Direct-write wafer level chip scale package

Information

  • Patent Grant
  • 8501543
  • Patent Number
    8,501,543
  • Date Filed
    Wednesday, May 16, 2012
    12 years ago
  • Date Issued
    Tuesday, August 6, 2013
    11 years ago
Abstract
A method and structure provides a Direct Write Wafer Level Chip Scale Package (DWWLCSP) that utilizes permanent layers/coatings and direct write techniques to pattern these layers/coatings, thereby avoiding the use of photoimagable materials and photo-etching processes.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to the field of integrated circuit packaging and, in particular, to wafer level chip scale packaging processes and structures.


2. Description of Related Art


In the prior art, wafer level chip scale packaging techniques typically involved adding various layers to integrated circuit wafers and then patterning the layers using a complex series of masking and photo etching steps. Typically, additive layers were spun-on, sprayed-on as a vapor, or printed on the integrated circuit wafers. As noted above, prior art techniques also typically required the use of photoimagable materials such as Cyclotone™ products or polyimides and the use of extensive photo-definition processes, i.e., masking and photo-etching of the layers.


In the prior art, many of the coatings or layers discussed above, such as photoresist, were not permanent, and did not remain part of the finished product. Rather, many layers were used as temporary masks and were later removed. Consequently, the prior art techniques required multiple steps and significant amounts of discarded/wasted materials. In addition, the process of depositing the prior art layers described above, and then subsequently photo-patterning and photo-etching the layers, was inherently expensive and labor intensive as well as time consuming and complicated.


In addition, the prior art photoimagable materials had to be of specific and limited thickness for the prior art processes to work, and be practical. In the prior art, these thicknesses were typically limited to less than twenty (20) microns. Consequently, the resulting structures typically offered limited flexibility and opportunity for “compliance” between interconnections, and the surfaces of the dies comprising the integrated circuit wafers.


What is needed is a wafer level chip scale packaging method and structure that is not dependent on photolithography and therefore eliminates the need for photoimagable materials, non-permanent layers and the wasteful photo-definition process and makes feasible structures that would be impractical using prior art methods.


SUMMARY OF THE INVENTION

A method and structure according to one embodiment of the invention provides a Direct Write Wafer Level Chip Scale Package (DWWLCSP) that utilizes permanent layers/coatings and direct write techniques to pattern these layers/coatings.


According to one embodiment of the invention, a Direct Write Wafer Level Chip Scale Package is created by first preparing a silicon wafer and then a dielectric layer is attached directly to the wafer. In one embodiment of the invention, the dielectric layer is a layer of InterVia® 8000 or a similar material. The dielectric layer is then ablated to form vias and trench patterns. The surface of the dielectric layer is then plated with a conductive layer, such as copper, or another suitable metal, to fill in all of the related via and trench patterns and thereby form conductive patterns and connections to the die pads. According to one embodiment of the invention, the conductive layer is then partially removed through a controlled etching process, leaving only the conductor patterns and connections to the die pads. In one embodiment of the invention, these patterns are then processed through standard solder application techniques such as solder masking and/or other solder application methods known in the art.


In one embodiment of the invention, the dielectric layer is ablated in such a way as to form patterned vias to the die pads. The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern of multiple smaller cylindrical or rectangular vias are formed. This particular structure provides a cushion of dielectric material between sub-vias for thermal expansion and therefore provides better compliance properties between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers.


According to another embodiment of the invention, a Direct Write Wafer Level Chip Scale Package is created by first preparing a silicon wafer and then a dielectric layer is attached to the wafer using an adhesive layer. The dielectric layer is then ablated to form via and trench patterns. The surface of the dielectric layer is then plated with a conductive layer, such as copper or another suitable conductive material, to fill in all of via and trench patterns and thereby form conductor patterns and connections to the die pads. According to one embodiment of the invention, the conductive layer is then partially removed through a controlled etching process, leaving only the conductor patterns and connections to the die pads. In one embodiment of the invention, these patterns are then processed through any standard solder application techniques, such as solder masking and/or other solder application methods known in the art.


According to one embodiment of the invention, because of the flexible thicknesses of the dielectric available using the methods and structures of the invention, the dielectric and conductive layers of the invention can be laminated, which enables the creation of multilayer Direct Write Wafer Level Chip Scale Package structures at lower costs, and with improved reliability of the finished Direct Write Wafer Level Chip Scale Packaged electronic component.


As noted above, the Direct Write Wafer Level Chip Scale Packages of the invention include dielectric and conductive materials applied directly onto the wafer surface. The dielectric layers are then ablated, as opposed to imaged using photolithography. Consequently, using the method and structure of the present invention, the materials used need not be photoimagable materials, thus saving the cost of the materials themselves and the cost of indirect materials required for the masking and etching steps.


In addition, using the methods and structures of the present invention, the dielectric layers can be attached to the wafer with an adhesive layer and this adhesive layer need not be patterned using standard techniques. In addition, according to the method and structure of the invention, the conductive layer building process is solely additive, using the ablated dielectric layer as its mask. Consequently, the need for subsequent patterning and etching is eliminated.


In, addition, since using the method and structure of the present invention, the materials used need not be photoimagable materials, the materials need not be of the prior art specified limited thickness. Consequently, the resulting structures of the invention provide the opportunity for greater flexibility and “compliance” between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers.


In addition, as discussed above, according to one embodiment of the invention, the dielectric layer is ablated in such a way as to form patterned vias to the die pads. The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern of multiple smaller cylindrical or rectangular vias are formed. This particular structure provides a cushion of dielectric material between sub-vias for thermal expansion and therefore provides better compliance properties.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows a silicon wafer, including one or more electronic components such as integrated circuits;



FIG. 1B shows the silicon wafer of FIG. 1A, including a dielectric layer applied to the silicon wafer in accordance with the principles of one embodiment of the present invention;



FIG. 1C shows the silicon wafer of FIG. 1B after the dielectric layer has been ablated to form vias and trenches in accordance with the principles of one embodiment of the present invention;



FIG. 1D shows a layer of conductive material applied to the structure of FIG. 1C in accordance with the principles of one embodiment of the present invention;



FIG. 1E shows the structure of FIG. 1D after the layer of conductive material is etched using a controlled etching process in accordance with the principles of one embodiment of the present invention;



FIG. 1F shows the structure of FIG. 1E with solder bumps attached to points on the conductive layer in accordance with the principles of one embodiment of the present invention;



FIG. 1G shows the structure of FIG. 1F being singulated into individual Direct Write Wafer Level Chip Scale Packaged electronic components, in accordance with the principles of one embodiment of the present invention;



FIG. 1H shows a singulated Direct Write Wafer Level Chip Scale Package in accordance with the principles of one embodiment of the present invention;



FIG. 2A shows a silicon wafer, including an adhesive layer applied in to the silicon wafer in accordance with the principles of one embodiment of the present invention;



FIG. 2B shows the structure of FIG. 2A, including a dielectric layer applied to the silicon wafer using the adhesive layer of FIG. 2A in accordance with the principles of one embodiment of the present invention;



FIG. 2C shows the structure of FIG. 2B after the dielectric layer has been ablated to form vias and trenches in accordance with the principles of one embodiment of the present invention;



FIG. 2D shows a layer of conductive material applied to the structure of FIG. 2C in accordance with the principles of one embodiment of the present invention;



FIG. 2E shows the structure of FIG. 2D after the layer of conductive material is etched using a controlled etching process in accordance with the principles of one embodiment of the present invention;



FIG. 2F shows the structure of FIG. 2E with solder bumps attached to points on the conductive layer in accordance with the principles of one embodiment of the present invention;



FIG. 2G shows the structure of FIG. 2F being singulated into individual Direct Write Wafer Level Chip Scale Packaged electronic components, in accordance with the principles of one embodiment of the present invention;



FIG. 2H shows a singulated Direct Write Wafer Level Chip Scale Packaged electronic component in accordance with the principles of one embodiment of the present invention;



FIG. 3A shows the silicon wafer, including an adhesive layer applied in to the silicon wafer in accordance with the principles of one embodiment of the present invention;



FIG. 3B shows the structure of FIG. 3A, including a dielectric layer applied to the silicon wafer using the adhesive layer of FIG. 3A in accordance with the principles of one embodiment of the present invention;



FIG. 3C shows the structure of FIG. 3B after the dielectric layer has been ablated to form vias and trenches in accordance with the principles of one embodiment of the present invention;



FIG. 3D shows a layer of conductive material applied to the structure of FIG. 3C in accordance with the principles of one embodiment of the present invention;



FIG. 3E shows the structure of FIG. 3D after the layer of conductive material is etched using a controlled etching process in accordance with the principles of one embodiment of the present invention;



FIG. 3F shows the structure of FIG. 3E, including a second dielectric layer applied in accordance with the principles of one embodiment of the present invention;



FIG. 3G shows the structure of FIG. 3F after the second dielectric layer has been ablated to form vias and trenches in accordance with the principles of one embodiment of the present invention;



FIG. 3H shows a second layer of conductive material applied to the structure of FIG. 3G in accordance with the principles of one embodiment of the present invention;



FIG. 3I shows the structure of FIG. 3H after the second layer of conductive material has been etched using a controlled etching process in accordance with the principles of one embodiment of the present invention;



FIG. 3J shows the structure of FIG. 3I with solder bumps attached to points on the second conductive layer in accordance with the principles of one embodiment of the present invention;



FIG. 3K shows the structure of FIG. 3J being singulated into multi-layer Direct Write Wafer Level Chip Scale Packaged electronic components, in accordance with the principles of one embodiment of the present invention;



FIG. 3L shows a singulated multi-layer Direct Write Wafer Level Chip Scale Packaged electronic component in accordance with the principles of one embodiment of the present invention;



FIG. 3M shows the singulated multi-layer Direct Write Wafer Level Chip Scale Packaged electronic component of FIG. 3L in detail in accordance with the principles of one embodiment of the present invention;



FIG. 4A shows a detail portion of a Direct Write Wafer Level Chip Scale Packaged electronic component wherein a dielectric layer has been ablated in such a way as to form patterned vias; and



FIG. 4B shows a detail portion of a Direct Write Wafer Level Chip Scale Packaged electronic component wherein a metal buildup region is formed on bonding points of a conductive layer second surface.





Common reference numerals are used throughout the drawings and detailed description to indicate like elements.


DETAILED DESCRIPTION

A method and structure according to one embodiment of the invention provides a Direct Write Wafer Level Chip Scale Package (DWWLCSP) that utilizes permanent coatings/layers and direct write techniques to pattern these coatings/layers.


According to one embodiment of the invention, a Direct Write Wafer Level Chip Scale Package (121 in FIG. 1H) is created by first preparing a silicon wafer (100 in FIG. 1A) and then a dielectric layer, also called a first dielectric layer, (107 in FIG. 1B) is attached directly to the wafer. The dielectric layer is then ablated to form vias and trench patterns (104 in FIG. 1C). In one embodiment of the invention, the dielectric layer (407 in FIG. 4B) is ablated in such a way as to form patterned vias (411 in FIG. 4B) to the die pads (498 in FIG. 4B). The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern of multiple smaller cylindrical or rectangular sub-vias (416A, 416B, 416C in FIG. 4A) are formed. This particular structure provides a cushion of dielectric material (407A and 407B) between sub-vias for thermal expansion and therefore provides better compliance properties between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers. The surface of the dielectric layer is then plated with a conductive layer, also called a first conductive layer, (111 in FIG. 1D), such as copper, or another suitable metal, to fill in all of related via and trench patterns and thereby form conductor patterns and connections to the die pads (FIG. 1D). According to one embodiment of the invention, the conductive layer is then partially removed through a controlled etching process, leaving only the conductor patterns and connections to the die pads (FIG. 1E). In one embodiment of the invention, these patterns are then processed through standard solder application techniques (FIG. 1F).


According to another embodiment of the invention, a Direct Write Wafer Level Chip Scale Package (221 in FIG. 2H) is created by first preparing a silicon wafer (200 in FIG. 2A) and then a dielectric layer, also called a first dielectric layer, (207 in FIG. 2B) is attached to the wafer using an adhesive (204 in FIG. 2B). The dielectric layer is then ablated to form via and trench patterns (FIG. 2C). In one embodiment of the invention, the dielectric layer is ablated in such a way as to form patterned vias to the die pads. The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern of multiple smaller cylindrical or rectangular vias are formed. As discussed above, this particular structure provides for thermal expansion and therefore provides better compliance properties between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers. The surface of the dielectric layer is then plated with a conductive layer, also called a first conductive layer, (211 in FIG. 2D), such as copper or another suitable conductive material, to fill in all of via and trench patterns and thereby form conductor patterns and connections to the die pads (FIG. 2D). According to one embodiment of the invention, the conductive layer is then partially removed through a controlled etching process, leaving only the conductor patterns and connections to the die pads (FIG. 2E). In one embodiment of the invention, these patterns are then processed through any standard solder application techniques (FIG. 2F).


According to one embodiment of the invention, because of the flexible thicknesses available using the methods and structures of the invention, the dielectric and conductive layers of the invention can be laminated (FIGS. 3A to 3M), which enables the creation of multilayer Direct Write Wafer Level Chip Scale Package structures (FIG. 3M) at lower costs, and with improved reliability of the finished Direct Write Wafer Level Chip Scale Package.


As noted above, the Direct Write Wafer Level Chip Scale Packages of the invention include dielectric and conductive materials applied directly onto the wafer surface. The dielectric layers are then ablated, as opposed to imaged using photolithography. Consequently, using the method and structure of the present invention. The materials used need not be photoimagable materials, thus saving the cost of the materials themselves and the cost of the masking and etching steps.


In addition, using the methods and structures of the present invention, the dielectric layers can be attached to the wafer with an adhesive layer and this adhesive layer need not be patterned using standard techniques. In addition, according to the method and structure of the invention, the conductive layer building process is solely additive using the ablated dielectric layer as its mask. Consequently, the need for subsequent patterning and etching is eliminated.


In, addition, since using the method and structure of the present invention, the materials used need not be photoimagable materials, the materials need not be of the prior art predetermined and specified thicknesses. Consequently, the resulting structures of the invention provide the opportunity for greater flexibility and “compliance” between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers. In addition, since using the method and structure of the present invention, the materials used need not be photoimagable materials, any one of numerous known adhesives and intermediate layer materials can be used with the method and structure of the invention.


In particular, FIG. 1A shows a silicon wafer 100 that has been prepared for the packaging process and includes bonding locations, or pads, 105. As shown in FIG. 1A, silicon wafer 100 has a silicon wafer first surface 101 and a silicon wafer second surface 103. Silicon wafers are well known to those of skill in the art and typically include one or more electronic components, such as integrated circuits, (not shown) formed in, or on, silicon wafer 100 by methods well known to those of skill in the art.


Once silicon wafer 100 is prepared, according to a first embodiment of the invention, a dielectric layer 107 is applied directly to silicon wafer second surface 103 of silicon wafer 100. FIG. 1B shows silicon wafer 100 of FIG. 1A including a dielectric layer, also called a first dielectric layer, 107 applied directly to silicon wafer second surface 103 of silicon wafer 100 in accordance with the principles of one embodiment of the present invention. As shown in FIG. 1B, a dielectric layer first surface 110 of dielectric layer 107 is applied directly to silicon wafer second surface 103 of silicon wafer 100.


According to the principles of one embodiment of the present invention, dielectric layer 107 is a polymer layer. In one embodiment of the invention, dielectric layer 107 is made of InterVia® 8000 material and has a thickness of approximately forty (40) microns. However, those of skill in the art will readily recognize, in light of this disclosure, that many different types of materials and thicknesses can be used for dielectric layer 107.


According to the principles of the invention, dielectric layer 107 is then ablated, using a laser or other ablation means, to form various predetermined patterns 104 in dielectric layer 107. FIG. 1C shows the structure of FIG. 1B after dielectric layer 107 has been ablated to form vias and trenches 104 in accordance with the principles of one embodiment of the present invention. As discussed in more detail below with respect to FIGS. 4A and 4B, in one embodiment of the invention, dielectric layer 107 is ablated in such a way as to form patterned vias to the die pads. The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern or multiple smaller cylindrical or rectangular vias are formed. As discussed in more detail below, this particular structure provides for thermal expansion and therefore provides better compliance properties between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers.


As noted above, in one embodiment of the invention, the Direct Write Wafer Level Chip Scale Packages of the invention include dielectric layer 107 laminated directly onto the silicon wafer second surface 103 and the dielectric layer 107 is then ablated, as opposed to imaged using the photolithography techniques of the prior art. Consequently, using the method and structure of the present invention, the materials used need not be photoimagable materials.


As shown in FIG. 1D, according to the principles of the invention, a conductive layer, also called a first conductive layer, 111 is then applied to silicon wafer second surface 103 and dielectric layer second surface 109. In one embodiment of the invention conductive layer 111 is copper, or another suitable metal, and is applied to an approximate thickness of approximately five (5) microns above dielectric layer second surface 109.


According to the principles of one embodiment of the invention, conductive layer 111 includes a conductive layer first surface 115 that is in electrical contact with bonding locations 105 and a conductive layer second surface 113. According to the principles of one embodiment of the invention, conductive layer 111 is then etched away in a controlled etch process that results in conductive layer second surface 113 being made level with dielectric layer second surface 109. By this process electrically conductive traces and vias 116 are formed As discussed in more detail below with respect to FIG. 4B, using controlled etching, and the methods of the present invention, portions of conductive layer second surface 113, such as bonding points 198 for solder balls and other interconnections, can, in one embodiment of the invention, be left higher that dielectric layer second surface 109 to facilitate better bonding and compliance.



FIG. 1E shows the structure of FIG. 1D after conductive layer 111 is etched using the controlled etching process in accordance with the principles of one embodiment of the present invention. Depth controlled etching processes such as that used to bring conductive layer second surface 113 level with, or with potions slightly raised above, dielectric layer second surface 109 are well known to those of skill in the art and are therefore not discussed in further detail herein to avoid detracting from the present invention.


As shown above, according to the method and structure of the invention, the conductive layer 111 building process is solely additive using the ablated dielectric layer 107 as a mask. Consequently, the need for subsequent masks, patterning, and etching, as required in the prior art, is eliminated.


Since using the method and structure of the present invention, the materials used for dielectric layer 107 need not be photoimagable materials, the materials need not be of the prior art predetermined and specific thicknesses. Consequently, the resulting structures of the invention provide the opportunity for greater flexibility and “compliance” between solder bumps, or other interconnections, and the surfaces of the dies comprising the integrated circuit wafers.



FIG. 1F shows the structure of FIG. 1E with solder bumps 119 attached to selected bonding points 198 on conductive layer 111 using standard bumping techniques in accordance with the principles of one embodiment of the present invention.



FIG. 1G shows the structure of FIG. 1F being singulated into individual Direct Write Wafer Level Chip Scale Packaged electronic components 121, 123 and 125 using a standard cutting means 127 such as a saw.



FIG. 1H shows a singulated Direct Write Wafer Level Chip Scale Packaged electronic component 121 in accordance with the principles of one embodiment of the present invention.


Referring to FIG. 2A, according to one embodiment of the invention, a silicon wafer 200 is first prepared for the packaging process, as discussed above. In this embodiment of the invention silicon wafer 200 includes a silicon wafer first surface 201, a silicon wafer second surface 203, and bonding locations, or pads, 205. In addition, an adhesive layer 204 is applied to silicon wafer second surface 203 using methods well known to those of skill in the art such as spinning or spraying.



FIG. 2B shows the structure of FIG. 2A, including a dielectric layer, also called a first dielectric layer, 207 applied to silicon wafer second surface 203 using adhesive layer 204 of FIG. 2A. According to the principles of the invention, dielectric layer 207 is then ablated, using a laser or other ablation means, to form various predetermined patterns 206 in dielectric layer 207. As discussed in more detail below with respect to FIGS. 4A and 4B, in one embodiment of the invention, dielectric layer 207 is ablated in such a way as to form patterned vias to the die pads. The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern of multiple smaller cylindrical or rectangular vias are formed. As discussed below, this particular structure provides for thermal expansion and therefore provides better compliance properties between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers. FIG. 2C shows silicon wafer 200 of FIG. 2B after dielectric layer 207 and adhesive layer 204 have been ablated to form vias and trenches 206 in accordance with the principles of one embodiment of the present invention.


As noted above, the Direct Write Wafer Level Chip Scale Packages of the invention include dielectric layer 207 applied onto the silicon wafer second surface 203 and dielectric layer 207 is then ablated, as opposed to imaged using the photolithography techniques of the prior art. Consequently, using the method and structure of the present invention, the materials used need not be photoimagable materials.


As shown in FIG. 2D, according to the principles of the invention, a conductive layer, also called a first conductive layer, 211 is then applied to silicon wafer second surface 203 and dielectric layer second surface 209. In one embodiment of the invention conductive layer 211 is copper, or another suitable metal, and is applied to an approximate thickness of five (5) microns above dielectric layer second surface 209.


According to the principles of one embodiment of the invention, conductive layer 211 includes a conductive layer first surface 215 that is in electrical contact with bonding locations 205 and a conductive layer second surface 213. According to the principles of one embodiment of the invention, conductive layer 211 is then etched away in a controlled etch process that results in conductive layer second surface 213 being made level with dielectric layer second surface 209. In this way electrically conductive traces and vias 216 are formed. As discussed in more detail below with respect to FIG. 4B, using controlled etching, and the methods of the present invention, portions of conductive layer second surface 213, such as bonding locations for solder balls and other interconnections, can, in one embodiment of the invention, be left higher than dielectric layer second surface 209 to facilitate better bonding and compliance.



FIG. 2E shows the structure of FIG. 2D after conductive layer 211 is etched using the controlled etching process in accordance with the principles of one embodiment of the present invention. Depth controlled etching processes such as that used to bring conductive layer second surface 213 level with, or with selected portions raised above, dielectric layer second surface 209 are well known to those of skill in the art and are therefore not discussed in further detail herein to avoid detracting from the present invention.


As shown above, according to the method and structure of the invention, the conductive layer 211 building process is solely additive using the ablated dielectric layer 207 as a mask. Consequently, the need for subsequent masks, patterning, and etching, as required in the prior art, is eliminated.


Since using the method and structure of the present invention the materials used for dielectric layer 207 need not be photoimagable materials, the materials need not be of the prior art predetermined and specific thicknesses. Consequently, the resulting structures of the invention provide the opportunity for greater flexibility and “compliance” between solder bumps, or other interconnections, and the surfaces of the dies comprising the integrated circuit wafers.



FIG. 2F shows the structure of FIG. 2E with solder bumps 219 attached to selected bonding points 298 on conductive layer 211 using standard bumping techniques in accordance with the principles of one embodiment of the present invention.



FIG. 2G shows the structure of FIG. 2F being singulated into individual Direct Write Wafer Level Chip Scale Packaged electronic components 221, 223 and 225 using a standard cutting means 227 such as a saw.



FIG. 2H shows a singulated Direct Write Wafer Level Chip Scale Packaged electronic component 221 in accordance with the principles of one embodiment of the present invention.


Using the methods and structure of the present invention the permanent layers of the invention, i.e., the dielectric and conductive layers 107, 207 and 111, 211 respectively can be laminated or glued, which enables the creation of multilayer Direct Write Wafer Level Chip Scale Packaged electronic components at lower costs, and with improved reliability of the finished package.



FIGS. 3A to 3M show the process and structure for a multilayer Direct Write Wafer Level Chip Scale Package in which a first dielectric layer is attached using an adhesive layer, such as discussed above with respect to FIGS. 2A to 2H, and a second dielectric layer is directly attached, such as discussed above with respect to FIGS. 1A to 1H.


Referring to FIG. 3A, according to one embodiment of the invention, a silicon wafer 300 is first prepared for the packaging process, as discussed above. In this embodiment of the invention, silicon wafer 300 includes a silicon wafer first surface 301, a silicon wafer second surface 303, and bonding locations or pads 305. In addition, an adhesive layer 304 is applied to silicon wafer second surface 303 using methods well known to those of skill in the art such as spinning or spraying.



FIG. 3B shows the structure of FIG. 3A, including a first dielectric layer 307 applied to silicon wafer second surface 303 using adhesive layer 304 of FIG. 3A.


According to the principles of the invention, first dielectric layer 307 is then ablated, using a laser or other ablation means, to form various predetermined patterns 306 in first dielectric layer 307. FIG. 3C shows silicon wafer 300 of FIG. 3B after first dielectric layer 307 has been ablated to form vias and trenches 306 in accordance with the principles of one embodiment of the present invention.


As noted above, one embodiment of the multilayer Direct Write Wafer Level Chip Scale Packages of the invention includes first dielectric layer 307 laminated directly onto the silicon wafer second surface 303 and first dielectric layer 307 is then ablated, as opposed to imaged using the photolithography techniques of the prior art. Consequently, using the method and structure of the present invention, the materials used need not be photoimagable materials.


As shown in FIG. 3D, according to the principles of the invention, a first layer of conductive material 311 is then applied to silicon wafer second surface 303 and first dielectric layer second surface 309 of first dielectric layer 307. In one embodiment of the invention first conductive layer 311 is copper, or another suitable metal, and is applied to an approximate thickness of five (5) microns above first dielectric layer second surface 309 of first dielectric layer 307.


According to the principles of one embodiment of the invention, first conductive layer 311 includes a first conductive layer first surface 315 that is in electrical contact with bonding locations 305 and a first conductive layer second surface 313. According to the principles of one embodiment of the invention, first conductive layer 311 is then etched away in a controlled etch process that results in first conductive layer second surface 313 of first conductive layer 311 being made level with first dielectric layer second surface 309 of first dielectric layer 307. FIG. 3E shows the structure of FIG. 3D after first conductive layer 311 is etched using the controlled etching process in accordance with the principles of one embodiment of the present invention. Depth controlled etching processes can be used to bring first conductive layer second surface 313 of first conductive layer 311 level with first dielectric layer second surface 309 of first dielectric layer 307 as well known to those of skill in the art and are therefore not discussed in further detail herein to avoid detracting from the present invention.


As shown above, according to the method and structure of the invention, the conductive layer 311 building process is solely additive using the ablated first dielectric layer 307 as its mask. Consequently, the need for subsequent masks, patterning, and etching, as required in the prior art, is eliminated using the present invention.


According to this embodiment of the invention a second dielectric layer is now applied to the structure of FIG. 3E. FIG. 3F shows the structure of FIG. 3E including a second dielectric layer 337. As shown in FIG. 3F, a second dielectric layer first surface 336 of second dielectric layer 337 is applied directly to first dielectric layer second surface 309 of first dielectric layer 307 and first conductive layer second surface 313 of first conductive layer 311 in accordance with the principles of one embodiment of the present invention. According to the principles of one embodiment of the present invention, second dielectric layer 337 is a polymer layer of InterVia® 8000, or a similar material having a thickness of forty (40) microns. However, those of skill in the art will readily recognize, in light of this disclosure, that many different types of materials and thicknesses can be used for second dielectric layer 337.


According to the principles of the invention, second dielectric layer 337 is then ablated, using a laser or other ablation means, to form various predetermined patterns 344 in dielectric layer 337. As discussed in more detail below with respect to FIGS. 4A and 4B, in one embodiment of the invention, dielectric layer 337 is ablated in such a way as to form patterned vias to the die pads. The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern of multiple smaller cylindrical or rectangular vias are formed. As discussed in more detail below, this particular structure provides for thermal expansion and therefore provides better compliance properties between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers. FIG. 3G shows the structure of FIG. 3F after second dielectric layer 337 has been ablated to form vias and trenches 344 in accordance with the principles of one embodiment of the present invention.


As shown in FIG. 3H, according to the principles of the invention, a second conductive layer 345 is then applied to second dielectric layer second surface 339 of second dielectric layer 337. In one embodiment of the invention second conductive layer 345 is copper, or another suitable metal, and is applied to an approximate thickness of five (5) microns or less.


According to the principles of one embodiment of the invention, second conductive layer 345 includes a second conductive layer first surface 346 that is in electrical contact with bonding locations 305 and a second conductive layer second surface 353. According to the principles of one embodiment of the invention, second conductive layer 345 is then etched away in a controlled etch process that results in second conductive layer second surface 353 of second conductive layer 345 being made level with second dielectric layer second surface 339 of second dielectric layer 337. As discussed in more detail below with respect to FIG. 4B, using controlled etching, and the methods of the present invention, portions of conductive layer second surface 353, such as bonding locations for solder balls and other interconnections, can, in one embodiment of the invention, be left higher that dielectric layer second surface 339 to facilitate better bonding and compliance. FIG. 3I shows the structure of FIG. 3H after second conductive layer 345 is etched using the controlled etching process in accordance with the principles of one embodiment of the present invention.


As shown above, according to the method and structure of the invention, the second conductive layer 345 building process is solely additive using the ablated second dielectric layer 337 as a mask. Consequently, the need for subsequent masks, patterning, and etching, as required in the prior art, is eliminated.


Since using the method and structure of the present invention, the materials used for second dielectric layer 337 need not be photoimagable materials, the materials need not limited to the prior art predetermined and specific thicknesses. Consequently, the resulting structures of the invention provide the opportunity for greater flexibility and “compliance” between solder bumps, or other interconnections, and the surfaces of the dies comprising the integrated circuit wafers.



FIG. 3J shows the structure of FIG. 3I with solder bumps 319 attached to selected points on second conductive layer 345 using standard techniques in accordance with the principles of one embodiment of the present invention.



FIG. 3K shows the structure of FIG. 3J being singulated into individual multilayer Direct Write Wafer Level Chip Scale Packaged electronic components 321, 323 and 325 using a standard cutting means 327, such as a saw.



FIG. 3L shows a singulated multilayer Direct Write Wafer Level Chip Scale Packaged electronic component 321 in accordance with the principles of one embodiment of the present invention. FIG. 3M shows the singulated multilayer Direct Write Wafer Level Chip Scale Packaged electronic component 321 of FIG. 3L in more detail.


The process and structure shown in FIGS. 3A to 3M is for a multilayer Direct Write Wafer Level Chip Scale Package 321 in which a first dielectric layer is attached using an adhesive layer, such as discussed above with respect to FIGS. 2A to 2H, and a second dielectric layer is directly attached, such as discussed above with respect to FIGS. 1A to 1H. However, those of skill in the art will readily recognize, in light of this disclosure, that the multilayer Direct Write Wafer Level Chip Scale Packages of the invention can also be formed where all dielectric layers are attached using an adhesive layer, such as discussed above with respect to FIGS. 2A to 2H, or all dielectric layers are directly attached, such as discussed above with respect to FIGS. 1A to 1H.


As discussed above, in some embodiments of the invention, the dielectric layers, such as dielectric layer 107, dielectric layer 207, and dielectric layer 337 are ablated in such a way as to form patterned vias to the die pads. The vias can be patterned in any way that the user of the invention deems necessary. For instance, in one embodiment of the invention, rather than simply ablating a single cylindrical or rectangular via to the die pads, a pattern of multiple smaller cylindrical or rectangular vias are formed. This particular structure provides for thermal expansion and therefore provides better compliance properties between solder bumps, or other interconnections, and the surfaces of the dies comprising the silicon wafers.



FIG. 4A shows a detail portion 400A, such as portion 299 of FIG. 2F, of a Direct Write Wafer Level Chip Scale Packaged electronic component of the invention, such as Direct Write Wafer Level Chip Scale Packaged electronic component 121 or 221 discussed above, wherein a dielectric layer 407, such as dielectric layer 107 or dielectric layer 207 discussed above, has it's dielectric layer second surface 409A ablated in such a way as to form a patterned via 416A, such as electrically conductive vias 116 and 216 discussed above, between bonding location or pad 405, such as bonding locations or pads 105 and 205 discussed above, and bonding point 498, such as bonding points 198 and 298 discussed above.


As shown in FIG. 4A, in one embodiment, patterned via 416 includes multiple sub-vias 416A, 416B and 416C as opposed to a single cylindrical or rectangular opening. This particular structure allows for better thermal expansion by providing dielectric columns 407A and 407B to absorb thermal expansion of sub-vias 416A, 416B and 416C. Consequently, this particular embodiment of the invention provides better compliance properties between solder bump 419 and bonding point 498 and bonding location or pad 405 on the surfaces of the dies comprising the silicon wafers (not shown).


Those of skill in the art will readily recognize that many different patterns can be ablated in dielectric layer 407 to form many different vias 416A depending on the needs of the designer.


As discussed above, in some embodiments of the invention, portions of conductive layer second surfaces 113, 213 such as bonding points 198 and 298 for solder bumps 119 and 219 discussed above, and other interconnections, are be left higher that dielectric layer second surfaces 109, 209, respectively, to facilitate better bonding and compliance.



FIG. 4B shows detail portion 400B, such as portion 299 of FIG. 2F, of a Direct Write Wafer Level Chip Scale Packaged electronic component of the invention, such as Direct Write Wafer Level Chip Scale Packaged electronic component 121 or 221 discussed above, wherein bonding point 498 includes a metal buildup region 451 that extends a height “h” above dielectric second surface 409B. Metal buildup region 451 is formed by either selective etching away of conductive layer second surfaces 113, 213 (see FIGS. 1D and 1E and FIGS. 2D and 2E) or by an additive process wherein metal buildup region 451 is applied after conductive layer second surface 113 or 213 is etched away.


As shown above, the present invention provides a method and structure for Direct Write Wafer Level Chip Scale Package (DWWLCSP) that utilizes permanent layers/coatings and direct write techniques to pattern these layers/coatings.


As noted above, the Direct Write Wafer Level Chip Scale Packages of the invention include materials laminated directly onto the wafer surface. The layers are then ablated, as opposed to imaged using photolithography. Consequently, using the method and structure of the present invention, the materials used need not be photoimagable materials, thus saving the cost of the materials themselves and the cost of the masking steps.


In addition, using the methods and structures of the present invention, the dielectric layers can be attached to the wafer with an adhesive layer and this adhesive layer need not be patterned using standard techniques. In addition, according to the method and structure of the invention, the metal layer building process is solely additive using the ablated dielectric layer as its mask. Consequently, the need for subsequent patterning and etching is eliminated.


In addition, since using the method and structure of the present invention, the materials used need not be photoimagable materials, the materials need not be limited to the prior art predetermined and specific thicknesses. Consequently, the resulting structures of the invention provide the opportunity for greater flexibility and “compliance” between solder bumps, or other interconnections, and the surfaces of the dies comprising the integrated circuit wafers.


This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Consequently, numerous variations, whether explicitly provided for by the specification or implied by the specification or not, may be implemented by one of skill in the art in view of this disclosure.

Claims
  • 1. A method for packaging an electronic component comprising: providing a silicon wafer, the silicon wafer having a silicon wafer first surface and a silicon wafer second surface, opposite the silicon wafer first surface;applying a first dielectric layer, the first dielectric layer having a first dielectric layer first surface and a first dielectric layer second surface, opposite the first dielectric layer first surface, the first dielectric layer first surface being applied to the silicon wafer second surface;ablating patterns in the first dielectric layer to create vias extending vertically in the first dielectric layer and trenches extending horizontally in the first dielectric layer;applying a first conductive layer, the first conductive layer having a first conductive layer first surface and a first conductive layer second surface, opposite the first conductive layer first surface, the first conductive layer being applied directly to the first dielectric layer second surface, the first conductive layer completely filling the patterns ablated in the first dielectric layer such that the first conductive layer second surface is at least substantially co-planar with the first dielectric layer second surface to create conductive vias extending vertically in the first dielectric layer and traces extending horizontally in the first dielectric layer; andsingulating the silicon wafer with the applied first dielectric layer and the applied first conductive layer into individual packaged electronic components.
  • 2. The method for packaging an electronic component of claim 1, wherein: the first dielectric layer first surface is directly applied to the silicon wafer second surface by lamination.
  • 3. The method for packaging an electronic component of claim 2, wherein: ablating patterns in the first dielectric layer to create vias and trenches is performed by LASER ablation of portions of the first dielectric layer.
  • 4. The method for packaging an electronic component of claim 1, wherein: the first dielectric layer first surface is applied to the silicon wafer second surface by an adhesive.
  • 5. The method for packaging an electronic component of claim 4, wherein: ablating patterns in the first dielectric layer to create vias and trenches is performed by LASER ablation of portions of the first dielectric layer.
  • 6. The method for packaging an electronic component of claim 1, wherein: the first conductive layer is applied such that the first conductive layer completely fills the patterns ablated in the first dielectric layer and covers the first dielectric layer second surface; further wherein,at least a portion of the first conductive layer is removed such that the first conductive layer second surface is substantially co-planar with the first dielectric layer second surface to create the conductive vias and traces.
  • 7. A method for packaging an electronic component comprising: providing a silicon wafer;applying a first dielectric layer to the silicon wafer;ablating patterns in the first dielectric layer to create vias extending vertically in the first dielectric layer and trenches extending horizontally in the first dielectric layer;applying a first conductive layer directly to the first dielectric layer, the first conductive layer filling the patterns ablated in the first dielectric layer to create conductive vias extending vertically in the first dielectric layer and traces extending horizontally in the first dielectric layer; andsingulating the silicon wafer with the applied first dielectric layer and the applied first conductive layer into individual packaged electronic components.
  • 8. The method for packaging an electronic component of claim 7, wherein: the first dielectric layer is directly applied to the silicon wafer by lamination.
  • 9. The method for packaging an electronic component of claim 7, wherein: ablating patterns in the first dielectric layer to create vias and trenches is performed by LASER ablation of portions of the first dielectric layer.
  • 10. The method for packaging an electronic component of claim 7, wherein: the first dielectric layer is applied to the silicon wafer by an adhesive.
  • 11. The method for packaging an electronic component of claim 10, wherein: ablating patterns in the first dielectric layer to create vias and trenches is performed by LASER ablation of portions of the first dielectric layer.
  • 12. The method for packaging an electronic component of claim 7, wherein the first dielectric layer comprise: a first dielectric layer first surface; anda first dielectric layer second surface, and wherein the first conductive layer comprises:a first conductive layer first surface; anda first conductive layer second surface.
  • 13. The method for packaging an electronic component of claim 12, wherein: the first conductive layer is applied such that the first conductive layer covers the first dielectric layer; further wherein,at least a portion of the first conductive layer is removed such that the first conductive layer second surface is substantially co-planar with the first dielectric layer second surface.
  • 14. A method for packaging an electronic component comprising: providing a silicon wafer;applying a first dielectric layer to the silicon wafer;ablating patterns in the first dielectric layer;filling the patterns ablated in the first dielectric layer with a first conductive layer to create conductive vias extending vertically in the first dielectric layer and traces extending horizontally in the first dielectric layer in the patterns;applying a second dielectric layer to the first dielectric layer and the first conductive layer;ablating patterns in the second dielectric layer; andfilling the patterns ablated in the second dielectric layer with a second conductive layer to create conductive vias and traces in the patterns in the second dielectric layer.
  • 15. The method for packaging an electronic component of claim 14 further comprising: singulating the silicon wafer, the first dielectric layer, the first conductive layer, the second dielectric layer, and the second conductive layer into individual packaged electronic components.
  • 16. The method of claim 14 wherein the first dielectric layer comprises a non photoimagable material.
  • 17. The method of claim 14 wherein the second dielectric layer comprises a non photoimagable material.
  • 18. The method for packaging an electronic component of claim 14, wherein the first dielectric layer is applied to the silicon wafer by an adhesive.
  • 19. The method for packaging an electronic component of claim 14, wherein the first dielectric layer comprises: a first dielectric layer first surface; anda first dielectric layer second surface, and wherein the first conductive layer comprises:a first conductive layer first surface; anda first conductive layer second surface, the first conductive layer second surface being substantially co-planar with the first dielectric layer second surface.
  • 20. The method for packaging an electronic component of claim 14, wherein the second dielectric layer comprises: a second dielectric layer first surface; anda second dielectric layer second surface, and wherein the second conductive layer comprises:a second conductive layer first surface; anda second conductive layer second surface, the second conductive layer second surface being substantially co-planar with the second dielectric layer second surface.
RELATED APPLICATIONS

This application is a divisional of Berry et al., U.S. patent application Ser. No. 12/661,597, filed on Mar. 19, 2010, entitled “DIRECT-WRITE WAFER LEVEL CHIP SCALE PACKAGE”, now U.S. Pat. No. 8,188,584, issued May 29, 2012, which is a divisional of Berry et al., U.S. patent application Ser. No. 11/810,799, filed on Jun. 6, 2007, entitled “DIRECT-WRITE WAFER LEVEL CHIP SCALE PACKAGE”, now U.S. Pat. No. 7,723,210, issued on May 25, 2010, which is a continuation of Berry et al., U.S. patent application Ser. No. 11/289,826, filed on Nov. 29, 2005, entitled “DIRECT-WRITE WAFER LEVEL CHIP SCALE PACKAGE”, now abandoned, which are herein incorporated by reference in their entirety.

US Referenced Citations (418)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3781596 Galli et al. Dec 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4729061 Brown Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Schlesinger et al. Jan 1991 A
5018003 Yasunaga et al. May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5118298 Murphy Jun 1992 A
5122860 Kikuchi et al. Jun 1992 A
5134773 LeMaire et al. Aug 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5250843 Eichelberger Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5268310 Goodrich et al. Dec 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281849 Singh Deo et al. Jan 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5353498 Fillion et al. Oct 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5394303 Yamaji Feb 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fuji et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5417905 Lemaire et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5432677 Mowatt et al. Jul 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454904 Ghezzo et al. Oct 1995 A
5454905 Fogelson Oct 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5497033 Fillion et al. Mar 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5576517 Wojnarowski et al. Nov 1996 A
5578525 Mizukoshi Nov 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608265 Kitano et al. Mar 1997 A
5608267 Mahulikar et al. Mar 1997 A
5619068 Benzoni Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5726493 Yamashita et al. Mar 1998 A
5736432 Mackessy Apr 1998 A
5736448 Saia et al. Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5769989 Hoffmeyer et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5786238 Pai et al. Jul 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davis et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5841193 Eichelberger Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5859475 Freyman et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874770 Saia et al. Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5886398 Low et al. Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5897339 Song et al. Apr 1999 A
5900676 Kweon et al. May 1999 A
5903049 Mori May 1999 A
5903050 Thurairajaratnam et al. May 1999 A
5909053 Fukase et al. Jun 1999 A
5915998 Stidham et al. Jun 1999 A
5917242 Ball Jun 1999 A
5937324 Abercrombie et al. Aug 1999 A
5939779 Kim Aug 1999 A
5942794 Okumura et al. Aug 1999 A
5951305 Haba Sep 1999 A
5959356 Oh Sep 1999 A
5969426 Baba et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5977613 Takata et al. Nov 1999 A
5977615 Yamaguchi et al. Nov 1999 A
5977630 Woodworth et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5982632 Mosley et al. Nov 1999 A
5986333 Nakamura Nov 1999 A
5986885 Wyland Nov 1999 A
6001671 Fjelstad Dec 1999 A
6013947 Lim Jan 2000 A
6018189 Mizuno Jan 2000 A
6020625 Qin et al. Feb 2000 A
6025640 Yagi et al. Feb 2000 A
6031279 Lenz Feb 2000 A
RE36613 Ball Mar 2000 E
6034423 Mostafazadeh et al. Mar 2000 A
6040626 Cheah et al. Mar 2000 A
6043430 Chun Mar 2000 A
6060768 Hayashida et al. May 2000 A
6060769 Wark May 2000 A
6072228 Hinkle et al. Jun 2000 A
6075284 Choi et al. Jun 2000 A
6081029 Yamaguchi Jun 2000 A
6084310 Mizuno et al. Jul 2000 A
6087715 Sawada et al. Jul 2000 A
6087722 Lee et al. Jul 2000 A
6097089 Gaku et al. Aug 2000 A
6100594 Fukui et al. Aug 2000 A
6113474 Shih et al. Sep 2000 A
6114752 Huang et al. Sep 2000 A
6118174 Kim Sep 2000 A
6118184 Ishio et al. Sep 2000 A
RE36907 Templeton, Jr. et al. Oct 2000 E
6127633 Kinoshita Oct 2000 A
6130115 Okumura et al. Oct 2000 A
6130473 Mostafazadeh et al. Oct 2000 A
6133623 Otsuki et al. Oct 2000 A
6140154 Hinkle et al. Oct 2000 A
6143981 Glenn Nov 2000 A
6154366 Ma et al. Nov 2000 A
6159767 Eichelberger Dec 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6194250 Melton et al. Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6214525 Boyko et al. Apr 2001 B1
6217987 Ono et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6221754 Chiou et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6222259 Park et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 Mclellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 Mclellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258192 Natarajan Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6261918 So Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316822 Venkateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karnezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6365974 Abbott et al. Apr 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6396148 Eichelberger et al. May 2002 B1
6396153 Fillion et al. May 2002 B2
6400004 Fan et al. Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6418615 Rokugawa et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6459148 Chun-Jen et al. Oct 2002 B1
6464121 Reijnders Oct 2002 B2
6476469 Hung et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6486005 Kim Nov 2002 B1
6498099 McLellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6521530 Peters et al. Feb 2003 B2
6524885 Pierce Feb 2003 B2
6534849 Gang Mar 2003 B1
6545332 Huang Apr 2003 B2
6545345 Glenn et al. Apr 2003 B1
6548898 Matsuki et al. Apr 2003 B2
6549891 Rauber et al. Apr 2003 B1
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6583503 Akram et al. Jun 2003 B2
6593645 Shih et al. Jul 2003 B2
6603196 Lee et al. Aug 2003 B2
6624005 DiCaprio et al. Sep 2003 B1
6667546 Huang et al. Dec 2003 B2
6671398 Reinhorn et al. Dec 2003 B2
6680529 Chen et al. Jan 2004 B2
6727576 Hedler et al. Apr 2004 B2
6730857 Konrad et al. May 2004 B2
6740964 Sasaki May 2004 B2
6831371 Huemoeller et al. Dec 2004 B1
6838776 Leal et al. Jan 2005 B2
6845554 Frankowsky et al. Jan 2005 B2
6853060 Seok et al. Feb 2005 B1
6905914 Huemoeller et al. Jun 2005 B1
6919514 Konrad et al. Jul 2005 B2
6921975 Leal et al. Jul 2005 B2
6930256 Huemoeller et al. Aug 2005 B1
7015075 Fay et al. Mar 2006 B2
7041534 Chao et al. May 2006 B2
7129158 Nakai Oct 2006 B2
7190062 Sheridan et al. Mar 2007 B1
7192807 Huemoeller et al. Mar 2007 B1
7196408 Yang et al. Mar 2007 B2
7202107 Fuergut et al. Apr 2007 B2
7238602 Yang Jul 2007 B2
7242081 Lee Jul 2007 B1
7247523 Huemoeller et al. Jul 2007 B1
7262081 Yang et al. Aug 2007 B2
7272444 Peterson et al. Sep 2007 B2
7326592 Meyer et al. Feb 2008 B2
7339279 Yang Mar 2008 B2
7345361 Mallik et al. Mar 2008 B2
7361533 Huemoeller et al. Apr 2008 B1
7361987 Leal et al. Apr 2008 B2
7372151 Fan et al. May 2008 B1
7405102 Lee et al. Jul 2008 B2
7405484 Usui et al. Jul 2008 B2
7408261 Yoon et al. Aug 2008 B2
7420272 Huemoeller et al. Sep 2008 B1
7459781 Yang et al. Dec 2008 B2
7572681 Huemoeller et al. Aug 2009 B1
7692286 Huemoeller et al. Apr 2010 B1
7714431 Huemoeller et al. May 2010 B1
7723210 Berry et al. May 2010 B2
7777351 Berry et al. Aug 2010 B1
7902660 Lee et al. Mar 2011 B1
7932595 Huemoeller et al. Apr 2011 B1
7977163 Huemoeller et al. Jul 2011 B1
8119455 Huemoeller et al. Feb 2012 B1
20010008305 McLellan et al. Jul 2001 A1
20010011654 Schmidt et al. Aug 2001 A1
20010012704 Eldridge Aug 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20010022396 Distefano et al. Sep 2001 A1
20010032738 Dibene, II et al. Oct 2001 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020061642 Haji et al. May 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20030013232 Towle et al. Jan 2003 A1
20030030131 Lee et al. Feb 2003 A1
20030064548 Isaak Apr 2003 A1
20030073265 Hu et al. Apr 2003 A1
20030134455 Cheng et al. Jul 2003 A1
20040004293 Murayama Jan 2004 A1
20040026781 Nakai Feb 2004 A1
20040046244 Nakamura et al. Mar 2004 A1
20040056277 Karnezos Mar 2004 A1
20040061212 Karnezos Apr 2004 A1
20040061213 Karnezos Apr 2004 A1
20040063242 Karnezos Apr 2004 A1
20040063246 Karnezos Apr 2004 A1
20040113260 Sunohara et al. Jun 2004 A1
20050001309 Tanaka et al. Jan 2005 A1
20050124093 Yang et al. Jun 2005 A1
20050242425 Leal et al. Nov 2005 A1
20050266608 Ho et al. Dec 2005 A1
20050282314 Lo et al. Dec 2005 A1
20060145343 Lee et al. Jul 2006 A1
20060192301 Leal et al. Aug 2006 A1
20060209497 Ooi et al. Sep 2006 A1
20060225918 Chinda et al. Oct 2006 A1
20060231958 Yang Oct 2006 A1
20060243478 Inagaki et al. Nov 2006 A1
20060284309 Park et al. Dec 2006 A1
20070059866 Yang et al. Mar 2007 A1
20070273049 Khan et al. Nov 2007 A1
20070290376 Zhao et al. Dec 2007 A1
20080105967 Yang et al. May 2008 A1
20080128884 Meyer et al. Jun 2008 A1
20080142960 Leal et al. Jun 2008 A1
20080182363 Amrine et al. Jul 2008 A1
20080230887 Sun et al. Sep 2008 A1
20090051025 Yang et al. Feb 2009 A1
Foreign Referenced Citations (70)
Number Date Country
197 34 794 Jul 1998 DE
0 393 997 Oct 1990 EP
0 459 493 Dec 1991 EP
0 720 225 Jul 1996 EP
0 720 234 Jul 1996 EP
0 794 572 Sep 1997 EP
0 844 665 May 1998 EP
0 936 671 Aug 1999 EP
0 989 608 Mar 2000 EP
1 032 037 Aug 2000 EP
55-163868 Dec 1980 JP
57-045959 Mar 1982 JP
59-208756 Nov 1984 JP
59-227143 Dec 1984 JP
60-010756 Jan 1985 JP
60-116239 Jun 1985 JP
60-195957 Oct 1985 JP
60-231349 Nov 1985 JP
61-039555 Feb 1986 JP
62-009639 Jan 1987 JP
63-033854 Feb 1988 JP
63-067762 Mar 1988 JP
63-188964 Aug 1988 JP
63-205935 Aug 1988 JP
63-233555 Sep 1988 JP
63-249345 Oct 1988 JP
63-289951 Nov 1988 JP
63-316470 Dec 1988 JP
64-054749 Mar 1989 JP
01-106456 Apr 1989 JP
01-175250 Jul 1989 JP
01-205544 Aug 1989 JP
01-251747 Oct 1989 JP
02-129948 May 1990 JP
03-069248 Jul 1991 JP
03-177060 Aug 1991 JP
04-098864 Mar 1992 JP
05-129473 May 1993 JP
05-166992 Jul 1993 JP
05-283460 Oct 1993 JP
06-092076 Apr 1994 JP
06-140563 May 1994 JP
06-260532 Sep 1994 JP
07-297344 Nov 1995 JP
07-312405 Nov 1995 JP
08-064634 Mar 1996 JP
08-083877 Mar 1996 JP
08-125066 May 1996 JP
08-222682 Aug 1996 JP
08-306853 Nov 1996 JP
09-008205 Jan 1997 JP
09-008206 Jan 1997 JP
09-008207 Jan 1997 JP
09-092775 Apr 1997 JP
09-293822 Nov 1997 JP
10-022447 Jan 1998 JP
10-163401 Jun 1998 JP
10-199934 Jul 1998 JP
10-256240 Sep 1998 JP
2000-150765 May 2000 JP
2000-556398 Oct 2000 JP
2001-060648 Mar 2001 JP
2001-118947 Apr 2001 JP
2002-043497 Feb 2002 JP
1994-0001979 Jan 1994 KR
10-0220154 Jun 1999 KR
2002-0049944 Jun 2002 KR
2004-0012028 Feb 2004 KR
WO 9956316 Nov 1999 WO
WO 9967821 Dec 1999 WO
Non-Patent Literature Citations (7)
Entry
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 58th ECTC Proceedings, May 2008, Lake Buena Vista, FL, 6 pages, IEEE.
Scanlan, “Package-on-package (PoP) with Through-mold Vias”, Advanced Packaging, Jan. 2008, 3 pages, vol. 17, Issue 1, PennWell Corporation.
Huemoeller et al., “Integrated Circuit Film Substrate Having Embedded Conductive Patterns and Vias”, U.S. Appl. No. 10/261,868, filed Oct. 1, 2002.
Berry et al., “Direct-write Wafer Level Chip Scale Package”, U.S. Appl. No. 11/289,826, filed Nov. 29, 2005.
Berry et al., “Direct-Write Wafer Level Chip Scale Package”, U.S. Appl. No. 12/661,597, filed Mar. 19, 2010.
Huemoeller et al., “Wafer Level Package and Fabrication Method,” U.S. Appl. No. 13/358,947, filed Jan. 26, 2012.
Huemoeller et al., “Wafer Level Package and Fabrication Method,” U.S. Appl. No. 13/627,815, filed Sep. 26, 2012.
Divisions (2)
Number Date Country
Parent 12661597 Mar 2010 US
Child 13472961 US
Parent 11810799 Jun 2007 US
Child 12661597 US
Continuations (1)
Number Date Country
Parent 11289826 Nov 2005 US
Child 11810799 US