 | Dec 2006 | JP |
2007123595 | May 2007 | JP |
2007-208159 | Aug 2007 | JP |
2007194436 | Aug 2007 | JP |
2007234845 | Sep 2007 | JP |
2007287922 | Nov 2007 | JP |
2007-335464 | Dec 2007 | JP |
2007335464 | Dec 2007 | JP |
200834534 | Feb 2008 | JP |
2008166439 | Jul 2008 | JP |
2008171938 | Jul 2008 | JP |
2008235378 | Oct 2008 | JP |
2008251794 | Oct 2008 | JP |
2008277362 | Nov 2008 | JP |
2008306128 | Dec 2008 | JP |
2009004650 | Jan 2009 | JP |
2009-508324 | Feb 2009 | JP |
2009044110 | Feb 2009 | JP |
2009506553 | Feb 2009 | JP |
2009064966 | Mar 2009 | JP |
2009088254 | Apr 2009 | JP |
2009111384 | May 2009 | JP |
2009528706 | Aug 2009 | JP |
2009260132 | Nov 2009 | JP |
2010103129 | May 2010 | JP |
2010135671 | Jun 2010 | JP |
2010192928 | Sep 2010 | JP |
2010199528 | Sep 2010 | JP |
2010206007 | Sep 2010 | JP |
2011514015 | Apr 2011 | JP |
2011166051 | Aug 2011 | JP |
100265563 | Sep 2000 | KR |
20010061849 | Jul 2001 | KR |
2001-0094894 | Nov 2001 | KR |
10-0393102 | Jul 2002 | KR |
20020058216 | Jul 2002 | KR |
20060064291 | Jun 2006 | KR |
20070058680 | Jun 2007 | KR |
20080020069 | Mar 2008 | KR |
100865125 | Oct 2008 | KR |
20080094251 | Oct 2008 | KR |
100886100 | Feb 2009 | KR |
20090033605 | Apr 2009 | KR |
20090123680 | Dec 2009 | KR |
20100033012 | Mar 2010 | KR |
20100062315 | Jun 2010 | KR |
101011863 | Jan 2011 | KR |
20120075855 | Jul 2012 | KR |
101215271 | Dec 2012 | KR |
20130048810 | May 2013 | KR |
20150012285 | Feb 2015 | KR |
200539406 | Dec 2005 | TW |
200721327 | Jun 2007 | TW |
200810079 | Feb 2008 | TW |
200849551 | Dec 2008 | TW |
200933760 | Aug 2009 | TW |
201023277 | Jun 2010 | TW |
201250979 | Dec 2012 | TW |
I605558 | Nov 2017 | TW |
9615458 | May 1996 | WO |
0213256 | Feb 2002 | WO |
03045123 | May 2003 | WO |
2004077525 | Sep 2004 | WO |
2006050691 | May 2006 | WO |
2007083351 | Jul 2007 | WO |
2007101251 | Sep 2007 | WO |
2007116544 | Oct 2007 | WO |
2008065896 | Jun 2008 | WO |
2008120755 | Oct 2008 | WO |
2009096950 | Aug 2009 | WO |
2009158098 | Dec 2009 | WO |
2010014103 | Feb 2010 | WO |
2010041630 | Apr 2010 | WO |
2010101163 | Sep 2010 | WO |
2012067177 | May 2012 | WO |
2013059181 | Apr 2013 | WO |
2013065895 | May 2013 | WO |
2014107301 | Jul 2014 | WO |
Entry |
---|
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates & 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003. |
North Corporation, “Processed Intra-layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil],” NMBITM, Version Jun. 2001. |
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 6 pages (2008). |
International Search Report, PCT/US2005/039716, dated Apr. 5, 2006. |
International Search Report Application No. PCT/US2011/024143, dated Sep. 14, 2011. |
Korean Search Report KR10-2011-0041843 dated Feb. 24, 2011. |
International Search Report and Written Opinion PCT/US2011/044342 dated May 7, 2012. |
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003. |
International Search Report and Written Opinion for Application No. PCT/US2011/044346 dated May 11, 2012. |
Partial International Search Report from Invitation to Pay Additional Fees for Application No. PCT/US2012/028738 dated Jun. 6, 2012. |
Korean Office Action for Application No. 10-2011-0041843 dated Jun. 20, 2011. |
“EE Times Asia” [online]. [Retrieved Aug. 5, 2010]. Retrieved from internet. <http://www.eetasia.com/ART_8800428222_480300_nt_dec52276.HTM>, 4 pages. |
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages. |
“Wafer Level Stack—WDoD”, [online]. [Retrieved Aug. 5, 2010]. Retrieved from the internet. <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages. |
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France May 21, 2010. |
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D integration,” May 2010, STATS ChipPAC Ltd. |
Search Report from Korean Patent Applicatin No. 10-2010-0113271 dated Jan. 12, 2011. |
International Search Report and Written Opinion for PCT/US2011/060551 dated Apr. 18, 2012. |
Meiser S, “Klein Und Komplex”, Elektronik, IRL Press Limited, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992), pp. 72-77, XP000277326. (International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013 provides concise statement of relevance.). |
Partial International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/060402 dated Apr. 2, 2013. |
Partial International Search Report for Application No. PCT/US2013/026126 dated Jun. 17, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/026126 dated Jul. 25, 2013. |
Extended European Search Report for Application No. EP13162975 dated Sep. 5, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/052883 dated Oct. 21, 2013. |
Japanese Office Action for Application No. 2013-509325 dated Oct. 18, 2013. |
Office Action from U.S. Appl. No. 12/769,930 dated May 5, 2011. |
International Search Report and Written Opinion for Application No. PCT/US2013/053437 dated Nov. 25, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/041981 dated Nov. 13, 2013. |
Office Action for Taiwan Application No. 100125521 dated Dec. 20, 2013. |
Office Action from Taiwan for Application No. 100125522 dated Jan. 27, 2014. |
Partial International Search Report for Application No. PCT/US2013/075672 dated Mar. 12, 2014. |
Taiwanese Office Action for Application No. 100141695 dated Mar. 19, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2013/075672 dated Apr. 22, 2014. |
Taiwanese Office Action for Application No. 101138311 dated Jun. 27, 2014. |
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2011/024143 dated Jan. 17, 2012. |
Taiwanese Office Action for Application No. 100140428 dated Jan. 26, 2015. |
Korean Office Action for Application No. 2014-7025992 dated Feb. 5, 2015. |
Japanese Office Action for Application No. 2013-520776 dated Apr. 21, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2015/011715 dated Apr. 20, 2015. |
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015. |
Japanese Office Action for Application No. 2013-520777 dated May 22, 2015. |
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015. |
Partial International Search Report for Application No. PCT/US2015/033004 dated Sep. 9, 2015. |
Taiwanese Office Action for Application No. 102106326 dated Sep. 18, 2015. |
International Preliminary Report on Patentability, Chapter II, for Application No. PCT/US2014/055695 dated Dec. 15, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2014/014181 dated Jun. 13, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2014/050125 dated Feb. 4, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2014/050148 dated Feb. 9, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2014/055695 dated Mar. 20, 2015. |
Partial International Search Report for Application No. PCT/US2014/014181 dated May 8, 2014. |
Taiwanese Office Action for Application No. 103103350 dated Mar. 21, 2016. |
U.S. Appl. No. 13/477,532, filed May 22, 2012. |
Written Opinion for Application No. PCT/US2014/050125 dated Jul. 15, 2015. |
International Search Report for Application No. PCT/US2015/032679, dated Nov. 11, 2015, 2 pages. |
International Search Report for Application No. PCT/US2016/056402, dated Jan. 31, 2017, 3 pages. |
International Search Report for Application No. PCT/US2016/056526, dated Jan. 20, 2017, 3 pages. |
International Search Report for Application No. PCT/US2016/068297, dated Apr. 17, 2017, 3 pages. |
Partial International Search Report for Application No. PCT/US2015/032679, dated Sep. 4, 2015, 2 pages. |
Chinese Office Action Search Report for Application No. 2014800551784 dated Jan. 23, 2018, 3 pages. |
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages. |
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages. |
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages. |
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages. |
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages. |
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com. |
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages. |
European Search Results under Rule 164(2)(b) EPC for Application No. 12712792 dated Feb. 27, 2018, 2 pages. |
International Seach Report for Application No. PCT/US2017/064437 dated Mar. 29, 2018, 5 pages. |
Taiwanese Search Report for Application No. TW105128420 dated Sep. 26, 2017. |
Number | Date | Country | |
---|---|---|---|
20160079214 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61679653 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13795756 | Mar 2013 | US |
Child | 14952064 | US |