The disclosure relates to a method for manufacturing a semiconductor device, and more particularly to a structure and a manufacturing method for a conductive layer over source/drain regions.
With a decrease of dimensions of semiconductor devices, various metals other than aluminum and copper have been used. For example, cobalt (Co) has been used as a conductive material for a via or a contact structure. Since Co is an active metal and easily reacts with oxygen, moisture or acid, it is generally difficult to use Co in a stable manner.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific embodiments or examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, dimensions of elements are not limited to the disclosed range or values, but may depend upon process conditions and/or desired properties of the device. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Various features may be arbitrarily drawn in different scales for simplicity and clarity.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly. In addition, the term “made of” may mean either “comprising” or “consisting of.”
The silicide layer 55 includes one or more of cobalt silicide (e.g., CoSi, CoSi2, Co2Si, Co2Si, Co3Si; collectively “Co silicide”), titanium silicide (e.g., Ti5Si3, TiSi, TiSi2, TiSi3, Ti6Si4; collectively “Ti silicide”), nickel silicide (e.g., Ni3Si, Ni31Si12, Ni2Si, Ni3Si2, NiSi, NiSi2; collectively “Ni silicide”), copper silicide (e.g., Cu17Si3, Cu56Si11, Cu5Si, Cu33Si7, Cu4Si, Cu19Si6, Cu3Si, Cu87Si13; collectively “Cu silicide”), tungsten silicide (W5Si3, WSi2; collectively “W silicide”), and molybdenum silicide (Mo3Si, Mo5Si3, MoSi2; collectively “Mo silicide”).
In some embodiments, one or more work function adjustment layers 14 are interposed between the gate dielectric layer 12 and the metal material 16. The work function adjustment layers 14 are made of a conductive material such as a single layer of TiN, TaN, TaAlC, TiC, TaC, Co, Al, TiAl, HfTi, TiSi, TaSi or TiAlC, or a multilayer of two or more of these materials. For the n-channel FET, one or more of TaN, TaAlC, TiN, TiC, Co, TiAl, HfTi, TiSi and TaSi is used as the work function adjustment layer, and for the p-channel FET, one or more of TiAlC, Al, TiAl, TaN, TaAlC, TiN, TiC and Co is used as the work function adjustment layer.
The cap insulating layer 20 includes one or more layers of insulating material such as silicon nitride based material including SiN, SiCN and SiOCN. The sidewall spacer 30 is made of a different material than the cap insulating layer 20 and includes one or more layers of insulating material such as silicon nitride based material including SiN, SiON, SiCN and SiOCN. The CESL 33 is made of a different material than the cap insulating layer 20 and the sidewall spacers 30, and includes one or more layers of insulating material such as silicon nitride based material including SiN, SiON, SiCN and SiOCN. The first ILD layer 40 includes one or more layers of silicon oxide, SiOC, SiOCN or SiCN or other low-k materials, or porous materials. The first ILD layer 40 can be formed by LPCVD (low pressure chemical vapor deposition), plasma-CVD or other suitable film forming methods.
The material of the CESL 33, the sidewall spacer 30, the material of the cap insulating layer 20, and a material of the first ILD layer 40 may be different from each other, so that each of these layers can be selectively etched. In one embodiment, the CESL 33 is made of SiN, the sidewall spacer 30 is made of SiOCN, SiCN or SiON, the cap insulating layer 20 is made of SiN or SiON, and the first ILD 40 layer is made of SiO2.
In this embodiment, fin field effect transistors (Fin FETs) fabricated by a gate-replacement process are employed.
First, a fin structure 310 is fabricated over a substrate 300. The fin structure includes a bottom region and an upper region as a channel region 315. The substrate is, for example, a p-type silicon substrate with an impurity concentration in a range from about 1×1015 cm−3 to about 1×1018 cm−3. In other embodiments, the substrate is an n-type silicon substrate with an impurity concentration in a range from about 1×1015 cm−3 to about 1×1018 cm−3. Alternatively, the substrate may comprise another elementary semiconductor, such as germanium; a compound semiconductor including Group IV-IV compound semiconductors such as SiC and SiGe, Group III-V compound semiconductors such as GaAs, GaP, GaN, InP, InAs, InSb, GaAsP, AlGaN, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP; or combinations thereof. In one embodiment, the substrate is a silicon layer of an SOI (silicon-on-insulator) substrate.
After forming the fin structure 310, an isolation insulating layer 320 is formed over the fin structure 310. The isolation insulating layer 320 includes one or more layers of insulating materials such as silicon oxide, silicon oxynitride or silicon nitride, formed by LPCVD, plasma-CVD or flowable CVD. The isolation insulating layer may be formed by one or more layers of spin-on-glass (SOG), SiO, SiON, SiOCN and/or fluorine-doped silicate glass (FSG).
After forming the isolation insulating layer 320 over the fin structure, a planarization operation is performed so as to remove part of the isolation insulating layer 320. The planarization operation may include a chemical mechanical polishing (CMP) and/or an etch-back process. Then, the isolation insulating layer 320 is further removed (recessed) so that the upper region of the fin structure is exposed.
A dummy gate structure is formed over the exposed fin structure. The dummy gate structure includes a dummy gate electrode layer made of poly silicon and a dummy gate dielectric layer. Sidewall spacers 350 including one or more layers of insulating materials are also formed on sidewalls of the dummy gate electrode layer. After the dummy gate structure is formed, the fin structure 310 not covered by the dummy gate structure is recessed below the upper surface of the isolation insulating layer 320. Then, a source/drain region 360 is formed over the recessed fin structure by using an epitaxial growth method. The source/drain region may include a strain material to apply stress to the channel region 315.
Then, an interlayer dielectric layer (ILD) 370 is formed over the dummy gate structure and the source/drain region. The ILD layer 370 includes one or more layers of silicon oxide, SiOC, SiOCN or SiCN or other low-k materials, or porous materials. After a planarization operation, the dummy gate structure is removed so as to make a gate space. Then, in the gate space, a metal gate structure 330 including a metal gate electrode and a gate dielectric layer, such as a high-k dielectric layer, is formed. Further, the cap insulating layer 340 is formed over the metal gate structure 330, so as to obtain the Fin FET structure shown in
The metal gate structure 330, the cap isolation layer 340, sidewalls 330, source/drain 360 and the ILD 370 of
As shown in
Then, as shown in
After the contact holes 65 are formed, a blanket layer of an adhesive (glue) layer 70 is formed and then a first metal layer 75 is formed to cover the entire upper surface, as shown in
The adhesive layer 70 includes one or more layers of conductive materials. In some embodiments, the adhesive layer 70 includes a TiN layer formed on a Ti layer. The thickness of each of the TiN and Ti layer is in a range from about 1 nm to about 5 nm in some embodiments. The adhesive layer 70 can be formed by CVD, physical vapor deposition (PVD) including sputtering, atomic layer deposition (ALD), electro-plating or a combination thereof, or other suitable film forming methods. The adhesive layer 70 is used to prevent the first metal layer 75 from peeling off. In some embodiments, the adhesive layer 70 is not used and the first metal layer 75 is directly formed in the contact holes. In such cases, the first metal layer 75 is in direct contact with the silicide layer 55.
The first metal layer 75 is one of Co, W, Mo and Cu. In one embodiment, Co is used as the metal layer 75. The first metal layer 75 can be formed by CVD, PVD, ALD, electro-plating or a combination thereof or other suitable film forming methods.
After the “thick” first metal layer is formed, a planarization operation, such as chemical mechanical polishing (CMP) or etch-back operations, is performed so as to remove the adhesive layer and the first metal layer deposited on the upper surface of the second ILD layer 60, as shown in
Subsequently, an upper silicide layer 80 is formed on the upper surface of the first metal layer 75, as shown in
When the first metal layer 75 is made of Co, SiH4 and/or Si2H6 gas (silane source gas) together with one or more dilution gases (e.g., He, H2) is introduced in a vacuum chamber where the substrate with the structure of
The substrate is heated at about 300° C. to about 800° C., in some embodiments. Under this condition, cobalt atoms at the surface of the first metal layer 75 react with silicon atoms from the silane source gas, thereby forming a Co silicide layer 80. In some embodiments, an additional annealing operation is performed after the Co silicide layer 80 is formed. The additional annealing is performed at a temperature in a range from about 300° C. to about 800° C. in an ambient of one or more of H2, NH3, He and Ar. In one embodiment, NH3 is used as an annealing gas. With the foregoing operations, it is possible to obtain a hillock free CoSi layer with a surface roughness of about 0.1 nm to about 2 nm in some embodiments.
When the temperature is high, for example, about 700-800° C., CoSi2 is mainly formed. When the temperature is low, for example, about 300-400° C., Co2Si is mainly formed. When the temperature is about 400-600° C., CoSi is mainly formed. It is noted that CoSi2 has a lower resistivity than Co2Si or CoSi. Additional thermal operations may be performed.
Similarly, when the first metal layer 75 is made of Cu or Ti, the silicide layer 80 can be formed by using silane source gas.
In other embodiments, a thin silicon layer, e.g., a polysilicon layer or an amorphous layer, is formed over the structure of
The thickness of the silicide layer 80 is in a range from about 3 nm to about 5 nm in some embodiments.
Subsequently, an ESL (etch stop layer) 90 is formed over the silicide layer 80 and the second ILD layer 60, as shown in
The ESL 90 can be formed by plasma enhanced CVD using SiH4 and/or Si2H6 gas with a nitrogen source gas, such as N2 or NH3, a carbon source gas, such as CH4 and/or oxygen source gas, such as O2. Since the same silane group gas can be used, the deposition of the ESL 90 can be performed in the same vacuum chamber or the same film forming tool used for the formation of the Co silicide layer 80 by simply changing the source gases and some other conditions, such as a temperature or a pressure. In one embodiment, a nitrogen source gas, such as NH3, is supplied before the ESL deposition, so that residual Si, if any, on the surface of the second ILD 60 can be formed into a dielectric material (e.g., SiN) in the formation of the ESL layer.
Next, as shown in
Further, a via plug 110 is formed in the contact opening 109 so as to be electrically connected to the first metal layer 75, as shown in
It is understood that the device shown in
In
Depending on the contact etching conditions (e.g., over etching conditions) for forming a contact opening 109, the location of the bottom of the via plug varies. In
In
Unlike the structures and processes of
Then, a silicide layer 80 is formed on the upper surface of the first metal layer 75 at the bottom of the contact opening 109. The similar silicide formation operations as described above can be utilized.
Subsequently, a via plug 110 is formed in the contact opening 109, as shown in
In the foregoing embodiments, a silicide layer 55 is formed before the CESL 33 is formed and the contact holes 65 are formed, as shown in
Subsequently, a silicide layer 55 is formed over the S/D region 50, as shown in
The silicide layer 50 is also formed at the bottom of a contact hole over the metal gate structures 10 as shown in
After the structure shown in
The various embodiments or examples described herein offer several advantages over the existing art. For example, in the present disclosure, since a silicide layer (e.g., Co silicide) is formed on the surface of the first metal layer (e.g., Co), the silicide layer functions as a passivation layer that can protect the underlying metal layer (e.g., Co) from being oxidized or damaged in air or during subsequent manufacturing operations. In addition, the silicide layer can function as an etch stop layer when the contact opening for a via plus is formed, thereby preventing the via from passing to the underlying layer. Further, the silicide layer can be selectively formed on the surface of the first metal layer, and the silicide layer and the CESL can be formed in the same vacuum chamber or the same film deposition tool. With these features, it is possible to prevent a current leakage. If a Si layer is deposited on the whole wafer and converted into the silicide layer, the remaining Si may cause leakage between the first metal layers.
It will be understood that not all advantages have been necessarily discussed herein, no particular advantage is required for all embodiments or examples, and other embodiments or examples may offer different advantages.
According to one aspect of the present disclosure, in a method of manufacturing a semiconductor device, a first contact hole is formed in one or more dielectric layers disposed over a source/drain region or a gate electrode. An adhesive layer is formed in the first contact hole. A first metal layer is formed on the adhesive layer in the first contact hole. A silicide layer is formed on an upper surface of the first metal layer. The silicide layer includes a same metal element as the first metal layer.
According to another aspect of the present disclosure, in a method of manufacturing a semiconductor device, a first contact hole is formed in one or more dielectric layers disposed over a source/drain region or a gate electrode. A first metal layer is formed in the first contact hole. An upper silicide layer is formed on an upper surface of the first metal layer. At least one of the source/drain region and the gate electrode includes a lower silicide layer. The first metal layer is in contact with the lower silicide layer. The upper silicide layer at least partially covers the upper surface of the first metal layer. The upper silicide layer includes a same metal element as the first metal layer.
In accordance with yet another aspect of the present disclosure, a semiconductor device including a field effect transistor, includes a source/drain region, a source/drain silicide layer formed on the source/drain region, and a first contact connected to the source/drain silicide layer. The first contact includes a first metal layer. An upper surface of the first metal layer is at least covered by a silicide layer. The silicide layer includes a same metal element as the first metal layer.
The foregoing outlines features of several embodiments or examples so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments or examples introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a Divisional Application of U.S. patent application Ser. No. 16/049,589 filed Jul. 30, 2018, now U.S. Pat. No. 10,714,586, which is a Divisional Application of U.S. patent application Ser. No. 15/378,574 filed Dec. 14, 2016, now U.S. Pat. No. 10,153,351, which claims priority to U.S. Provisional Patent Application 62/289,148 filed Jan. 29, 2016, the entire disclosure of each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4822642 | Cabrera et al. | Apr 1989 | A |
6153517 | Chuang et al. | Nov 2000 | A |
7180143 | Kanegae et al. | Feb 2007 | B2 |
8962490 | Hung et al. | Feb 2015 | B1 |
9548366 | Ho et al. | Jan 2017 | B1 |
10153351 | Hsu | Dec 2018 | B2 |
10714586 | Hsu | Jul 2020 | B2 |
20020022357 | Iijima et al. | Feb 2002 | A1 |
20020105089 | Tanaka | Aug 2002 | A1 |
20040130030 | Kunimune et al. | Jul 2004 | A1 |
20040238963 | Fujisawa | Dec 2004 | A1 |
20050275110 | Maekawa et al. | Dec 2005 | A1 |
20060125100 | Arakawa | Jun 2006 | A1 |
20060157854 | Takewaki et al. | Jul 2006 | A1 |
20060163642 | Widdershoven et al. | Jul 2006 | A1 |
20070082488 | Katou | Apr 2007 | A1 |
20070111522 | Lim | May 2007 | A1 |
20070182014 | Usami | Aug 2007 | A1 |
20070212809 | Ohto | Sep 2007 | A1 |
20070281461 | Jang | Dec 2007 | A1 |
20080032480 | Gonzalez et al. | Feb 2008 | A1 |
20080079090 | Hwang et al. | Apr 2008 | A1 |
20080233734 | Ohara | Sep 2008 | A1 |
20090218691 | Yang | Sep 2009 | A1 |
20100129974 | Futase et al. | May 2010 | A1 |
20100164111 | Yang | Jul 2010 | A1 |
20100164123 | Letz | Jul 2010 | A1 |
20110215387 | Bissey et al. | Sep 2011 | A1 |
20120146106 | Richter et al. | Jun 2012 | A1 |
20130049219 | Tsai et al. | Feb 2013 | A1 |
20130171818 | Kim et al. | Jul 2013 | A1 |
20130244422 | Zhang et al. | Sep 2013 | A1 |
20130307032 | Kamineni et al. | Nov 2013 | A1 |
20130316535 | Shin et al. | Nov 2013 | A1 |
20140091467 | Jezewski | Apr 2014 | A1 |
20140191312 | Kim et al. | Jul 2014 | A1 |
20140239503 | Huisinga et al. | Aug 2014 | A1 |
20140327140 | Zhang et al. | Nov 2014 | A1 |
20150076500 | Sakaida et al. | Mar 2015 | A1 |
20150123279 | Chi et al. | May 2015 | A1 |
20150171206 | van Dal | Jun 2015 | A1 |
20150235948 | Song et al. | Aug 2015 | A1 |
20150249038 | Xu | Sep 2015 | A1 |
20150279733 | Ferrer et al. | Oct 2015 | A1 |
20160043035 | Lin et al. | Feb 2016 | A1 |
20160126135 | Zhang | May 2016 | A1 |
20160126190 | Zhang | May 2016 | A1 |
20160379878 | Anderson | Dec 2016 | A1 |
20170148662 | Ok et al. | May 2017 | A1 |
20170148669 | Kamineni et al. | May 2017 | A1 |
20170170068 | Pranatharthiharan et al. | Jun 2017 | A1 |
20170213792 | Nag et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
103426739 | Dec 2013 | CN |
H06-124915 | May 1994 | JP |
2010034490 | Feb 2010 | JP |
4449374 | Apr 2010 | JP |
10-2013-0131755 | Jan 2008 | KR |
10-0791345 | Jan 2008 | KR |
10-2014-0089673 | Jul 2014 | KR |
Entry |
---|
Suguru Noda et al., “Selective Silicidation of Co Using Silane or Disilane for AntiOxidation Barrier Layer in Cu Metallization”, Japanese Journal of Applied Physics, vol. 43, No. 9A, Sep. 2004, pp. 6001-6007. |
Office Action dated Jul. 17, 2017, in Korean Patent Application No. 10-2017-0006010. |
Korean Notice of Final Rejection issued in corresponding Korean Patent Application No. 10-2017-0006010, dated Apr. 6, 2018, with English Translation. |
Korean Decision of Rejection for Amendment issued in corresponding Korean Patent Application No. 10-2017-0006010, dated Apr. 6, 2018, with English Translation. |
Office Action issued in correspondin Taiwanese Application No. 106103214, dated Nov. 3, 2017. |
Korean Office Action issued in corresponding Korean Appliation No. 10-2017-0006010, dated Jan. 30, 2018. |
Office Action issued in Korean Application No. 10-2018-0073307 dated Jul. 17, 2018. |
Non-Final Office Action issued in U.S. Appl. No. 16/049,589, dated Aug. 21, 2019. |
Final Office Action issued in U.S. Appl. No. 16/049,589, dated Dec. 27, 2019. |
Notice of Allowance issued in U.S. Appl. No. 16/049,589, dated Mar. 10, 2020. |
Number | Date | Country | |
---|---|---|---|
20200350416 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62289148 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16049589 | Jul 2018 | US |
Child | 16927953 | US | |
Parent | 15378574 | Dec 2016 | US |
Child | 16049589 | US |