The present invention is related in general to the field of semiconductor devices and processes, and more specifically to structure and processes of low profile packages for vertically integrated semiconductor systems.
The wide application of flip-chip assembly in the fabrication process flow of silicon integrated circuit (IC) devices is driven by several facts. First, the electrical performance of the semiconductor devices can be improved when the parasitic inductances correlated with conventional wire bonding interconnection techniques are reduced. Second, flip-chip assembly provides higher interconnection densities between chip and package than wire bonding. In particular, the absence of looped wires allows the reduction of package height (profile) in unison with thickness reductions of chips, leadframes, and encapsulations. Third, flip-chip assembly consumes less silicon “real estate” than wire bonding, and thus helps to conserve silicon area and reduce device cost. And fourth, the fabrication cost can be reduced, when concurrent gang-bonding techniques are employed rather than consecutive individual bonding steps.
The conventional fabrication process uses solder balls and their reflow characteristics as the standard method of ball bonding. While tin alloys have been widely accepted as materials for the solder balls, the contact pads of the IC chip have to receive special metallization for successful metallurgical attachment of the solder balls. Structure and preparation of metallizations and solder, as well as reliability aspects of the contacts, have been described in numerous publications. In known technology, however, the achievable bump pitch is limited. For solder materials, bumps or balls are presently limited to about 160 μm pitch center to center. These limits severely restrict the number of connections that can be made on the available chip surface, and thus constrain the use of flip-chip techniques, when devices with relatively small area chips are to be contacted.
For silicon chips, efforts were undertaken to replace reflow-based interconnecting balls with gold attached to aluminum-topped bond pads by a modified wire ball technique. In this technique, the bumps are allowed to retain a small “tail” which is formed when the gold wire is broken off after the free air ball has been formed and pressured as a “bump” against the substrate. The gold bump technique provides a substantially finer bump pitch; 25 μm diameter is the lower value for devices in production presently.
In later years, the substrates to which the IC chips are to be flip-bonded have been changed from ceramic to organic, such as printed circuit boards (for instance, FR-4) or a polyimide-based foil. Unchanged, however, is the traditional way of interconnecting the substrates to semiconductor chips by wire bonds or solder balls; it remains, therefore, difficult to scale substrates to the needs of small, chip-scale devices.
Recent applications especially for hand-held wireless equipments, combined with ambitious requirements for data volume and high processing speed, place new, stringent constraints on the size and volume of semiconductor components used for these applications. Consequently, there is a renewed push from the market place to shrink semiconductor devices both in two and in three dimensions, and this miniaturization effort includes packaging strategies for semiconductor devices and electronic systems.
Applicants recognize the need for a fresh concept of achieving a coherent, low-cost method of assembling high lead count, yet chip-scale and low contour devices; the concept includes substrates and packaging methods for stacking devices. The goal should be vertically integrated semiconductor systems, which may include integrated circuit chips of functional diversity. The resulting system should have excellent electrical performance, mechanical stability, and high product reliability. Further, it will be a technical advantage that the fabrication method of the system is flexible enough to be applied for different semiconductor product families and a wide spectrum of design and process variations.
One embodiment of the invention is a semiconductor system enabled by an interposer with metal studs, which do not reflow at temperatures customarily used in silicon technology, preferably gold, and are coated with reflow metals, preferably solder. The studs are on input/output ports (exit) of the interposer surface; some exit ports may be spaced apart by less than 125 μm center to center. A first electrical device, such as one or more semiconductor chips with contact pads matching the locations of the interposer exit ports, contacts the studs on one interposer surface. Likewise, a second electrical device, such as a semiconductor chip, a passive component, or both, is attached the other interposer surface. A carrier supports the first device and provides electrical connections to external parts.
Another embodiment of the invention is an interposer for use in assembling semiconductor systems. The interposer has an electrically insulating sheet-like body with first and second surfaces and electrically conductive lines between the first and second surfaces. Electrically conductive paths extend through the insulating body from the first to the second surface; the paths have exit ports on the surfaces. Some ports may be spaced apart by less than 125 μm center to center. Non-reflow metal studs, preferably gold, coated with reflow metals, preferably solder, are attached to the ports.
Another embodiment of the invention is a method for fabricating a packaged semiconductor system. A sheet-like strip is provided, made of an electrically insulating material with first and second surfaces. The strip has electrically conductive lines between the first and second surfaces, and electrically conductive paths extending through the insulating body from the first to the second surface to surface, contacting the lines and having exit ports on the first surface. Some exit ports may be spaced apart by less than 125 μm center to center.
Non-reflow metal studs, preferably gold, are formed on the exit ports; the studs are coated with reflow metals, preferably solder. A device such as a chip, a passive component, or both, may be surface-mounted on the insulating body. Thereafter, the strip is singulated into discrete interposer units.
An electrically insulating carrier is then provided, which has a plurality of electrically conductive traces integral with the carrier and a plurality of electrically conductive vias extending through the carrier; the vias contact the traces and terminate in exit ports suitable for attaching metal reflow bodies.
An electrical device, preferably one or more semiconductor chips with contact pads located to match the locations of the exit ports on the first interposer surface, is attached and electrically connected to the carrier. The interposer exit ports are aligned with the matching device contact pads, and the pads are brought into contact with the metal studs on the ports.
The method may include the step of encapsulating the interposer, the devices, and at least portions of the carrier in protective material such as a polymer mold compound. The method may further include the step of attaching metal reflow bodies to the carrier exit ports.
The technical advances represented by certain embodiments of the invention will become apparent from the following description of the preferred embodiments of the invention, when considered in conjunction with the accompanying drawings and the novel features set forth in the appended claims.
A portion of the interposer is magnified in
It is advantageous for many systems that interposer 101 includes passive electrical components 260 such as resistors and capacitors, which are integral with the insulator body and electrically connected to selected conductive paths 210.
The exist ports are preferably made of copper or a copper alloy, preferably with a surface covered by a thin layer of gold or palladium in order to facilitate bonding, welding, or soldering with other metals. The distance between ports can be designed according to the needs for interconnection.
As
The preferred method of creating stud 251 on the interposer exit port starts with a standard round wire of diameter between about 12 to 33 μm, preferably 18 to 25 μm. Preferably the wire consists of gold, with optional very small contents of beryllium, copper, palladium, iron, silver, calcium or magnesium to control the heat-affected and mechanically weak wire zone in ball formation. The interposer is positioned on a heated pedestal to raise the temperature to between 130 and 300° C. The wire is strung through the capillary of a bonder. At the tip of the wire, a free air ball. is created using either a flame or a spark technique. The ball has a typical diameter from about 1.2 to 1.6 wire diameters. The capillary is moved towards the interposer exit port 220 etc., lowered to touch the port, and the ball is pressed against the metallization of the port, creating an approximately hemispherical, flattened stud, which has an interface to the ports with an interdiffusion of metals for strong welding. The compression (also called Z- or mash) force is typically between about 17 and 75 g. At time of bonding, the temperature usually ranges from 140 to 270° C. The wire is broken off to release the capillary; the capillary may be lowered again to flatten any remaining wire stump.
The process of depositing the gold stud by a wire ball bond method highlights the advantages of depositing the stud on the interposer rather than on the semiconductor wafer. With the necessity of using low-k dielectrics in high-speed integrated circuits, which are known to be mechanically weak and sensitive to compressive and tensile stresses, it would be difficult to attach the gold stud on the chip bond pads with the required force without damaging the dielectric (for instance by cracking). In contrast, the interposer is relatively insensitive to mechanical force and impact.
An additional process advantage is that the interposer is preferably supplied in an elongated strip form, which simplifies the progression of the wire bonder operation. In contrast, the x-y progression of a semiconductor wafer is technically more complex and the wire bonder operation thus more demanding.
After the plurality of non-reflow studs on interposer surface 101a has been completed, a screen printing process is preferably employed to surround each stud with a layer of reflowable metal or metal alloy. The finished coupling members have an approximate shape as illustrated by the schematic cross sections of
Referring to
Referring to
As
The electrical device 102 is attached to carrier 106. In
The system 100 illustrated in
Using the interposer of the invention, packaged systems with thin overall thickness can be fabricated. Including the carrier thickness, the reflow body diameters (solder balls), and the thickness of the mold compound above the top device, the package thickness may range from about 500 to 2000 μm with a preferred thickness of about 1200 μm. Included in these dimensions are the device thickness range from about 25 to 150 μm (preferred thickness about 100μ), the interposer thickness range from about 50 to 250 μm (preferred thickness about 100 μm), and the attach material thickness from about 12 to 75 μm (preferred thickness about 25 μm).
Another example of a vertically integrated semiconductor system 400, which employs a gold-bumped interposer 401, is illustrated in
In the embodiment of
A second electrical device 404, exemplified in
In
Encapsulation material 410, preferably a molding compound, protects interposer 401, first device 402, second device 404, and portions of carrier 406, especially the bonding wires 409, 430, and 440.
Another embodiment of the invention is a method for fabricating a packaged semiconductor system, especially a vertically integrated system. The block diagram of the method in
In step 502, non-reflow metal studs are formed on the exit ports. A preferred process uses ball bonding (preferably gold) and subsequent breaking of the wire; an alternative batch process uses electroless plating. While the preferred stud metal is gold, alternative studs may be made of copper or copper/nickel/palladium. The non-reflow studs are then coated with reflow metals such as tin or tin alloy, preferably using a screen printing process; alternatively, a process including solder powder and flux may be used.
If required by the system-to-be-fabricated, step 503 involves the surface mounting of an electronic device on the exit ports on the second surface of the insulating interposer body. This device may be one or more semiconductor chips, one or more passive components, or both. To perform this attachment step, while the interposer is still available as a strip, offers manufacturing advantages for high throughput and tight process control. An example resulting from this process step is shown in
The interposer strip is singulated in step 504 into discrete interposer units. The subsequent process steps use the interposer in discrete units.
Step 505 provides an electrically insulating carrier having a plurality of electrically conductive traces integral with the carrier and a plurality of electrically conductive vias extending through the carrier. The vias are contacting the traces and having exit ports suitable for attaching metal reflow bodies.
In step 506A, an electrical device (designated #1 in
Process step 506A—providing devices, attaching devices to the carrier and curing the attach material, and wirebonding devices—may be repeated several times (2 through n times). This option is indicated by step 506N in
In process step 507, the interposer is flipped and the exit ports aligned with the matching device contact pads; thereafter, the pads are brought in contact with the metal studs on the ports to achieve metallic attachment.
In step 508A, another electrical device (designated #1 in
Process step 508A—providing devices, attaching devices to the interposer and curing the attach material, and wire-bonding devices—may be repeated several times (2 through n times). This option is indicated by step 508N in
Block 509 combines the process steps of encapsulating, symbolizing, and testing. The encapsulation step, preferably performed by transfer molding a mold compound, protects the interposer, the devices, and at least portions of the carrier in protective material.
Block 510 addresses the step of attaching metal reflow bodies, preferably solder balls, to the carrier exit ports.
The final block 511 is shown in dashed outline in
While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. As an example, the invention applies to products using any type of semiconductor chip, discrete or integrated circuit, and the material of the semiconductor chip may comprise silicon, silicon germanium, gallium arsenide, or any other semiconductor or compound material used in integrated circuit manufacturing.
As another example, the process step of encapsulating can be omitted when the integration of the system has been achieved by flip-chip assembly.
It is therefore intended that the appended claims encompass any such modifications or embodiment.