The present invention relates to microelectronic component assemblies. In particular, aspects of the invention relate to microelectronic component assemblies employing lead frames and methods of manufacturing microelectronic component assemblies employing such lead frames. Certain embodiments of the invention provide packaged microelectronic component assemblies.
Semiconductor chips or dies typically are manufactured from a semiconductor material such as silicon, germanium, or gallium/arsenide. An integrated circuit or other active feature(s) is incorporated in the die adjacent one surface, often referred to as the “active surface,” of the die. The active surface typically also includes input and output terminals to facilitate electrical connection of the die with another microelectronic component.
Since semiconductor dies can be degraded by exposure to moisture and other chemical attack, most dies are encapsulated in a package that protects the dies from the surrounding environment. The packages typically include leads or other connection points that allow the encapsulated die to be electrically coupled to another electronic component, e.g., a printed circuit board. Typically, the leads extend laterally outwardly in a flat array that is part of a lead frame. Leaded packages include a semiconductor die, which may be attached to the lead frame either by seating the die on a die paddle or attaching the die directly to the leads, e.g., via a die attach adhesive in a leads-on-chip attachment. Some or all of the terminals of the semiconductor die then may be electrically be connected to leads of the lead frame, e.g., by wire bonding. The connected lead frame and die may then be encapsulated in a mold compound to complete the packaged microelectronic component assembly. The leads extend outwardly from the mold compound, allowing the features of the semiconductor die to be electrically accessed. Finally, the lead frame will be trimmed and formed into a desired configuration of electrically independent leads.
The microelectronic component assembly 10 also includes a plurality of bond wires 40. A first set of bond wires 40a may extend from individual terminals 24 of the die 20 to the inner ends 32a of the first leads 30a. Similarly, a series of second bond wires 40b may extend from other terminals 24 in the terminal array to the inner ends 32b of the second leads 30b. Typically, these bond wires 40 are attached using wire bonding machines that spool a length of wire through a capillary. A molten ball may be formed at a protruding end of the wire and the capillary may push this molten ball against one of the terminals 24, thereby attaching the terminal end 42 of the wire 40 to the die 20. The capillary will then be moved laterally in a direction away from the lead 30 to which the wire 40 will be attached (referred to as the reverse motion of the capillary) then a further length of the wire will be spooled out and the lead end 44 of the wire 40 will be attached to the inner end 32 of one of the leads 30. The reverse motion of the capillary is required to bend the wire into the desired shape to avoid undue stress at either the terminal end 42 or the lead end 44.
The need to move the capillary in the reverse direction to form the bend in the wire 40 requires significant clearance between the terminal end 42 and the inner ends of the leads 30. This increases the width W of the terminal gap 34. This, in turn, increases the length of each of the bond wires 40 and often requires an increased loop height L of the wire 40 outwardly from the active surface 22 of the die 20. By way of example, a conventional microelectronic component assembly 10 may include adhesive members 35 having a thickness of about 4 mils and a lead frame 30 having a lead frame of about 5 mils. In such a microelectronic component assembly 10, the width W of the terminal gap 34 commonly will be on the order of 100 mils (about 2.5 mm) or more. (
As noted above, most commercial microelectronic component assemblies are packaged in a mold compound 50. The mold compound 50 typically encapsulates the die 20, the adhesive members 35, the bond wires 40, and the inner lengths 32 of the leads 30. A remainder of the leads 30 extends laterally outwardly from the sides of the mold compound 50. In many conventional applications, the mold compound 50 is delivered using transfer molding processes in which a molten dielectric compound is delivered under pressure to a mold cavity having the desired shape. In conventional side gate molds, the mold compound will flow from one side of the cavity to the opposite side. As the front of the molten dielectric compound flows along the terminal gap 34 under pressure, it will tend to deform the wires. This deformation, commonly referred to as “wire sweep,” can cause adjacent wires 40 to abut one another, creating an electrical short. Wire sweep may also cause one of the wires 40 to bridge two adjacent leads, creating an electrical short between the two leads. These problems become more pronounced as the wire pitch becomes smaller and as thinner wires 40 are used. For example, the stiffness of a 20 μm diameter wire is only about 40% that of a 25 μm wire and a 15 μm diameter wire is only about 13% as stiff as a 25 μm wire. Since semiconductor dies 20 are continually decreasing in size and the terminals 24 are getting closer and closer to one another, wire sweep in conventional packaged microelectronic component assemblies 10 is likely to cause even more problems in the future.
A. Overview
Various embodiments of the present invention provide various microelectronic component assemblies and methods for forming microelectronic component assemblies. The terms “microelectronic component” and “microelectronic component assembly” may encompass a variety of articles of manufacture, including, e.g., SIMM, DRAM, flash-memory, ASICs, processors, flip chips, ball grid array (BGA) chips, or any of a variety of other types of microelectronic devices or components therefor.
A microelectronic component assembly in accordance with one embodiment includes a microelectronic component, at least two leads, and at least two bond wires. The microelectronic component has an active surface and an array of terminals carried on the active surface. The leads may be attached to the active surface of the microelectronic component, with each of the leads having an elongate body and a reduced-thickness inner length that is disposed adjacent the terminals of the microelectronic component. The body of each lead has a first thickness and an outer surface at a first height outwardly from the active surface of the microelectronic component. The inner length has a second thickness and a bond surface at a second height outwardly from the active surface of the microelectronic component. The first thickness is greater than the second thickness and the first height is greater than the second height. Each of the bond wires may 1) electrically couple one of the terminals of the microelectronic component to the bond surface of one of the leads, and 2) have a maximum height outwardly from the active surface of the microelectronic component that is no greater than the first height.
Another embodiment of the invention provides a method of manufacturing a microelectronic component assembly. In accordance with this method, an active surface of a microelectronic component is juxtaposed with first and second leads. Each of the first and second leads has a body having a first thickness and an inner length having a second thickness that is less than the first thickness. The first and second leads have inner ends opposed to one another across a terminal gap. The first and second leads may be attached to the active surface of the microelectronic component with a linear array of terminals carried by the active surface extending longitudinally through the terminal gap. The body of each of the first and second leads may have an outer surface adjacent its inner length that is spaced a body height outwardly from the active surface of the microelectronic component. A first bond wire may be attached to a first terminal of the array and to the inner length of the first lead and a second bond wire may be attached to a second terminal of the array and to the inner length of the second lead. The first and second bond wires may each have a maximum height outwardly from the active surface that is less than the body height.
A microelectronic component assembly in accordance with another embodiment comprises first and second microelectronic components; first, second, and third leads; and first, second, and third bond wires. The first microelectronic component has an active surface that carries a first terminal and a second terminal. Each of the first and second leads is attached to the active surface of the first microelectronic component and has an elongate body and a reduced-thickness inner length that is disposed adjacent the terminals of the microelectronic component. The body has an outer surface at a first height outwardly from the active surface of the first microelectronic component and the inner length has a bond surface at a second height outwardly from the active surface of the first microelectronic component. The first height is greater than the second height. The first bond wire electrically couples the first terminal to the bond surface of the first lead and the second bond wire electrically couples the second terminal to the bond surface of the second lead. Each of the first and second bond wires has a maximum height outwardly from the active surface of the first microelectronic component that is no greater than the first height. The second microelectronic component has a back surface oriented toward the active surface of the first microelectronic component and an active surface oriented away from the first microelectronic component. The second microelectronic component is attached to the outer surface of the body of each of the first and second leads. The third bond wire electrically couples a third terminal carried on the active surface of the second microelectronic component to the third lead.
Another embodiment of the invention provides a microelectronic component assembly that includes a microelectronic component, a set of first leads, a set of second leads, first and second bond wires, a dielectric matrix, and an array of conductive structures. The microelectronic component has an active surface carrying an array of terminals. Each of the first leads has an inner length adjacent the array of terminals and an elongate body extending laterally outward in a first direction from the inner length. Each of the second leads has an inner length adjacent the array of terminals and an elongate body extending laterally outward in a different second direction from the inner length. The body of each of the first and second leads has a first thickness and an outer surface at a first height outwardly from the active surface of the microelectronic component. The inner length of each of the first and second leads has a second thickness and a bond surface at a second height outwardly from the active surface of the microelectronic component. The first thickness is greater than the second thickness and the first height is greater than the second height. The first bond wire electrically couples a first terminal of the array of terminals to the bond surface of one of the first leads. The second bond wire electrically couples a second terminal of the array of terminals to the bond surface of one of the second leads. Each of the first and second bond wires has a maximum height outwardly from the active surface of the microelectronic component that is no greater than the first height. The dielectric matrix covers the first and second bond wires and at least a portion of the inner length of each of the first and second leads. The dielectric matrix may have a maximum height outwardly from the active surface of the microelectronic component that is no greater than the first height. Each of the conductive structures may be carried on and in electrical contact with the outer surface of the body of one of the first leads or one of the second leads.
A microelectronic component assembly in accordance with yet another embodiment of the invention includes a microelectronic component, at least two leads, and at least two bond wires. The microelectronic component has an active surface and an array of terminals carried on the active surface. The leads are attached to the active surface of the microelectronic component, with each of the leads having an elongate body, a reduced-thickness inner length that is disposed adjacent the terminals of the microelectronic component, and an intermediate length disposed between the body and the inner length. The body has a first thickness and an outer surface at a first height outwardly from the active surface of the microelectronic component. The intermediate length has a second thickness and an intermediate surface at a second height outwardly from the active surface of the microelectronic component. The inner length has a third thickness and a bond surface at a third height outwardly from the active surface of the microelectronic component. The second thickness is less than the first thickness but greater than the third thickness. The second height is less than the first height but greater than the third height. Each of the bond wires electrically couples one of the terminals of the microelectronic component to the bond surface of one of the leads. In one implementation, each bond wire has a maximum height outwardly from the active surface of the microelectronic component that is no greater than the second height.
Another embodiment of the invention provides a microelectronic component assembly that includes first and second microelectronic components, first and second leads, and first, second, and third bond wires. The first microelectronic component has an active surface that carries a first terminal and a second terminal. Each of the first and second leads is attached to the active surface of the first microelectronic component and has an elongate body, a reduced-thickness inner length, and an intermediate length. The elongate body of each of the leads has an outer surface at a first height outwardly from the active surface of the first microelectronic component. The inner length is disposed adjacent the terminals of the microelectronic component and has a bond surface at a second height outwardly from the active surface of the first microelectronic component. The first height is greater than the second height. The intermediate length of each of the leads is disposed between the body and the inner length of that lead. The intermediate length has a mounting surface at a third height outwardly from the active surface of the first microelectronic component. The third height is less than the first height but greater than the second height. The first bond wire electrically couples the first terminal to the bond surface of the first lead and the second bond wire electrically couples the second terminal to the bond surface of the second lead. The second microelectronic component has a back surface oriented toward the active surface of the first microelectronic component and an active surface oriented away from the first microelectronic component. The back surface of the second microelectronic component is attached to the mounting surface of the intermediate length of each of the first and second leads. The third bond wire electrically couples a third terminal carried on the active surface of the microelectronic component to a third lead.
For ease of understanding, the following discussion is subdivided into five areas of emphasis. The first section discusses microelectronic component assemblies employing reduced-thickness lead frames in accordance with selected embodiments of the invention. The second section describes aspects of microelectronic component assemblies having stacked microelectronic components in other embodiments of the invention. The third section discusses other microelectronic component assemblies employing reduced-thickness lead frames in accordance with selected alternative embodiments of the invention. The fourth section describes alternative microelectronic component assemblies having stacked microelectronic components. Finally, the fifth section outlines methods in accordance with other aspects of the invention.
B. Microelectronic Component Assemblies Employing Reduced-Thickness Lead Frames
Turning first to
The microelectronic component 110 may comprise a single microelectronic component or a subassembly of separate microelectronic components. In the embodiment shown in
During manufacture, the leads 120 may comprise a portion of a lead frame that includes dozens of leads, including a set of first leads 120a and a set of second leads 120b. The inner edges 125a of each of the first leads 120a may be aligned with one another at a location extending along one side of the array of terminals 114. The inner edges 125b of the second leads 120b likewise may be aligned with one another at a location extending along the opposite side of the array of terminals 114. This defines a terminal gap 132 between the aligned inner edges 125a of the first leads 120a and the aligned inner edges 125b of the second leads 120b. As explained below, aspects of the microelectronic component assembly 101 allow the width W of the terminal gap 132 to be substantially smaller than the terminal gap width W encountered in conventional designs such as that shown in
Each of the leads 120 may be attached to the microelectronic component 110 by means of an adhesive member 135. In particular, a confronting surface 130a of each of the first leads 120a may be attached to the active surface 112 of the microelectronic component 110 by a first adhesive member 135a. Similarly, a confronting surface 130b of each of the second leads 120b may be attached to the active surface 112 of the microelectronic component 110 by a second adhesive member 135b. In one embodiment, each of the adhesive members 135 comprises a length of a conventional die attach tape, e.g., a polyimide film such as KAPTON. In another embodiment, each adhesive member 135 comprises a quantity of a thermoplastic resin or a curable epoxy.
Leads of conventional lead frames, e.g., the leads 30 in
The body 126a of each of the first leads 120a has an outer surface 128a spaced a first height H1 from the active surface 112 of the microelectronic component 110. The body 126b of each of the second leads 120b may have an outer surface 128b that is spaced the same first height H1 from the active surface 112. Hence, the outer surfaces 128 of the leads 120 may be generally coplanar within a common plane P spaced a height H1 from the active surface 112. The inner length 122a of the first lead 120a has a bond surface 124a and the inner length 122b of each of the second leads 120b has a bond surface 124b. Each of the bond surfaces 124 may be positioned at a second height H2 from the active surface 112. The first height H1 is greater than the second height H2, defining a step height Hs between the bond surface 124 and the body outer surface 128 of each of the leads 120.
The relative dimensions of these heights H1, H2, and Hs may be varied to meet the needs of a particular application. In the embodiments shown in
In one embodiment, the step height Hs is at least about 1 mil (about 25 microns). The inner length 122 desirably has a thickness of at least about 2 mils (about 50 microns), so the step height Hs may be about 2 mils less than the thickness of each lead body 126. In the exemplary embodiment noted above wherein the lead bodies 126 have a thickness of about 5 mils and the adhesive members 135 are about 4 mils thick, the step height Hs may be about 3 mils, positioning the bond surfaces 124 of the inner lengths 122 at a second height H2 of about 6 mils from the active surface 112. In one embodiment, the step height Hs is 40% or more of the thickness of the lead body 126. In one particular embodiment, the step height Hs is about 50-60% of the thickness of the lead body 126.
In the embodiment shown in
In the subassembly 102 of
In accordance with different embodiments of the invention, a microelectronic component subassembly 102 such as that illustrated in
The dielectric matrix 150 may be formed of any material that will provide suitable protection for the elements within the matrix 150. It is anticipated that most conventional, commercially available microelectronic packaging mold compounds may be useful as the dielectric matrix 150. Such mold compounds typically comprise a dielectric thermosetting plastic that can be heated to flow under pressure into a mold cavity of a transfer mold. In other embodiments, the dielectric matrix 150 may comprise a more flowable dielectric resin that can be applied by wicking under capillary action instead of delivered under pressure in a transfer mold.
As noted previously, terminal pitch and bond wire pitch in packaged microelectronic components (e.g., microelectronic component 10 of
If the terminal gap 34 in a conventional microelectronic component assembly 10 has too small of a gap width W, the mold compound will have to be delivered at a higher molding pressure to ensure that the mold compound reaches all the way to the active surface 22. In the embodiment shown in
The dielectric wire encapsulant 154, if employed, desirably at least partially covers each of the bond wires 140. In the embodiment shown in
In another embodiment, the dielectric wire encapsulant 154 has a maximum height that is lower than that shown in
In one embodiment, the dielectric wire encapsulant 154 is formed of a material that is different than the dielectric material that comprises the outer mold compound 155. The material selected for the dielectric wire encapsulant 154 may have a viscosity when initially applied that is less than the viscosity of the outer mold compound 155 when it is applied. In one particular implementation, the dielectric wire encapsulant 154 comprises a curable resin that can be applied at a lower viscosity to flow between and beneath the bond wires 140 and, if so desired, substantially fill the terminal gap 132, but can be hardened in a subsequent curing step. One such material is commercially available from Kulicke and Soffa of Willow Grove, Pa., U.S.A. under the trade name NOSWEEP.
Using a dielectric wire encapsulant 154 such as that described above can further reduce the problems associated with wire sweep. If the outer mold compound 155 is delivered under pressure in a transfer molding operation, for example, the dielectric wire encapsulant 154 will help stabilize the bond wires 140. In the embodiment shown in
If so desired, the dielectric matrix 210 may be formed integrally in a single step, e.g., via a transfer molding process. The dielectric matrix 210 shown in
The microelectronic component assembly 200 of
In the embodiments of
The microelectronic component assembly 200 optionally includes a protective cover 225 on the back surface 116 of the microelectronic component 110. This protective cover 225 helps protect the microelectronic component 110 during subsequent handling and manufacturing steps. The protective cover 225 may be applied as a fluid, e.g., an epoxy, or as a polymeric tape, e.g., a polyimide tape.
C. Microelectronic Component Assemblies Having Stacked Microelectronic Components
The microelectronic component assemblies 100 and 200 shown in
The back surface 316 of the second microelectronic component 310 is spaced from the active surface 112 of the first microelectronic component 110 by a distance equal to the height (H1 of
One or more third bond wires 330 may be used to electrically couple the terminals 314 of the second microelectronic component 310 to another microelectronic component, e.g., a PCB, via the leads 120. Each of the third bond wires 330 shown in
The microelectronic component assembly 300 shown in
The third microelectronic component 340 may be electrically coupled to the leads 120 by fourth bond wires 360. These bond wires 360 have a terminal end 362 attached to one of the terminals 344 and a lead end 364 attached to the confronting surface 130 of one of the leads 120. If so desired, each of the leads 120 may be connected to no more than one of the microelectronic components 110, 310 and 340. In another embodiment, though, at least one of the leads is connected to two or more of these microelectronic components 110, 310 and 340. If so desired, one of the leads 120 can be connected to the first microelectronic component 110 by a bond wire 140, connected to the second microelectronic component 310 by another bond wire 330, and connected to the third microelectronic component 340 by yet another bond wire 360. This single lead 120 would permit electrical communication between all three of the microelectronic components 110, 310 and 340.
The microelectronic component assembly 305 also includes a dielectric matrix 370. This dielectric matrix 370 is large enough to encompass not only the first and second microelectronic components 110 and 310, but also encompasses the third microelectronic component 340 and the fourth bond wires 360. This presents a single package that can incorporate three separate microelectronic components 110, 310 and 340. This can be used, for example, to provide a high density memory package, in which each of the microelectronic components may comprise the same type of memory element, e.g., SIMM, DRAM, or flash memory.
As discussed above, having the bond wires 140 recessed below the common plane P of the outer surfaces 128 of the leads 120 provides a thinner, more compact microelectronic component subassembly 102. This, in turn, allows the production of appreciably thinner microelectronic component assemblies (e.g., 300 or 305) incorporating multiple microelectronic components.
D. Alternative Microelectronic Component Assemblies Employing Reduced-Thickness Lead Frames
In the microelectronic component assembly 100 of
Turning first to
The microelectronic component assembly 400 includes a microelectronic component 410 having a back surface 416, an active surface 412, and an array of terminals 414 carried on the active surface 412. The microelectronic component 410 has a thickness between its back surface 416 and active surface 412 that is greater than the step height (Hs in
In the embodiment of
The microelectronic component assembly 400 also includes at least two bond wires 440, with each bond wire electrically coupling one of the terminals 414 of the microelectronic component 410 to the back surface 130 of one of the leads 120. Hence, a first bond wire 440a may have a terminal end 442 bonded to one of the terminals 414 of the microelectronic component 410 and a lead end 444 that is attached to the back surface 130a of the first lead 120a. Similarly, a second bond wire 440b has a terminal end 442 attached to another one of the terminals 414 of the microelectronic component 410 and has a lead end 444 that is attached to the back surface 130b of the second lead 120b. A terminal length 443 of each of the bond wires 440 may be positioned in a gap between the inner ends of the leads 120 and extend to a height outwardly from the active surface 412 at least as great as the thickness of the inner length 122 of the lead 120 to which it is attached.
In the illustrated embodiment, the outer surfaces 128 of the leads 120 are generally coplanar within a common outer plane and the back surfaces 130 of the leads 120 are generally coplanar within a common back plane. The active surface 412 of the microelectronic component 410 is positioned between these two planes. The back surface 416 of the microelectronic component 410 is spaced outwardly from the outer surfaces 128 of the leads 120. Consequently, at least a portion of the microelectronic component 410 is received within the step height Hs of each of the leads 120 and the overall thickness of the combination of the leads 120 and the microelectronic component 410 is reduced as compared to conventional lead-on-lead chip systems such as that shown in
The microelectronic component assembly 400 of
E. Microelectronic Component Assemblies Having Stacked Microelectronic Components and Multi-Stepped Leads.
Aspects of some of the embodiments outlined above may be combined to yield alternative reduced-height electronic component assemblies with stacked microelectronic components.
The microelectronic component assembly 500 shown in
In the illustrated embodiment, the intermediate length 525 of each of the leads 520 has a thickness that is greater than the thickness of the inner length 522, but less than the thickness of the body 526 of the same lead. Consequently, the mounting surface 523 of each of the leads is disposed at a mounting height outwardly from the active surface 112 of the first microelectronic component 110 that is greater than the corresponding height of the bond surface 524 with respect to the microelectronic component active surface 112, but less than the height of the lead outer surfaces 528 outwardly from the active surface 112.
The microelectronic component assembly 500 includes a second microelectronic component 511 having an active surface 512, which bears an array of terminals 514, and a back surface 516. The active surface 512 is oriented away from the first microelectronic component 110, whereas the back surface 516 is juxtaposed with, but spaced from, the active surface 112 of the first microelectronic component 110. The back surface 516 of the second microelectronic component may be attached to the mounting surfaces 523 of the leads 520 by two or more adhesive members 535a and 535b. These adhesive members 535 may be formed of materials similar to those discussed above in connection with the adhesive members 435 of the microelectronic component assembly 400 in
The bond wires 140 connecting the terminals 114 of the first microelectronic component 110 to the bond surfaces 524 of the lead inner lengths 522 have a maximum height outwardly from the first microelectronic component active surface 112 that is no greater than the height of the back surface 516 of the second microelectronic component 511 from the same active surface 112. More desirably, each of the first set of bond wires 140 has a height less than the height of the second microelectronic component back surface 516 to avoid direct contact between the bond wires 140 and the second microelectronic component 511. In one embodiment, each of the first set of bond wires 140 has a maximum height outwardly from the active surface 112 which is no greater than the height of the mounting surfaces 523 of the leads 520. This will leave a manufacturing tolerance at least as great as the thickness of the adhesive members 535 joining the second microelectronic component 511 to the leads 520.
In one embodiment, a dielectric wire encapsulant 372 may be disposed in the intercomponent gap 537 between the first and second microelectronic components 110 and 511. In the illustrated embodiment, the dielectric wire encapsulant 372 has a maximum height outwardly from the active surface 112 that is less than the height of the back surface 516 of the second microelectronic component 511. In another embodiment, the dielectric wire encapsulant 372 may substantially fill the intercomponent gap 537.
The terminals 514 of the second microelectronic component 511 may be coupled to one or more of the leads 520 by one or more second bond wires 530. In the illustrated embodiment, a terminal end 532 of each of the second bond wires 530 may be attached to one of the terminals 514 of the second microelectronic component and an opposite end of each of the second bond wires 530 may be attached to the outer surface 528 of one of the leads 520. In the illustrated embodiment, the active surface 512 of the second microelectronic component 511 is spaced a height outwardly from the active surface 112 of the first microelectronic component 110 that is greater than the corresponding height of the outer surfaces 528 of the leads 520. By positioning the back surface 516 of the second microelectronic component 511 below the outer surfaces 528 of the leads 520, this can still reduce the height of the microelectronic component assembly 500 as compared to the microelectronic component assembly 305 shown in
The microelectronic component assembly 500 may also include a dielectric matrix 570 that covers the first microelectronic component 110, the second microelectronic component 511, the third microelectronic component 340, the bond wires 140, 360, and 530, and a covered length of each of the leads 520. The dielectric matrix 570 may be formed of much the same materials and in much the same fashion as the dielectric matrix 150 of
F. Methods of Manufacturing Microelectronic Component Assemblies
As noted above, other embodiments of the invention provide methods of manufacturing microelectronic component assemblies. In the following discussion, reference is made to the particular microelectronic component assemblies shown in
In one embodiment, a method of the invention may include juxtaposing an active surface 112 of a microelectronic component 110 with leads 120 of a lead frame. Once the leads 120 are in the desired position with respect to the microelectronic component 110, the leads may be attached to the active surface 112 of the microelectronic component 110 with the array of terminals 114 extending longitudinally through the terminal gap 132. In one embodiment, this attachment is accomplished via a pair of adhesive members 135. If the adhesive members 135 each comprise a die attach tape, the first adhesive member 135a may be attached to the active surface 112 along a first longitudinal side of the array of terminals 114 and the second die attach tape 135b may be attached to the active surface 112 to extend longitudinally on the other side of the array of terminals. The leads may then be brought into contact with the outer surfaces of the adhesive members 135, thereby attaching the leads 120 to the microelectronic component 110.
In one embodiment, at least two bond wires 140 are used to electrically couple the microelectronic component 110 to selected ones of the leads 120. Using a conventional, commercially available wire bonding machine, a terminal end 142 of a first wire bond 140a may be attached to one of the terminals 114 of the microelectronic component 110 and the lead end 144 of the first bond wire 140a may be bonded to the bond surface 124 of one of the first leads 120a. In a similar fashion, a second bond wire 140b may be attached to a second terminal 114 of the microelectronic component 110 and to the bond surface 124 of one of the second leads 120b. In one embodiment, each of the bond wires 140 has a maximum height outwardly from the active surface 112 of the microelectronic component 110 that is less than the height H1, of the lead outer surface 128.
A dielectric matrix 150 may be used to protect the microelectronic component subassembly 102. In the embodiment shown in
In the embodiment shown in
To form the microelectronic component assembly 200 shown in
In forming a multi-component microelectronic component assembly 300 such as that shown in
Much the same technique used to produce the microelectronic component assembly 300 can be used to produce the microelectronic component assembly 305 of
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above-detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, whereas steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein can be combined to provide further embodiments.
In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above-detailed description explicitly defines such terms. While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200301338 | Mar 2003 | SG | national |
This application is a divisional of U.S. application Ser. No. 10/425,538, entitled “MICROELECTRONIC COMPONENT ASSEMBLIES EMPLOYING LEAD FRAMES HAVING REDUCED-THICKNESS INNER LENGTHS.” filed Apr. 28, 2003, the entirety of which is incorporated herein by reference. This application claims foreign priority benefits of Singapore Application No. 200301338-0 filed Mar. 4, 2003, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4968315 | Gatturna | Nov 1990 | A |
4996629 | Christiansen et al. | Feb 1991 | A |
5041901 | Kitano et al. | Aug 1991 | A |
5062565 | Wood et al. | Nov 1991 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5145099 | Wood et al. | Sep 1992 | A |
5153981 | Soto | Oct 1992 | A |
5252857 | Kane et al. | Oct 1993 | A |
5296744 | Liang et al. | Mar 1994 | A |
5311057 | McShane | May 1994 | A |
5359227 | Liang et al. | Oct 1994 | A |
5518957 | Kim | May 1996 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5696033 | Kinsman | Dec 1997 | A |
5714800 | Thompson | Feb 1998 | A |
5735030 | Orcutt | Apr 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
D394844 | Farnworth et al. | Jun 1998 | S |
5818698 | Corisis | Oct 1998 | A |
5826628 | Hamilton | Oct 1998 | A |
5834831 | Kubota et al. | Nov 1998 | A |
D402638 | Farnworth et al. | Dec 1998 | S |
5851845 | Wood et al. | Dec 1998 | A |
5879965 | Jiang et al. | Mar 1999 | A |
5883426 | Tokuno et al. | Mar 1999 | A |
5891753 | Akram | Apr 1999 | A |
5891797 | Farrar | Apr 1999 | A |
5893726 | Farnworth et al. | Apr 1999 | A |
5894218 | Farnworth et al. | Apr 1999 | A |
5898224 | Akram | Apr 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5946553 | Wood et al. | Aug 1999 | A |
5958100 | Farnworth et al. | Sep 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5989941 | Wensel | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5994784 | Ahmad | Nov 1999 | A |
RE36469 | Wood et al. | Dec 1999 | E |
5998860 | Chan et al. | Dec 1999 | A |
6008070 | Farnworth | Dec 1999 | A |
6008074 | Brand | Dec 1999 | A |
6018249 | Akram et al. | Jan 2000 | A |
6020624 | Wood et al. | Feb 2000 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6025728 | Hembree et al. | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6046496 | Corisis et al. | Apr 2000 | A |
6048744 | Corisis et al. | Apr 2000 | A |
6048755 | Jiang et al. | Apr 2000 | A |
6049125 | Brooks et al. | Apr 2000 | A |
6049129 | Yew et al. | Apr 2000 | A |
6051878 | Akram et al. | Apr 2000 | A |
6064194 | Farnworth et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6075288 | Akram | Jun 2000 | A |
6087203 | Eng et al. | Jul 2000 | A |
6087722 | Lee et al. | Jul 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6107680 | Hodges | Aug 2000 | A |
6117382 | Thummel | Sep 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6130474 | Corisis | Oct 2000 | A |
6133068 | Kinsman | Oct 2000 | A |
6133622 | Corisis et al. | Oct 2000 | A |
6137162 | Park et al. | Oct 2000 | A |
6148509 | Schoenfeld et al. | Nov 2000 | A |
6150710 | Corisis | Nov 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6153924 | Kinsman | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175149 | Akram | Jan 2001 | B1 |
6176416 | Tsai et al. | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6188232 | Akram et al. | Feb 2001 | B1 |
6198172 | King et al. | Mar 2001 | B1 |
6201304 | Moden | Mar 2001 | B1 |
6208519 | Jiang et al. | Mar 2001 | B1 |
6210992 | Tandy et al. | Apr 2001 | B1 |
6212767 | Tandy | Apr 2001 | B1 |
6214716 | Akram | Apr 2001 | B1 |
6215175 | Kinsman | Apr 2001 | B1 |
6218202 | Yew et al. | Apr 2001 | B1 |
6225689 | Moden et al. | May 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6232666 | Corisis et al. | May 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6239489 | Jiang | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6246110 | Kinsman et al. | Jun 2001 | B1 |
6247629 | Jacobson et al. | Jun 2001 | B1 |
6249052 | Lin | Jun 2001 | B1 |
6252308 | Akram et al. | Jun 2001 | B1 |
6252772 | Allen | Jun 2001 | B1 |
6255720 | Courtenay | Jul 2001 | B1 |
6258623 | Moden et al. | Jul 2001 | B1 |
6258624 | Corisis | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6265766 | Moden | Jul 2001 | B1 |
6271580 | Corisis | Aug 2001 | B1 |
6277671 | Tripard | Aug 2001 | B1 |
6281042 | Ahn et al. | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6284571 | Corisis et al. | Sep 2001 | B1 |
6285204 | Farnworth | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294825 | Bolken et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6297547 | Akram | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6303985 | Larson et al. | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6314639 | Corisis | Nov 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6326242 | Brooks et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326687 | Corisis | Dec 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329220 | Bolken et al. | Dec 2001 | B1 |
6329222 | Corisis et al. | Dec 2001 | B1 |
6329705 | Ahmad | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6331448 | Ahmad | Dec 2001 | B1 |
6331453 | Bolken et al. | Dec 2001 | B1 |
6332766 | Thummel | Dec 2001 | B1 |
6344976 | Schoenfeld et al. | Feb 2002 | B1 |
6365434 | Rumsey et al. | Apr 2002 | B1 |
6385049 | Chia-Yu et al. | May 2002 | B1 |
6387729 | Eng et al. | May 2002 | B2 |
6420782 | Eng et al. | Jul 2002 | B1 |
6429528 | King et al. | Aug 2002 | B1 |
6437586 | Robinson | Aug 2002 | B1 |
6441501 | Tseng et al. | Aug 2002 | B1 |
6451709 | Hembree | Sep 2002 | B1 |
6483044 | Ahmad | Nov 2002 | B1 |
6521993 | Masayuki et al. | Feb 2003 | B2 |
6548376 | Jiang | Apr 2003 | B2 |
6548757 | Russell et al. | Apr 2003 | B1 |
6552910 | Moon et al. | Apr 2003 | B1 |
6558600 | Williams et al. | May 2003 | B1 |
6560117 | Moon | May 2003 | B2 |
6561479 | Eldridge | May 2003 | B1 |
6564979 | Savaria | May 2003 | B2 |
6576494 | Farnworth | Jun 2003 | B1 |
6576495 | Jiang et al. | Jun 2003 | B1 |
6589820 | Bolken | Jul 2003 | B1 |
6590281 | Wu et al. | Jul 2003 | B2 |
6607937 | Corisis | Aug 2003 | B1 |
6614092 | Eldridge et al. | Sep 2003 | B2 |
6622380 | Grigg | Sep 2003 | B1 |
6638595 | Rumsey et al. | Oct 2003 | B2 |
6644949 | Rumsey et al. | Nov 2003 | B2 |
6650013 | Yin et al. | Nov 2003 | B2 |
6653173 | Bolken | Nov 2003 | B2 |
6656769 | Lee et al. | Dec 2003 | B2 |
6661104 | Jiang et al. | Dec 2003 | B2 |
6664139 | Bolken | Dec 2003 | B2 |
6670719 | Eldridge et al. | Dec 2003 | B2 |
6672325 | Eldridge | Jan 2004 | B2 |
6673649 | Hiatt et al. | Jan 2004 | B1 |
6841863 | Baik et al. | Jan 2005 | B2 |
7057281 | Peng et al. | Jun 2006 | B2 |
7250328 | Seng et al. | Jul 2007 | B2 |
20030127712 | Murakami et al. | Jul 2003 | A1 |
20040173899 | Peng et al. | Sep 2004 | A1 |
20060208366 | Seng | Sep 2006 | A1 |
20060231941 | Huang et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
0 204 102 | Dec 1986 | EP |
0 240 433 | Oct 1987 | EP |
0 753 891 | Jan 1997 | EP |
0 849 794 | Jun 1998 | EP |
0921569 | Jun 1999 | EP |
01309357 | Dec 1989 | JP |
2000-307032 | Nov 2000 | JP |
WO-02082527 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050012185 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10425538 | Apr 2003 | US |
Child | 10920117 | US |