With the continuous improvement of integration and performance of memories, the adoption of vertical gate all around transistors (VGAA transistors for short) can effectively reduce the dimension of memories.
However, in a VGAA transistor, the space of a word line structure is narrow since the word lines are isolated from each other, and the word line structure is easily damaged when measuring electrical properties.
The disclosure relates to a technical field of integrated circuit design and manufacture, in particular to a semiconductor structure, a test structure, a manufacturing method and a test method.
According to embodiments of the disclosure, a semiconductor structure, a test structure, a preparation method and a test method are provided.
According to some embodiments, the first aspect of the disclosure provides a semiconductor structure. The semiconductor structure includes a substrate, which includes a plurality of pillars spaced along a first direction by first trenches; second trenches formed at opposite sides along a second direction of each of the pillars; target conductive structures extending along the second direction and formed in the substrate directly below adjacent second trenches; and a first dielectric layer, a conductive layer and a second dielectric layer sequentially stacked in the first trenches and the second trenches. A depth of the first trenches is greater than a depth of the second trenches. The first direction intersects the second direction.
According to some embodiments, the second aspect of the disclosure provides a test structure, including the semiconductor structure in any of the foregoing embodiments, a first pad, a second pad and/or a third pad. The first pad is electrically connected with one of the pillars. The second pad is electrically connected with the conductive layer. The third pad is electrically connected with one of the conductive regions.
According to some embodiments, the third aspect of the disclosure provides a method for manufacturing a semiconductor structure. The method includes the following operations. A substrate is provided, in which the substrate includes a plurality of pillars spaced along a first direction by first trenches and second trenches formed at opposite sides along a second direction of each of the pillars, and the first direction intersects the second direction. Target conductive structures extending along the second direction are formed in the substrate directly below adjacent second trenches. A first dielectric layer, a conductive layer and a second dielectric layer are sequentially stacked at least in the first trenches and the second trenches.
According to some embodiments, the fourth aspect of the disclosure provides a method for manufacturing a test structure, including the following operations. A semiconductor structure in any of the foregoing embodiments is provided. A first pad electrically connected with one of the pillars is formed. A second pad and/or a third pad is formed. The second pad is electrically connected with the conductive layer, and the third pad is electrically connected with one of the conductive regions.
According to some embodiments, the fifth aspect of the disclosure provides a test method, including the following operations. A test structure manufactured by the method for manufacturing the test structure in the foregoing embodiments is adopted. A first test electrical signal is obtained by applying a first excitation electrical signal to the test structure through the second pad and the first pad, and electrical parameters of the first trenches and/or the second trenches are obtained according to the first excitation electrical signal and the first test electrical signal; or a second test electrical signal is obtained by applying a second excitation electrical signal to the test structure through the third pad and the first pad, and electrical parameters of the first trenches and/or the second trenches are obtained according to the second excitation electrical signal and the second test electrical signal.
Details of one or more embodiments of the present disclosure are set forth in the following accompany drawings and description. Other features, objects and advantages of the present disclosure will become apparent from the accompany drawings, the specification and the claims.
To more clearly illustrate technical solution in the embodiments of the disclosure, the drawings used in the embodiments will be briefly described below, and it will be apparent that the drawings described below are only of some embodiments of the disclosure, from which other drawings may be obtained without creative effort by a person of ordinary skill in the art.
In order to facilitate the understanding of the disclosure, a more complete description will be given below with reference to the relevant drawings. The preferred embodiment of the disclosure is given in the attached drawings. However, the disclosure may be implemented in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided to make the disclosure more thorough and comprehensive.
Unless otherwise defined, all technical and scientific terms used herein have the same meanings as are commonly understood by those skilled in the art of the disclosure. Terms used herein in the specification of the disclosure are for the purpose of describing specific embodiments only, and are not intended to limit the disclosure.
It should be understood that when an element or layer is referred to as “above”, “adjacent to”, “connected to” or “coupled to” another element or layer, it may be directly above, adjacent to, connected to, or coupled to the other element or layer, or may exist intervening elements or layers. Conversely, when an element is called “directly above”, “directly adjacent to”, “directly connected to” or “directly coupled to” another element or layer, there is no intervening element or layer. It should be understood that, although the terms first, second, third etc. may be used to describe various elements, components, regions, layers, doping types and/or portions, the elements, components, regions, layers, doping types and/or portions should not be limited by such terms. These terms are used only to distinguish one element, component, region, layer, doping type or portion from another element, component, region, layer, doping type or portion. Accordingly, a first element, component, region, layer, doping type, or portion discussed below may be represented as a second element, component, region, layer, or portion without departing from the teachings of the present disclosure. For example, a first doping type may be referred to as a second doping type, and similarly the second doping type may be made the first doping type. The first doping type and the second doping type are different doping types. For example, the first doping type may be P-type and the second doping type may be N-type, or the first doping type may be N-type and the second doping type may be P-type.
Spatial relation terms such as “under”, “below”, “down”, “beneath”, “on”, “above”, etc. may be used herein to describe the relationship of one element or feature shown in the figure to other elements or features. It should be understood that, the spatial relationship terms also include different orientations of devices in use and operation, in addition to the orientations shown in the figures. For example, if a device in the figures is flipped, the element or feature described as “under” or “under” or “under” the other element or feature will be oriented “over” the other element or feature. Therefore, the exemplary terms “under” and “below” may include both upper and lower orientations. Moreover, the device may be additionally oriented (rotated 90 degrees or otherwise) and the spatial descriptions used herein are interpreted accordingly.
As used herein, the singular forms of “a”, “an” and “said/the” also include the plural forms, unless the context clearly indicates otherwise. It should also be understood that when the terms “compose” and/or “comprise/include” are used in this specification, the terms determine the presence of said features, integers, steps, operations, elements and/or components, but do not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups. As used herein, the term “and/or” includes any and all combinations of related listed items.
The embodiments of the disclosure are described herein with reference to cross-sectional views of schematic diagrams of ideal embodiments (and intermediate structures) in the present disclosure, so that variations in the shapes shown due to, for example, manufacturing techniques and/or tolerances can be anticipated. Accordingly, the embodiments of the present disclosure should not be limited to the specific shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing techniques. For example, an implanted region shown as a rectangle typically has rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from an implanted region to a non-implanted region. Likewise, a buried region formed by implantation may result in implantation to some extent in a region between the buried region and the surface through which the implantation proceeds. Accordingly, the regions shown in the figures are schematic diagrams and their shapes do not represent the actual shapes of the regions of the device, and do not limit the scope of the present disclosure.
Referring to
Referring to
In S20, a substrate is provided. The substrate includes multiple pillars spaced along a first direction by first trenches and second trenches formed at opposite sides along a second direction of each of the pillars, and the first direction intersects the second direction.
In S40, target conductive structures extending along the second direction are formed in the substrate directly below adjacent second trenches.
In S60, a first dielectric layer, a conductive layer and a second dielectric layer sequentially stacked are formed at least in the first trenches and in the second trenches.
As an example, referring further to
Further, the first direction may be a direction of the word lines and the second direction may be a direction of the bit lines. The first direction intersects the second direction. The first direction and the second direction have an included angle greater than 0° and less than or equal to 90°. For example, the included angle is 1°, 2°, 10°, 30°, 50°, 70°, 90°, or the like.
Optionally, the first direction and the second direction are perpendicular to each other.
Referring to
In S21, an initial substrate 100 is provided.
In S22, part of the initial substrate 100 is removed to form first trenches 11 and vertical walls 101 extending in the second direction ox and alternately arranged in the first direction.
For example, further referring to
Further, part of the initial substrate 100 may be etched by a dry etching process in S22 to form the first trenches 11 and the vertical walls 101. A depth and a width of the first trenches 11 are adjusted according to technical requirements, which are not specifically limited in this embodiment. The dry etching at least includes any one of reactive ion etching (RIE), inductively coupled plasma etching (ICP) or high concentration plasma etching (HDP).
As an example, referring to
In S23, a first protective material layer 121 is formed. The first protective material layer at least fills up each of the first trenches.
In S24, part of the vertical walls 101 and part of the first protective material layer 121 are removed to form the multiple pillars 102 spaced by the second trenches 13 along the second direction. The first protective material layer 121 covering the top of each of the pillars 102 constitutes a top protective layer, and a depth of the first trenches 11 is greater than a depth of the second trenches 13.
As an example, further referring to
Each of the pillars 102 is used to form a transistor subsequently, which has a low resistance to produce a semiconductor structure with performances meeting requirements. The device formed by the pillar 102 may be a junction-free transistor. The pillar 102 includes a source, a vertical channel and a drain arranged in sequence, and doping ions in the source, the vertical channel and the drain are of the same type. On one hand, the control ability of the gates of the transistors can be ensured, and an integration density and electrical performance of the semiconductor structure can be improved. On the other hand, the influence caused by formation of the bit lines can be greatly avoided, thereby avoiding a final influence on the performance of the semiconductor structure.
As an example, referring to
In S41, protective sidewalls 122 are formed at least on sidewalls of each of the pillars 102.
In S42, ions are implanted into the initial substrate 100 below the second trenches 13 through bottoms of the second trenches 13 and an annealing process is performed such that conductive regions formed in the initial substrate 100 directly below adjacent second trenches 13 are electrically connected, so as to form the target conductive structures 14. Bottoms of the first trenches 11 are lower than a bottom of any one of the conductive regions.
As an example, further referring to
As an example, further referring to
In S51, a first isolation layer and a second conductive layer sequentially stacked in each of the first trenches 11 are formed. The first isolation layer has a preset thickness.
In S52, ions are implanted into the substrate below each of the vertical wall adjacent to the second conductive layer through the second conductive layer and an annealing process is performed to form the target conductive structure 14 in the initial substrate 100 directly below the vertical wall 101 adjacent to the second conductive layer.
In S53, the first isolation layers and the second conductive layers are removed.
As an example, in S51-S53, by forming the first isolation layers (not shown) and the second conductive layers (not shown) in the first trenches 11, doping ions are implanted under the vertical walls 101 adjacent to the second conductive layers, and an annealing process is performed, in order to diffuse the doped ions into the vertical walls 101 to ensure that the target conductive structures 14 formed in S42 are effectively electrically connected as a whole in the vertical walls 101, so as to form the bit line structures, which enhances conductivity of the bit line structures. Then the first isolation layers and the second conductive layers are removed (not shown). For example, P-type ions, such as B ions, may be used by the ion implantation process. In other embodiment, for example, N-type ions may be used, which allows a higher current. In particular, for example, As, P ions may be used. A preset energy of these ion implantations is, for example, 1 Kev-20 Kev; and/or a preset dose is 1e15 cm−2-1e18 cm−2. For example, the preset energy is 1 KeV, 1.5 KeV, 5 KeV, 10 KeV and 12 KeV. The preset dose is 1e15 cm−2, 5e15 cm−2, 1e16 cm−2, 1e17 cm−2 and 1e18 cm−2. An ion implantation, such as an ion implantation at a low energy and with a high dose, is performed at least once. During the process of forming the target conductive structures 14, impurities may accumulate at an interface between silicide and silicon due to segregation, thereby reducing a Schottky contact resistance and improving the performance of the semiconductor structure. By forming continuous metal silicide as buried bit lines in the substrate, the resistance of the semiconductor structure is reduced and the performance of the semiconductor structure is improved. The semiconductor structure may be used in vertical gate all around transistors (VGAA transistors for short), thereby effectively reducing the size of a memory and improving the integration and performance of the memory.
As an example, referring to
In S61, a first dielectric material layer 151 is formed. The first dielectric material layer 151 at least fills up each of the first trenches 11 and each of the second trenches 13.
In S62, the first dielectric material layer 151 is etched to form the first dielectric layer 15 in the first trenches 11 and the second trenches 13.
In S63, a first conductive material layer is formed. The first conductive material layer at least fills up each of the first trenches 11 and each of the second trenches 13.
In S64, the first conductive material layer is etched back to form the conductive layer 16 in the first trenches 11 and the second trenches 13.
In S65, the second dielectric material layer is formed. The second dielectric material layer at least fills up each of the first trenches 11 and each of the second trenches 13.
As an example, referring further to
As an example, further referring to
In the semiconductor structure of the above embodiment, the conductive layer 16 is provided to form a word line structure. The word line structure is connected into a whole. The word line structure is isolated from the bit line structures of the conductive regions by the first dielectric layer 15 to avoid leakage between the word line structure and the bit line structures. Meanwhile, the word line structure is protected in a middle position by the stacked coverage of the second dielectric layer 17 and the first dielectric layer 15, so that the word line structure is more stable and not easy to be damaged. A measurement task of all the word line structure can be completed by arbitrarily selecting only one measurement point when measuring electrical properties, which greatly facilitates the measurement of the electrical properties of the semiconductor structure.
As an example, further referring to
As an example, further referring to
As an example, further referring to
As an example, further referring to
As an example, further referring to
For example, a material for preparing the conductive regions includes at least one of titanium, arsenic, cobalt or nickel.
As an example, referring to
In the above test structure in the embodiment, the first pad 1 is prepared on the pillar 102 to lead out a voltage reference point of the electrical measurement, the second pad 2 is prepared on the conductive layer 16 to lead out a measurement point of the word line structure, the third pad 3 is prepared on the conductive region 14 to lead out a measurement point of a bit line structure, and a test of measurement of electrical properties is carried out through the first pad 1, the second pad 2 and the third pad 3 mentioned above. On the one hand, the structure of the semiconductor structure is protected from mechanical damage, on the other hand, stability and repeatability of the measurement are ensured, so as to make measurement results more accurate.
As an example, in some embodiments of the disclosure, a preparation method of a test structure is provided, including the following operations.
In S1, a semiconductor structure in any of the foregoing embodiments is provided.
In S2, a first pad 1 electrically connected to one of the pillars 102 is formed.
In S3, a second pad 2 and/or a third pad 3 is formed. The second pad 2 is electrically connected to the conductive layer 16, and the third pad 3 is electrically connected to one of the conductive regions.
As an example, further referring to
A target conductor is exposed by a focused ion beam irradiation process or a wet etching process. The target conductor includes at least one of a pillar 102, the conductive layer 16 or a target conductive structure 14.
A measurement pad is formed on the exposed target conductor, and the measurement pad includes the first pad 1, the second pad 2, and/or the third pad 3.
For example, referring to
As an example, referring to
In S100, a test structure prepared by the preparation method of the test structure in the foregoing embodiments is adopted.
In S200, a first test electrical signal is obtained by applying a first excitation electrical signal to the test structure through the second pad and the first pad, and electrical parameters of the first trenches and/or the second trenches are obtained according to the first excitation electrical signal and the first test electrical signal; or a second test electrical signal is obtained by applying a second excitation electrical signal to the test structure through the third pad and the first pad, and electrical parameters of the first trenches and/or the second trenches are obtained according to the second excitation electrical signal and the second test electrical signal.
As an example, by applying the first excitation electrical signal as a test voltage between the second pad 2 and the first pad 1, a corresponding current value is obtained, and a resistance value between the bit line structure and the pillar can be calculated by a ratio of the test voltage and the current value. Similarly, by applying the second excitation electrical signal as a test voltage between the third pad 3 and the first pad, a corresponding current value is obtained, and a resistance value between the word line structure and the pillar can be calculated by a ratio of the test voltage and the current value.
The above-mentioned technical features of the embodiments can be arbitrarily combined. For the sake of concise description, all possible combinations of the above-mentioned technical features of the embodiments have not been described. However, as long as there is no contradiction in the combinations of these technical features, they should be considered to be within the scope described in this specification.
The above-mentioned embodiments only represent several embodiments of the present disclosure, and the description thereof is relatively specific and detailed, but is not to be construed as limiting the scope of the patent application. It should be noted that for those skilled in the art, without departing from the concept of the present disclosure, a number of modifications and improvements may be made, which all fall within the scope of protection of the present disclosure. Therefore, the scope of protection of the patent disclosure shall be subject to the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
202210563778.8 | May 2022 | CN | national |
This application is a continuous application of International Application No. PCT/CN2022/102874, filed on Jun. 30, 2022, which claims priority to Chinese Patent Application No. 202210563778.8, filed on May 23, 2022. The disclosures of International Application No. PCT/CN2022/102874 and Chinese Patent Application No. 202210563778.8 are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2022/102874 | Jun 2022 | US |
Child | 18153396 | US |