The present disclosure relates to a microelectronics package and a process for making the same, and more particularly to a microelectronics package with vertically stacked flip-chip dies, and a packaging process to stack flip-chip dies vertically.
With the popularity of portable consumer electronic products, such as smart phones, tablet computers, and so forth, stacked-die assemblies become more and more attractive in microelectronics packages to achieve electronics densification in a small footprint. However, the thickness of each stacked semiconductor die may result in a large thickness of the microelectronics package, which may not meet low-profile requirements for modern portable products. Such low profile requirements limit significantly the number of the semiconductor dies that can be stacked.
In the microelectronics package, the stacked semiconductor dies may convey signals to each other by different coupling methods, such as magnetic coupling and capacitive coupling. The magnetic coupling may be used to transfer signals between non-electrical-connection stacked dies. However, the signal transfer function is critically dependent on the precise value of magnetic coupling coefficients, and such precision in the magnetic coupling coefficients imposes strict constraints on the alignment between stacked semiconductor dies. Accurate alignment techniques, such as optical alignment, are very expensive and not preferred for low cost products. Consequently, the capacitive coupling, which has well defined capacitive coupling coefficients and does not suffer significantly from shifts and misalignments in a stacked-die assembly process, is widely utilized to transfer signals between stacked dies. The key requirement for the capacitive coupling is to have electric connections between the stacked semiconductor dies.
Accordingly, there remains a need for improved microelectronics package designs, which accommodate the low-profile requirements for portable products and avoid superior alignment request in semiconductor die stacking assembly without expensive and complicated processes.
The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same. The disclosed microelectronics package includes a module board, a first thinned flip-chip die, a first mold compound, and a second flip-chip die. The first thinned flip-chip die includes a first device layer, a first through-die via, and a first package contact. Herein, a top portion of the first through-die via is exposed at the top of the first thinned flip-chip die. The first package contact is exposed at the bottom of the first thinned flip-chip die, and is coupled to the module board. The first device layer includes a first device component, which is electrically coupled to the first through-die via and the first package contact. The first mold compound resides over the module board, underfills the first thinned flip-chip die, encapsulates sides of the first thinned flip-chip die, and extends vertically beyond the first thinned flip-chip die 10T-B to define a first opening within the first mold compound and vertically above the first thinned flip chip die. The first mold compound does not reside over the first thinned flip chip die. In addition, the second flip-chip die, which has a smaller plane size than the first thinned flip-chip die, is stacked with the first thinned flip chip die, and resides within the first opening and over the first thinned flip chip die. The second flip-chip die includes a second device layer and a second package contact, which is exposed at the bottom of the second flip-chip die, and is coupled to the first through-die via. The second device layer includes a second device component, which is electrically coupled to the second package contact.
In one embodiment of the microelectronics package, the first thinned flip-chip die does not include a silicon handle layer and further includes a first stop layer, a first back-end-of-line (BEOL) BEOL layer, and a first redistribution structure with the first package contact. Herein, the first stop layer resides over the first device layer and is exposed at the top of the first thinned flip-chip die. The first BEOL layer resides underneath the first device layer. The first redistribution structure resides underneath the first BEOL layer and at the bottom of the first thinned flip-chip die. The first through-die via extends through the first
BEOL layer, the first device layer, and the first stop layer, and the top portion of the first through-die via extends beyond the first stop layer.
In one embodiment of the microelectronics package, the exposed top portion of the first through-die via has a thickness between 0 and 100 μm.
In one embodiment of the microelectronics package, the first through-die via is formed of one of a group consisting of platinum, gold, silver, copper, aluminum, tungsten, titanium, and electrically conductive epoxy.
In one embodiment of the microelectronics package, the second flip-chip die further includes a second stop layer, a silicon handle layer, a second BEOL layer, and a second redistribution structure with the second package contact. Herein, the second stop layer resides over the second device layer. The silicon handle layer resides over the second stop layer and at the top of the second flip-chip die. The second BEOL layer resides underneath the second device layer. The second redistribution structure resides underneath the second BEOL layer and at the bottom of the second flip-chip die. In addition, the microelectronics package further includes a second mold compound filling the first opening. The second mold compound resides over the first thinned flip-chip die, such that the second mold compound encapsulates the second package contact and the exposed top portion of the first through-die via, and underfills the second flip-chip die between the second redistribution structure and the first thinned flip-chip die. The second mold compound is directly surrounded by the first mold compound. The second mold compound fully encapsulates the second flip-chip die.
In one embodiment of the microelectronics package, the first mold compound and the second mold compound are formed from a same material.
In one embodiment of the microelectronics package, the first mold compound and the second mold compound have a thermal conductivity greater than 1 W/m·K, and have an electrical resistivity greater than 1E6 Ohm-cm.
In one embodiment of the microelectronics package, the second flip-chip die is a thinned flip-chip die that does not include a silicon handle layer and further includes a second stop layer, a second BEOL layer, and a second redistribution structure with the second package contact. Herein, the second stop layer resides over the second device layer and is exposed at the top of the second flip-chip die. The second BEOL layer resides underneath the second device layer. The second redistribution structure resides underneath the second BEOL layer and at the bottom of the second flip-chip die. In addition, the microelectronics package further includes a second mold compound and a third mold compound. The second mold compound resides over the first thinned flip-chip die, such that the second mold compound encapsulates the second package contact and the exposed top portion of the first through-die via, and underfills the second flip-chip die between the second redistribution structure and the first thinned flip-chip die. The second mold compound encapsulates sides of the second flip-chip die, and extends vertically beyond the second flip-chip die to define a second opening within the second mold compound and vertically above the second flip chip die. The second mold compound does not reside over the second flip chip die. The third mold compound resides over the second flip-chip die and fills the second opening. The second mold compound is directly surrounded by the first mold compound and the third mold compound is directly surrounded by the second mold compound.
In one embodiment of the microelectronics package, the first mold compound, the second mold compound, and the third mold compound are formed from a same material.
In one embodiment of the microelectronics package, the second flip-chip die is a thinned flip-chip die that does not include a silicon handle layer and further includes a second stop layer, a second BEOL layer, a second through-die via, and a second redistribution structure with the second package contact. Herein, the second stop layer resides over the second device layer and is exposed at the top of the second flip-chip die. The second BEOL layer resides underneath the second device layer. The second through-die via extends through the second BEOL layer, the second device layer, and the second stop layer, and a top portion of the second through-die via extends beyond the second stop layer and is exposed at the top of the second flip-chip die. The second redistribution structure resides underneath the second BEOL layer and at the bottom of the second flip-chip die. In addition, the microelectronics package further includes a second mold compound and a third flip-chip die. The second mold compound resides over the first thinned flip-chip die, such that the second mold compound encapsulates the second package contact and the exposed top portion of the first through-die via, and underfills the second flip-chip die between the second redistribution structure and the first thinned flip-chip die. The second mold compound encapsulates sides of the second flip-chip die, and extends vertically beyond the second flip-chip die to define a second opening within the second mold compound and vertically above the second flip chip die. The second mold compound does not reside over the second flip chip die and is directly surrounded by the first mold compound. The third flip-chip die is stacked with the second flip chip die, and resides within the second opening and over the second flip chip die. Herein, the third flip-chip die has a smaller plane size than the second flip-chip die. The third flip-chip die includes a third device layer and a third package contact, which is exposed at the bottom of the third flip-chip die, and is coupled to the second through-die via. The third device layer includes a third device component, which is electrically coupled to the third package contact.
In one embodiment of the microelectronics package, the third flip-chip die further includes a third stop layer, a silicon handle layer, a third BEOL layer, and a third redistribution structure with the third package contact. Herein, the third stop layer resides over the third device layer. The silicon handle layer resides over the third stop layer and at the top of the third flip-chip die. The third BEOL layer resides underneath the third device layer. The third redistribution structure resides underneath the third BEOL layer and at the bottom of the third flip-chip die. In addition, the microelectronics package further includes a third mold compound filling the second opening. As such, the third mold compound resides over the second flip-chip die, encapsulates the third package contact and the exposed top portion of the second through-die via, and underfills the third flip-chip die between the third redistribution structure and the second flip-chip die. The third mold compound fully encapsulates the third flip-chip die and is directly surrounded by the second mold compound.
In one embodiment of the microelectronics package, the third flip-chip die is a thinned flip-chip die that does not include a silicon handle layer and further includes a third stop layer, a third BEOL layer, and a third redistribution structure with the third package contact. Herein, the third stop layer resides over the third device layer and is exposed at the top of the third flip-chip die. The third BEOL layer resides underneath the third device layer. The third redistribution structure resides underneath the third BEOL layer and at the bottom of the third flip-chip die. In addition, the microelectronics package further includes a third mold compound and a fourth mold compound. The third mold compound resides over the second flip-chip die, such that the third mold compound encapsulates the third package contact and the exposed top portion of the second through-die via, and underfills the third flip-chip die between the third redistribution structure and the second flip-chip die. The third mold compound encapsulates sides of the third flip-chip die, and extends vertically beyond the third flip-chip die to define a third opening within the third mold compound and vertically above the third flip chip die. The third mold compound does not reside over the third flip chip die. The fourth mold compound resides over the third flip-chip die and fills the third opening. The third mold compound is directly surrounded by the second mold compound, and the fourth mold compound is directly surrounded by the third mold compound.
In one embodiment of the microelectronics package, the first mold compound, the second mold compound, the third mold compound, and the fourth mold compound are formed from a same material.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
It will be understood that for clear illustrations,
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same.
In detail, the device layer 12 with a thickness between 0.05 μm and 100 μm may be formed of silicon, silicon oxide, gallium arsenide, gallium nitride, silicon germanium, or the like. The device layer 12 includes an isolation region 24 and a device component 26 surrounded by the isolation region 24. The isolation region 24 may be formed by shallow trench isolation (STI). The device component 26 may be transistors, microelectromechanical systems (MEMS), metal-insulator-metal (MIM) capacitors, integrated passive devices (IPDs), filters (such as those built with surface acoustic wave and bulk acoustic wave technologies), inductors, transformers, transmission lines, and couplers. In different applications, there may be multiple device components embedded in the device layer 12, and surrounded by the isolation region 24 (not shown).
The stop layer 14 resides over the device layer 12 and may be configured to protect the device layer 12 against etching chemistries such as potassium hydroxide (KOH), sodium hydroxide (NaOH), and acetylcholine (ACH) in an etching process (more details in the following discussion). The stop layer 14 has a thickness between 10 nm and 10000 nm and may be formed of silicon oxide, silicon nitride, aluminum nitride, or other suitable materials against the etching chemistries. The silicon handle layer 16 resides over the stop layer 14, such that the stop layer 14 separates the device layer 12 from the silicon handle layer 16. Herein, the silicon handle layer 16 may have a thickness between 10 μm and 1000 μm, and a relatively low electrical resistivity less than 50 K Ohm-cm. In some applications, the silicon handle layer 16, the stop layer 14, and the device layer 12 may be formed from a silicon-on-insulator (SOI) structure, which refers to a structure including a silicon substrate, a silicon epitaxy layer, and a buried oxide (BOX) layer sandwiched between the silicon substrate and the silicon epitaxy layer. The silicon handle layer 16 is the silicon substrate of the SOI structure, the stop layer 14 is the BOX layer of the SOI structure, and the device layer 12 is formed from the silicon epitaxy layer of the SOI structure.
The BEOL layer 18 is underneath the device layer 12 and includes a number of inter-layer vias 28 and inter-layer dielectrics 30. Herein, the inter-layer vias 28 are electrically coupled to the device component 26, and partially encapsulated by the inter-layer dielectrics 30, such that a bottom surface portion of each inter-layer via 28 is exposed through the inter-layer dielectrics 30. The BEOL layer 18 may have a thickness between 0.5 μm and 20 μm. The inter-layer vias 28 may be formed of tungsten, copper, or other suitable conductive materials, and the inter-layer dielectrics 30 may be formed of silicon dioxide or other suitable dielectric films. The through-die via 20 extends through the BEOL layer 18, the device layer 12, and the stop layer 14, and into the silicon handle layer 16. The through-die via 20 may be formed of platinum, gold, silver, copper, aluminum, tungsten, titanium, electrically conductive epoxy, or other suitable materials. The through-die via 20 may have a shape of a cuboid, a cylinder, or a cone. In some applications, a top portion of the through-die via 20 may extend beyond the stop layer 14 and is encapsulated by the silicon handle layer 16. The top portion of the through-die via 20 into the silicon handle layer 16 may have a thickness between 0 and 100 μm. The top portion of the through-die via 20 may not extend beyond the silicon handle layer 16. In some applications, the top portion of the through-die via 20 may be coplanar with an upper surface of the stop layer 14 and may not extend beyond the stop layer 14. A bottom surface of the through-die via 20 is exposed through the BEOL layer 18, and the through-die via 20 does not extend into the redistribution structure 22. In different applications, there may be multiple through-die vias 20 included in the flip-chip die 10. Notice that, the through-die via 20 does not extend through portions where the inter-layer vias 28 and the device component 26 are located. As such the through-die via 20 extends through the inter-layer dielectrics 30 of the BEOL layer 18, but not the inter-layer via 28 of the BEOL layer 18, and extends through the isolation region 24 of the device layer 12, but not the device component 26.
For the purpose of this illustration, the redistribution structure 22 includes a first dielectric pattern 32 at the top, a number of redistribution interconnects 34, a second dielectric pattern 36, and a package contact 38. In practice, the redistribution structure 22 includes multiple package contacts 38 (not shown) for both electrical connection and mechanical support. The BEOL layer 18 resides directly over the redistribution structure 22, such that the BEOL layer 18 is in contact with the first dielectric pattern 32. Herein, the bottom surface portion of each inter-layer via 28 and the bottom surface portion of the through-die via 20 are exposed through the inter-layer dielectrics 30 and the first dielectric pattern 32. In one embodiment, a first redistribution interconnect 34-1 is electrically coupled to a first inter-layer via 28-1 and extends underneath the first dielectric pattern 32. A second redistribution interconnect 34-2 is electrically coupling a second inter-layer via 28-2 with the through-die via 20, and extends underneath the first dielectric pattern 32. The second dielectric pattern 36 is formed underneath the first dielectric pattern 32 to partially encapsulate the first redistribution interconnect 34-1 and to fully encapsulate the second redistribution interconnect 34-2. As such, a bottom surface portion of the first redistribution interconnect 34-1 is exposed through the second dielectric pattern 36, and no portion of the second redistribution interconnect 34-2 is exposed. The package contact 38 is electronically coupled to the first redistribution interconnect 34-1 through the second dielectric pattern 36. The package contact 38 is exposed at the bottom of the flip-chip die 10.
It is clear to those skilled in the art that a combination of the redistribution interconnects 34 and the inter-layer vias 28 may be configured to connect the device component 26 to the package contact 38, and/or connect the device component 26 to the through-die via 20. The first dielectric pattern 32 and the second dielectric pattern 36 may be formed from benzocyclobutene (BCB) or polyimide. The redistribution interconnects 34 may be formed of copper or other suitable metals. The package contact 38 may be copper pillar with solder alloys at the bottom for effective adhesion. In different applications, the BEOL layer 18 may include fewer or more inter-layer vias 28, and the redistribution structure 22 may include fewer or more redistribution interconnects 34. Further, the inter-layer vias 28 and the redistribution interconnects 34 may have different configurations, and provide different connections between the device component 26 and the through-die via 20, and/or between the device component 26 and the package contact 38.
Initially, a precursor die 40, which may be built as a product by semiconductor foundries, is provided as depicted in
Next, a cavity 42 is formed through the BEOL layer 18, the device layer 12, and the stop layer 14, and into the silicon handle layer 16, as depicted in
The through-die via 20 is then formed in the cavity 42 as depicted in
With reference to
Herein, the through-die via 20 is formed during a packaging portion of a bumping process. In some cases, the silicon foundries themselves may build the through-die via 20 within the precursor die 40 and make connections between the through-die via 20 and the BEOL layer 18. Consequently, during the following bumping process, there is no second redistribution interconnect 34-2 needed to couple the through-die via 20 to the BEOL layer 18 (not shown).
In detail, the module board 46 may be a multilayer laminate or ceramic substrate. The module board 46 includes a board body 56 and a board via structure 58 extending over, through and underneath the board body 56. The first thinned flip-chip die 10T-F, which has essentially the same configuration as the thinned flip-chip die 10T shown in
The first mold compound 48 resides over the module board 46, such that the first mold compound 48 encapsulates the first package contact 38-F and the exposed portion of the board via structure 58 over the board body 56, and underfills the first thinned flip-chip die 10T-F between the first redistribution structure 22-F and the module board 46. In addition, the first mold compound 48 encapsulates the sides of the first thinned flip-chip die 10T-F (only one side of the first thinned flip-chip die 10T-F is shown) and extends vertically beyond the first thinned flip-chip die 10T-F to define a first opening 60 (only a portion of the first opening 60 is shown) within the first mold compound 48 and vertically above the first thinned flip-chip die 10T-F. The first mold compound 48 does not reside over the first thinned flip-chip die 10T-F.
The second thinned flip-chip die 10T-S, which has essentially the same configuration as the first thinned flip-chip die 10T-F, resides over the first thinned flip-chip die 10T-F and within the first opening 60 (for simplification and clarity, only selective components of the second thinned flip-chip die 10T-S are labeled with reference numbers). Herein, the second thinned flip-chip die 10T-S has a same number and order of layers as the first thinned flip-chip die 10T-F and includes a second device layer 12-S with a second device component 26-S, a second stop layer 14-S, a second BEOL layer 18-S, a second through-die via 20-S, and a second redistribution structure 22-S with a second package contact 38-S. As such, the second stop layer 14-S and a top portion of the second through-die via 20-S are exposed at the top of the second thinned flip-chip die 10T-S. The second package contact 38-S is exposed at the bottom of the second thinned flip-chip die 10T-S, and is attached to the first through-die via 20-F. Both the second through-die via 20-S and the second package contact 38-S are electrically coupled to the second device component 26-S within the second device layer 12-S. However, the second thinned flip-chip die 10T-S has a smaller plane size than the first thinned flip-chip die 10T-F. Each layer of the second thinned flip-chip die 10T-S and the corresponding layer of the first thinned flip-chip die 10T-F may have a same or different number of electronic components (such as device component, inter-layer vias, redistribution interconnects, and/or package contacts). Further, the second thinned flip-chip die 10T-S and the first thinned flip-chip die 10T-F may have a same or different number of through-die vias 20.
The second mold compound 50 resides over the first thinned flip-chip die 10T-F, such that the second mold compound 50 encapsulates the second package contact 38-S and the exposed top portion of the first through-die via 20-F, and underfills the second thinned flip-chip die 10T-S between the second redistribution structure 22-S and the first thinned flip-chip die 10T-F. In addition, the second mold compound 50 encapsulates the sides of the second thinned flip-chip die 10T-S (only one side of the second thinned flip-chip die 10T-S is shown) and extends vertically beyond the second thinned flip-chip die 10T-S to define a second opening 62 (only a portion of the second opening 62 is shown) within the second mold compound 50 and vertically above the second thinned flip-chip die 10T-S. Herein, the second opening 62 is confined within the first opening 60. The second mold compound 50 does not reside over the second thinned flip-chip die 10T-S, and is directly surrounded by the first mold compound 48. In some applications, a portion of the second mold compound 50 may reside over an upper surface of the first mold compound 48.
The third thinned flip-chip die 10T-T, which has essentially the same configuration as the second thinned flip-chip die 10T-S, resides over the second thinned flip-chip die 10T-S and within the second opening 62 (for simplification and clarity, only selective components of the third thinned flip-chip die 10T-T are labeled with reference numbers). Since the second opening 62 is confined within the first opening 60, the third thinned flip-chip die 10T-T also resides within the first opening 60. Herein, the third thinned flip-chip die 10T-T has a same number and order of layers as the second thinned flip-chip die 10T-S, and includes a third device layer 12-T with a third device component 26-T, a third stop layer 14-T, a third BEOL layer 18-T, and a third redistribution structure 22-T with a third package contact 38-T. As such, the third stop layer 14-T is exposed at the top of the third thinned flip-chip die 10T-T. The third package contact 38-T is exposed at the bottom of the third thinned flip-chip die 10T-T, attached to the second through-die via 20-S, and electrically coupled to the third device component 26-T within the third device layer 12-T. However, the third thinned flip-chip die 10T-T has a smaller plane size than the second thinned flip-chip die 10T-S. Each layer of the third thinned flip-chip die 10T-T and the corresponding layer of the second thinned flip-chip die 10T-S may have a same or different number of electronic components (such as device component, inter-layer vias, redistribution interconnects, and/or package contacts). Further, the third thinned flip-chip die 10T-T is desired to have no through-die via and corresponding redistribution interconnect(s). In one embodiment, if there is no second thinned flip-chip die 10T-S, the third thinned flip-chip die 10T-T is directly stacked to the first thinned flip-chip die 10T-F, where the third package contact 38-T is attached to the first through-die via 20-F (not shown).
The third mold compound 52 resides over the second thinned flip-chip die 10T-S, such that the third mold compound 52 encapsulates the third package contact 38-T and the exposed top portion of the second through-die via 20-S, and underfills the third thinned flip-chip die 10T-T between the third redistribution structure 22-T and the second thinned flip-chip die 10T-S. In addition, the third mold compound 52 encapsulates the sides of the third thinned flip-chip die 10T-T (only one side of the third thinned flip-chip die 10T-T is shown) and extends vertically beyond the third thinned flip-chip die 10T-T to define a third opening 64 (only a portion of the third opening 64 is shown) within the third mold compound 52 and vertically above the third thinned flip-chip die 10T-T. Herein, the third opening 64 is confined within the middle opening 62. The third mold compound 52 does not reside over the third thinned flip-chip die 10T-T, and is directly surrounded by the second mold compound 50. In some applications, a portion of the third mold compound 52 may reside over an upper surface of the second mold compound 50.
The fourth mold compound 54 resides over the third thinned flip-chip die 10T-T and fills the third opening 64. In some applications, an upper surface of the fourth mold compound 54 is coplanar with an upper surface of the third mold compound 52. In some applications, a portion of the fourth mold compound 54 may reside over the upper surface of the third mold compound 52 (not shown).
Herein, the first, second, third and fourth mold compounds 48, 50, 52, and 54 may be formed of a same or different material. The second, third and fourth mold compounds 50, 52, and 54 may have a thermal conductivity greater than 1 W/m·K, or greater than 10 W/m·K. In addition, the second, third and fourth mold compounds 50, 52, and 54 may have an electrical resistivity greater than 1E6 Ohm-cm. Unlike the second, third and fourth mold compounds 50, 52, and 54, the first mold compound 48 does not have thermal conductivity or electrical resistivity requirements. However, from mechanical aspects, the first, second, third and fourth mold compounds 48, 50, 52, and 54 are desired to be formed of the same material to minimize mechanical stresses between the stacked thinned flip-chip dies. The first, second, third, and fourth mold compounds 48, 50, 52, and 54 may be formed of polymer, such as thermoset molding compounds.
The third flip-chip die 10-T, which has essentially the same configuration as the flip-chip die 10 shown in
Herein, the third flip-chip die 10-T has a same number and order of layers as the flip-chip die 10, and includes the third device layer 12-T with the third device component 26-T, the third stop layer 14-T, a third silicon handle layer 16-T, the third BEOL layer 18-T, and the third redistribution structure 22-T with the third package contact 38-T. As such, the third silicon handle layer 16-T is at the top of the third flip-chip die 10-T. The third package contact 38-T is exposed at the bottom of the third flip-chip die 10-T, attached to the second through-die via 20-S, and electrically coupled to the third device component 26-T within the third device layer 12-T. However, each layer of the third flip-chip die 10-T and the corresponding layer of the flip-chip die 10 may have a same or different number of electronic components (such as device component, inter-layer vias, redistribution interconnects, and/or package contacts). In one embodiment, the third flip-chip die 10-T is desired to include no through-die via and corresponding redistribution interconnect(s).
Further, in the alternative semiconductor package 66, the third mold compound 52 fills the second opening 62, such that the third mold compound 52 resides over the second thinned flip-chip die 10T-S, encapsulates the third package contact 38-T and the exposed top portion of the second through-die via 20-S, underfills the third thinned flip-chip die 10T-T between the third redistribution structure 22-T and the second thinned flip-chip die 10T-S, and is directly surrounded by the second mold compound 50. In addition, the third mold compound 52 also fully encapsulates the third flip-chip die 10-T (only an edge portion of the third flip-chip die 10-T is shown). In some applications, a portion of the third mold compound 52 may reside over the upper surface of the second mold compound 50. In one embodiment, if there is no second thinned flip-chip die 10T-S, the third flip-chip die 10-T is directly stacked to the first thinned flip-chip die 10T-F, where the third package contact 38-T of the third flip-chip die 10-T is attached to the first through-die via 20-F of the first thinned flip-chip die 10T-F (not shown).
Initially, a first flip-chip die 10-F (only an edge portion of the first flip-chip die 10-F is shown) is attached to the module board 46 as depicted in
Next, the first mold compound 48 (only a portion of the first mold compound 48 is shown) is applied over the module board 46 as illustrated in
The first mold compound 48 is thinned down to expose a backside of the first silicon handle layer 16-F, as shown in
A second flip-chip die 10-S (only an edge portion of the second flip-chip die 10-S is shown) is then placed within the first opening 60 and stacked on the first thinned flip chip die 10T-F, as shown in
Next, the second mold compound 50 (only a portion of the second mold compound 50 is shown) is applied over the first thinned flip-chip die 10T-F as illustrated in
The second mold compound 50 is thinned down to expose a backside of the second silicon handle layer 16-S, as shown in
Removing the second silicon handle layer 16-S may be provided by an etching process with a wet/dry etchant chemistry, which may be TMAH, KOH, ACH, NaOH, or the like.
The third flip-chip die 10-T (only an edge portion of the third flip-chip die 10-T is shown) is then placed within the second opening 62 and stacked to the second thinned flip chip die 10T-S, as shown in
Next, the third mold compound 52 (only a portion of the third mold compound 52 is shown) is applied over the second thinned flip-chip die 10T-S as illustrated in
In some applications, the packaging process may end here and the alternative semiconductor package 66 is complete. In some applications, the third mold compound 52 is further thinned down to expose a backside of the third silicon handle layer 16-T, as shown in
Lastly, the fourth mold compound 54 (only a portion of the fourth mold compound 54 is shown) is applied over the third thinned flip-chip die 10T-T to fill the top opening 64, as illustrated in
In one embodiment, if there is no second thinned flip-chip die 10T-S, the packaging steps shown in 6E-6H can be omitted. The third thinned flip-chip die 10T-T or the third flip-chip die 10-T may be directly stacked to the first thinned flip-chip die 10T-F. The third package contact 38-T is attached to the first through-die via 20-F of the first thinned flip-chip die 10T-F.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims priority to and is a continuation of U.S. patent application Ser. No. 16/004,961, filed Jun. 11, 2018, now U.S. Pat. No. 10,804,246, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4093562 | Kishimoto | Jun 1978 | A |
4366202 | Borovsky | Dec 1982 | A |
5013681 | Godbey et al. | May 1991 | A |
5061663 | Bolt et al. | Oct 1991 | A |
5069626 | Patterson et al. | Dec 1991 | A |
5362972 | Yazawa et al. | Nov 1994 | A |
5391257 | Sullivan et al. | Feb 1995 | A |
5459368 | Onishi et al. | Oct 1995 | A |
5646432 | Iwaki et al. | Jul 1997 | A |
5648013 | Uchida et al. | Jul 1997 | A |
5699027 | Tsuji et al. | Dec 1997 | A |
5709960 | Mays et al. | Jan 1998 | A |
5729075 | Strain | Mar 1998 | A |
5831369 | Fürbacher et al. | Nov 1998 | A |
5920142 | Onishi et al. | Jul 1999 | A |
6072557 | Kishimoto | Jun 2000 | A |
6084284 | Adamic, Jr. | Jul 2000 | A |
6154366 | Ma et al. | Nov 2000 | A |
6154372 | Kalivas et al. | Nov 2000 | A |
6235554 | Akram et al. | May 2001 | B1 |
6236061 | Walpita | May 2001 | B1 |
6268654 | Glenn et al. | Jul 2001 | B1 |
6271469 | Ma et al. | Aug 2001 | B1 |
6377112 | Rozsypal | Apr 2002 | B1 |
6423570 | Ma et al. | Jul 2002 | B1 |
6426559 | Bryan et al. | Jul 2002 | B1 |
6441498 | Song | Aug 2002 | B1 |
6446316 | Fürbacher et al. | Sep 2002 | B1 |
6578458 | Akram et al. | Jun 2003 | B1 |
6649012 | Masayuki et al. | Nov 2003 | B2 |
6703688 | Fitzergald | Mar 2004 | B1 |
6713859 | Ma | Mar 2004 | B1 |
6841413 | Liu et al. | Jan 2005 | B2 |
6864156 | Conn | Mar 2005 | B1 |
6902950 | Ma et al. | Jun 2005 | B2 |
6943429 | Glenn et al. | Sep 2005 | B1 |
6964889 | Ma et al. | Nov 2005 | B2 |
6992400 | Tikka et al. | Jan 2006 | B2 |
7042072 | Kim et al. | May 2006 | B1 |
7049692 | Nishimura et al. | May 2006 | B2 |
7109635 | McClure et al. | Sep 2006 | B1 |
7183172 | Lee et al. | Feb 2007 | B2 |
71900064 | Wakabayashi et al. | Mar 2007 | |
7238560 | Sheppard et al. | Jul 2007 | B2 |
7279750 | Jobetto | Oct 2007 | B2 |
7288435 | Aigner et al. | Oct 2007 | B2 |
7307003 | Reif et al. | Dec 2007 | B2 |
7393770 | Wood et al. | Jul 2008 | B2 |
7402901 | Hatano et al. | Jul 2008 | B2 |
7427824 | Iwamoto et al. | Sep 2008 | B2 |
7489032 | Jobetto | Feb 2009 | B2 |
7596849 | Carpenter et al. | Oct 2009 | B1 |
7619347 | Bhattacharjee | Nov 2009 | B1 |
7635636 | McClure et al. | Dec 2009 | B2 |
7714535 | Yamazaki et al. | May 2010 | B2 |
7749882 | Kweon et al. | Jul 2010 | B2 |
7790543 | Abadeer et al. | Sep 2010 | B2 |
7843072 | Park et al. | Nov 2010 | B1 |
7855101 | Furman et al. | Dec 2010 | B2 |
7868419 | Kerr et al. | Jan 2011 | B1 |
7910405 | Okada et al. | Mar 2011 | B2 |
7960218 | Ma et al. | Jun 2011 | B2 |
8004089 | Jobetto | Aug 2011 | B2 |
8183151 | Lake | May 2012 | B2 |
8420447 | Tay et al. | Apr 2013 | B2 |
8503186 | Lin et al. | Aug 2013 | B2 |
8643148 | Lin et al. | Feb 2014 | B2 |
8658475 | Kerr | Feb 2014 | B1 |
8664044 | Jin et al. | Mar 2014 | B2 |
8772853 | Hong et al. | Jul 2014 | B2 |
8791532 | Graf et al. | Jul 2014 | B2 |
8802495 | Kim et al. | Aug 2014 | B2 |
8803242 | Marino et al. | Aug 2014 | B2 |
8816407 | Kim et al. | Aug 2014 | B2 |
8835978 | Mauder et al. | Sep 2014 | B2 |
8906755 | Hekmatshoartabari et al. | Dec 2014 | B1 |
8921990 | Park et al. | Dec 2014 | B2 |
8927968 | Cohen et al. | Jan 2015 | B2 |
8941248 | Lin et al. | Jan 2015 | B2 |
8963321 | Lenniger et al. | Feb 2015 | B2 |
8983399 | Kawamura et al. | Mar 2015 | B2 |
9064883 | Meyer et al. | Jun 2015 | B2 |
9165793 | Wang et al. | Oct 2015 | B1 |
9214337 | Carroll et al. | Dec 2015 | B2 |
9349700 | Hsieh et al. | May 2016 | B2 |
9368429 | Ma et al. | Jun 2016 | B2 |
9406637 | Wakisaka et al. | Aug 2016 | B2 |
9461001 | Tsai et al. | Oct 2016 | B1 |
9520428 | Fujimori | Dec 2016 | B2 |
9530709 | Leipold et al. | Dec 2016 | B2 |
9613831 | Morris et al. | Apr 2017 | B2 |
9646856 | Meyer et al. | May 2017 | B2 |
9653428 | Hiner et al. | May 2017 | B1 |
9786586 | Shih | Oct 2017 | B1 |
9812350 | Costa | Nov 2017 | B2 |
9824951 | Leipold et al. | Nov 2017 | B2 |
9824974 | Gao et al. | Nov 2017 | B2 |
9859254 | Yu et al. | Jan 2018 | B1 |
9875971 | Bhushan et al. | Jan 2018 | B2 |
9941245 | Skeete et al. | Apr 2018 | B2 |
10134837 | Fanelli et al. | Nov 2018 | B1 |
10727212 | Moon et al. | Jul 2020 | B2 |
20010004131 | Masayuki et al. | Jun 2001 | A1 |
20020070443 | Mu et al. | Jun 2002 | A1 |
20020074641 | Towle et al. | Jun 2002 | A1 |
20020127769 | Ma et al. | Sep 2002 | A1 |
20020127780 | Ma et al. | Sep 2002 | A1 |
20020137263 | Towle et al. | Sep 2002 | A1 |
20020185675 | Furukawa | Dec 2002 | A1 |
20030207515 | Tan et al. | Nov 2003 | A1 |
20040021152 | Nguyen et al. | Feb 2004 | A1 |
20040164367 | Park | Aug 2004 | A1 |
20040166642 | Chen et al. | Aug 2004 | A1 |
20040219765 | Reif et al. | Nov 2004 | A1 |
20050037595 | Nakahata | Feb 2005 | A1 |
20050077511 | Fitzergald | Apr 2005 | A1 |
20050079686 | Aigner et al. | Apr 2005 | A1 |
20050212419 | Vazan et al. | Sep 2005 | A1 |
20060057782 | Gardes et al. | Mar 2006 | A1 |
20060099781 | Beaumont et al. | May 2006 | A1 |
20060105496 | Chen et al. | May 2006 | A1 |
20060108585 | Gan et al. | May 2006 | A1 |
20060228074 | Lipson et al. | Oct 2006 | A1 |
20060261446 | Wood et al. | Nov 2006 | A1 |
20070020807 | Geefay et al. | Jan 2007 | A1 |
20070045738 | Jones et al. | Mar 2007 | A1 |
20070069393 | Asahi et al. | Mar 2007 | A1 |
20070075317 | Kato et al. | Apr 2007 | A1 |
20070121326 | Nall et al. | May 2007 | A1 |
20070158746 | Ohguro | Jul 2007 | A1 |
20070181992 | Lake | Aug 2007 | A1 |
20070190747 | Humpston et al. | Aug 2007 | A1 |
20070194342 | Kinzer | Aug 2007 | A1 |
20070252481 | Iwamoto et al. | Nov 2007 | A1 |
20070276092 | Kanae et al. | Nov 2007 | A1 |
20080050852 | Hwang et al. | Feb 2008 | A1 |
20080050901 | Kweon et al. | Feb 2008 | A1 |
20080164528 | Cohen et al. | Jul 2008 | A1 |
20080265978 | Englekirk | Oct 2008 | A1 |
20080272497 | Lake | Nov 2008 | A1 |
20080277800 | Hwang et al. | Nov 2008 | A1 |
20080315372 | Kuan et al. | Dec 2008 | A1 |
20090008714 | Chae | Jan 2009 | A1 |
20090010056 | Kuo et al. | Jan 2009 | A1 |
20090014856 | Knickerbocker | Jan 2009 | A1 |
20090090979 | Zhu et al. | Apr 2009 | A1 |
20090179266 | Abadeer et al. | Jul 2009 | A1 |
20090243097 | Koroku et al. | Oct 2009 | A1 |
20090261460 | Kuan et al. | Oct 2009 | A1 |
20090302484 | Lee et al. | Dec 2009 | A1 |
20100003803 | Oka et al. | Jan 2010 | A1 |
20100012354 | Hedin et al. | Jan 2010 | A1 |
20100029045 | Ramanathan et al. | Feb 2010 | A1 |
20100045145 | Tsuda | Feb 2010 | A1 |
20100081232 | Furman et al. | Apr 2010 | A1 |
20100081237 | Wong et al. | Apr 2010 | A1 |
20100109122 | Ding et al. | May 2010 | A1 |
20100120204 | Kunimoto | May 2010 | A1 |
20100127340 | Sugizaki | May 2010 | A1 |
20100173436 | Ouellet et al. | Jul 2010 | A1 |
20100200919 | Kikuchi | Aug 2010 | A1 |
20100314637 | Kim et al. | Dec 2010 | A1 |
20110003433 | Harayama et al. | Jan 2011 | A1 |
20110026232 | Lin et al. | Feb 2011 | A1 |
20110036400 | Murphy et al. | Feb 2011 | A1 |
20110062549 | Lin | Mar 2011 | A1 |
20110068433 | Kim et al. | Mar 2011 | A1 |
20110102002 | Riehl et al. | May 2011 | A1 |
20110171792 | Chang et al. | Jul 2011 | A1 |
20110272800 | Chino | Nov 2011 | A1 |
20110272824 | Pagaila | Nov 2011 | A1 |
20110294244 | Hattori et al. | Dec 2011 | A1 |
20120003813 | Chuang et al. | Jan 2012 | A1 |
20120045871 | Lee et al. | Feb 2012 | A1 |
20120068276 | Lin et al. | Mar 2012 | A1 |
20120094418 | Grama et al. | Apr 2012 | A1 |
20120098074 | Lin et al. | Apr 2012 | A1 |
20120104495 | Zhu et al. | May 2012 | A1 |
20120119346 | Im et al. | May 2012 | A1 |
20120153393 | Liang et al. | Jun 2012 | A1 |
20120168863 | Zhu et al. | Jul 2012 | A1 |
20120256260 | Cheng et al. | Oct 2012 | A1 |
20120292700 | Khakitirooz et al. | Nov 2012 | A1 |
20120299105 | Cai et al. | Nov 2012 | A1 |
20130001665 | Zhu et al. | Jan 2013 | A1 |
20130015429 | Hong et al. | Jan 2013 | A1 |
20130049205 | Meyer et al. | Feb 2013 | A1 |
20130099315 | Zhu et al. | Apr 2013 | A1 |
20130105966 | Kelkar et al. | May 2013 | A1 |
20130147009 | Kim | Jun 2013 | A1 |
20130155681 | Nall et al. | Jun 2013 | A1 |
20130196483 | Dennard et al. | Aug 2013 | A1 |
20130200456 | Zhu et al. | Aug 2013 | A1 |
20130221493 | Kim et al. | Aug 2013 | A1 |
20130280826 | Scanlan et al. | Oct 2013 | A1 |
20130299871 | Mauder et al. | Nov 2013 | A1 |
20140015131 | Meyer et al. | Jan 2014 | A1 |
20140035129 | Stuber et al. | Feb 2014 | A1 |
20140134803 | Kelly et al. | May 2014 | A1 |
20140168014 | Chih et al. | Jun 2014 | A1 |
20140197530 | Meyer et al. | Jul 2014 | A1 |
20140210314 | Bhattacharjee et al. | Jul 2014 | A1 |
20140219604 | Hackler, Sr. et al. | Aug 2014 | A1 |
20140252566 | Kerr et al. | Sep 2014 | A1 |
20140252567 | Carroll et al. | Sep 2014 | A1 |
20140264813 | Lin et al. | Sep 2014 | A1 |
20140264818 | Lowe, Jr. et al. | Sep 2014 | A1 |
20140306324 | Costa et al. | Oct 2014 | A1 |
20140327003 | Fuergut et al. | Nov 2014 | A1 |
20140327150 | Jung et al. | Nov 2014 | A1 |
20140346573 | Adam et al. | Nov 2014 | A1 |
20140356602 | Oh et al. | Dec 2014 | A1 |
20150015321 | Dribinsky et al. | Jan 2015 | A1 |
20150108666 | Engelhardt et al. | Apr 2015 | A1 |
20150115416 | Costa et al. | Apr 2015 | A1 |
20150130045 | Tseng et al. | May 2015 | A1 |
20150136858 | Finn et al. | May 2015 | A1 |
20150197419 | Cheng et al. | Jul 2015 | A1 |
20150235990 | Cheng et al. | Aug 2015 | A1 |
20150235993 | Cheng et al. | Aug 2015 | A1 |
20150243881 | Sankman et al. | Aug 2015 | A1 |
20150255368 | Costa | Sep 2015 | A1 |
20150262844 | Meyer et al. | Sep 2015 | A1 |
20150279789 | Mahajan et al. | Oct 2015 | A1 |
20150311132 | Kuo et al. | Oct 2015 | A1 |
20150364344 | Yu et al. | Dec 2015 | A1 |
20150380394 | Jang et al. | Dec 2015 | A1 |
20150380523 | Hekmatshoartabari et al. | Dec 2015 | A1 |
20160002510 | Champagne et al. | Jan 2016 | A1 |
20160056544 | Garcia et al. | Feb 2016 | A1 |
20160079137 | Leipold et al. | Mar 2016 | A1 |
20160093580 | Scanlan et al. | Mar 2016 | A1 |
20160100489 | Costa et al. | Apr 2016 | A1 |
20160126111 | Leipold et al. | May 2016 | A1 |
20160126196 | Leipold et al. | May 2016 | A1 |
20160133591 | Hong et al. | May 2016 | A1 |
20160155706 | Yoneyama et al. | Jun 2016 | A1 |
20160284568 | Morris et al. | Sep 2016 | A1 |
20160284570 | Morris et al. | Sep 2016 | A1 |
20160343592 | Costa et al. | Nov 2016 | A1 |
20160343604 | Costa et al. | Nov 2016 | A1 |
20160347609 | Yu et al. | Dec 2016 | A1 |
20160362292 | Chang et al. | Dec 2016 | A1 |
20170024503 | Connelly | Jan 2017 | A1 |
20170032957 | Costa et al. | Feb 2017 | A1 |
20170033026 | Ho et al. | Feb 2017 | A1 |
20170053938 | Whitefield | Feb 2017 | A1 |
20170077028 | Maxim | Mar 2017 | A1 |
20170098587 | Leipold et al. | Apr 2017 | A1 |
20170190572 | Pan et al. | Jul 2017 | A1 |
20170200648 | Lee et al. | Jul 2017 | A1 |
20170207350 | Leipold et al. | Jul 2017 | A1 |
20170263539 | Gowda et al. | Sep 2017 | A1 |
20170271200 | Costa | Sep 2017 | A1 |
20170323804 | Costa et al. | Nov 2017 | A1 |
20170323860 | Costa et al. | Nov 2017 | A1 |
20170334710 | Costa et al. | Nov 2017 | A1 |
20170358511 | Costa et al. | Dec 2017 | A1 |
20180019184 | Costa et al. | Jan 2018 | A1 |
20180019185 | Costa et al. | Jan 2018 | A1 |
20180044169 | Hatcher, Jr. et al. | Feb 2018 | A1 |
20180044177 | Vandemeer et al. | Feb 2018 | A1 |
20180047653 | Costa et al. | Feb 2018 | A1 |
20180138082 | Costa et al. | May 2018 | A1 |
20180145678 | Maxim et al. | May 2018 | A1 |
20180166358 | Costa et al. | Jun 2018 | A1 |
20180269188 | Yu et al. | Sep 2018 | A1 |
20190013254 | Costa et al. | Jan 2019 | A1 |
20190013255 | Costa et al. | Jan 2019 | A1 |
20190043812 | Leobandung | Feb 2019 | A1 |
20190074263 | Costa et al. | Mar 2019 | A1 |
20190074271 | Costa et al. | Mar 2019 | A1 |
20190172842 | Whitefield | Jun 2019 | A1 |
20190189599 | Baloglu et al. | Jun 2019 | A1 |
20190287953 | Moon et al. | Sep 2019 | A1 |
20190304910 | Fillion | Oct 2019 | A1 |
20200058541 | Konishi et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
102956468 | Mar 2013 | CN |
103811474 | May 2014 | CN |
103872012 | Jun 2014 | CN |
2996143 | Mar 2016 | EP |
S505733 | Feb 1975 | JP |
H11-220077 | Aug 1999 | JP |
200293957 | Mar 2002 | JP |
2002252376 | Sep 2002 | JP |
2006005025 | Jan 2006 | JP |
2007227439 | Sep 2007 | JP |
2008235490 | Oct 2008 | JP |
2008279567 | Nov 2008 | JP |
2009026880 | Feb 2009 | JP |
2009530823 | Aug 2009 | JP |
2011243596 | Dec 2011 | JP |
2007074651 | Jul 2007 | WO |
2018083961 | May 2018 | WO |
2018125242 | Jul 2018 | WO |
Entry |
---|
Notice of Allowance for U.S. Appl. No. 15/287,273, dated Jun. 30, 2017, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jul. 21, 2017, 5 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Sep. 7, 2017, 5 pages. |
Extended European Search Report for European Patent Application No. 15184861.1, dated Jan. 25, 2016, 6 pages. |
Office Action of the Intellectual Property Office for Taiwanese Patent Application No. 104130224, dated Jun. 15, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/885,202, dated Apr. 14, 2016, 5 pages. |
Final Office Action for U.S. Appl. No. 14/885,202, dated Sep. 27, 2016, 7 pages. |
Advisory Action for U.S. Appl. No. 14/885,202, dated Nov. 29, 2016, 3 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jan. 27, 2017, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jul. 24, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,243, dated Aug. 31, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated May 27, 2011, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated Nov. 4, 2011, 20 pages. |
Search Report for Japanese Patent Application No. 2011-229152, created Feb. 22, 2013, 58 pages. |
Office Action for Japanese Patent Application No. 2011-229152, drafted May 10, 2013, 7 pages. |
Final Rejection for Japanese Patent Application No. 2011-229152, drafted Oct. 25, 2013, 2 pages. |
International Search Report and Written Opinion for PCT/US2016/045809, dated Oct. 7, 2016, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/652,867, dated Oct. 10, 2017, 5 pages. |
Bernheim et al., “Chapter 9: Lamination,” Tools and Manufacturing Engineers Handbook (book), Apr. 1, 1996, Society of Manufacturing Engineers, p. 9-1. |
Fillion R. et al., “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” Electronic Components and Technology Conference, vol. 1, May 1994, IEEE, 5 pages. |
Hienawy, Mahmoud Al et al., “New Thermoplastic Polymer Substrate for Microstrip Antennas at 60 GHz,” German Microwave Conference, Mar. 15-17, 2010, Berlin, Germany, IEEE, pp. 5-8. |
International Search Report and Written Opinion for PCT/US2017/046744, dated Nov. 27, 2017, 17 pages. |
International Search Report and Written Opinion for PCT/US2017/046758, dated Nov. 16, 2017, 19 pages. |
International Search Report and Written Opinion for PCT/US2017/046779, dated Nov. 29, 2017, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 15/616,109, dated Oct. 23, 2017, 16 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 14/851,652, dated Oct. 20, 2017, 5 pages. |
Final Office Action for U.S. Appl. No. 15/262,457, dated Dec. 19, 2017, 12 pages. |
Supplemental Notice of Allowability and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/287,273, dated Oct. 18, 2017, 6 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Nov. 2, 2017, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/491,064, dated Jan. 2, 2018, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/872,910, dated Nov. 17, 2017, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/648,082, dated Nov. 29, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/652,826, dated Nov. 3, 2017, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/229,780, dated Oct. 3, 2017, 7 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jan. 17, 2018, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/498,040, dated Feb. 20, 2018, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/387,855, dated Jan. 16, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/795,915, dated Feb. 23, 2018, 6 pages. |
International Preliminary Report on Patentability for PCT/US2016/045809, dated Feb. 22, 2018, 8 pages. |
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/261,457, dated Feb. 28, 2018, 5 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Feb. 23, 2018, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/676,415, dated Mar. 27, 2018, 14 page. |
Non-Final Office Action for U.S. Appl. No. 15/676,621, dated Mar. 26, 2018, 16 pages. |
Notice of Allowance for U.S. Appl. No. 15/795,915, dated Jun. 15, 2018, 7 pages. |
Final Office Action for U.S. Appl. No. 15/387,855, dated May 24, 2018, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Apr. 19, 2018, 10 pages. |
Notice of Allowance for U.S. Appl. No. 15/491,064, dated Apr. 30, 2018, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Jun. 26, 2018, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/616,109, dated Jul. 2, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/676,621, dated Jun. 5, 2018, 8 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034645, dated Sep. 19, 2019, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034699, dated Oct. 29, 2019, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/992,613, dated Sep. 23, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated Oct. 9, 2019, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 15/816,637, dated Oct. 31, 2019, 10 pages. |
Advisory Action for U.S. Appl. No. 15/873,152, dated Oct. 11, 2019, 3 pages. |
Raskin, Jean-Pierre et al., “Substrate Crosstalk Reduction Using SOI Technology,” IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, pp. 2252-2261. |
Rong, B., et al., “Surface-Passivated High-Resistivity Silicon Substrates for RFICs,” IEEE Electron Device Letters, vol. 25, No. 4, Apr. 2004, pp. 176-178. |
Sherman, Lilli M., “Plastics that Conduct Heat,” Plastics Technology Online, Jun. 2001, Retrieved May 17, 2016, http://www.ptonline.com/articles/plastics-that-conduct-heat, Gardner Business Media, Inc., 5 pages. |
Tombak, A., et al., “High-Efficiency Cellular Power Amplifiers Based on a Modified LDMOS Process on Bulk Silicon and Silicon-On-Insulator Substrates with Integrated Power Management Circuitry,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 1862-1869. |
Yamanaka, A., et al., “Thermal Conductivity of High-Strength Polyetheylene Fiber and Applications for Cryogenic Use,” International Scholarly Research Network, ISRN Materials Science, vol. 2011, Article ID 718761, May 25, 2011, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 18, 2013, 20 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Nov. 26, 2013, 21 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/852,648, dated Jan. 27, 2014, 4 pages. |
Advisory Action for U.S. Appl. No. 13/852,648, dated Mar. 7, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jun. 16, 2014, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Sep. 26, 2014, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jan. 22, 2015, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jun. 24, 2015, 20 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Oct. 22, 2015, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Feb. 19, 2016, 12 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 20, 2016, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 14/315,765, dated Jan. 2, 2015, 6 pages. |
Final Office Action for U.S. Appl. No. 14/315,765, dated May 11, 2015, 17 pages. |
Advisory Action for U.S. Appl. No. 14/315,765, dated Jul. 22, 2015, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 14/260,909, dated Mar. 20, 2015, 20 pages. |
Final Office Action for U.S. Appl. No. 14/260,909, dated Aug. 12, 2015, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 14/261,029, dated Dec. 5, 2014, 15 pages. |
Notice of Allowance for U.S. Appl. No. 14/261,029, dated Apr. 27, 2015, 10 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 14/261,029, dated Nov. 17, 2015, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 14/529,870, dated Feb. 12, 2016, 14 pages. |
Notice of Allowance for U.S. Appl. No. 14/529,870, dated Jul. 15, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/293,947, dated Apr. 7, 2017, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/293,947, dated Aug. 14, 2017, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/715,830, dated Apr. 13, 2016, 16 pages. |
Final Office Action for U.S. Appl. No. 14/715,830, dated Sep. 6, 2016, 13 pages. |
Advisory Action for U.S. Appl. No. 14/715,830, dated Oct. 31, 2016, 6 pages. |
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Feb. 10, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Mar. 2, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/851,652, dated Oct. 7, 2016, 10 pages. |
Notice of Allowance for U.S. Appl. No. 14/851,652, dated Apr. 11, 2017, 9 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Jul. 24, 2017, 6 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Sep. 6, 2017, 5 pages. |
Notice of Allowance for U.S. Appl. No. 14/959,129, dated Oct. 11, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/173,037, dated Jan. 10, 2017, 8 pages. |
Final Office Action for U.S. Appl. No. 15/173,037, dated May 2, 2017, 13 pages. |
Advisory Action for U.S. Appl. No. 15/173,037, dated Jul. 20, 2017, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/173,037, dated Aug. 9, 2017, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Feb. 15, 2017, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Jun. 6, 2017, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/229,780, dated Jun. 30, 2017, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Aug. 7, 2017, 10 pages. |
Notice of Allowance for U.S. Appl. No. 15/408,560, dated Sep. 25, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/287,202, dated Aug. 25, 2017, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/353,346, dated May 23, 2017, 15 pages. |
Notice of Allowance for U.S. Appl. No. 15/353,346, dated Sep. 25, 2017, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/676,693, dated May 3, 2018, 14 pages. |
Notice of Allowance for U.S. Appl. No. 15/789,107, dated May 18, 2018, 8 pages. |
Final Office Action for U.S. Appl. No. 15/616,109, dated Apr. 19, 2018, 18 pages. |
Notice of Allowance for U.S. Appl. No. 15/676,693, dated Jul. 20, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/695,629, dated Jul. 11, 2018, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/387,855, dated Aug. 10, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/914,538, dated Aug. 1, 2018, 9 pages. |
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Sep. 28, 2018, 16 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 15/676,693, dated Aug. 29, 2018, 5 pages. |
Final Office Action for U.S. Appl. No. 15/601,858, dated Nov. 26, 2018, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 15/945,418, dated Nov. 1, 2018, 13 pages. |
First Office Action for Chinese Patent Application No. 201510746323.X, dated Nov. 2, 2018, 12 pages. |
Advisory Action for U.S. Appl. No. 15/601,858, dated Jan. 22, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Jan. 9, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Jan. 11, 2019, 8 pages. |
International Preliminary Report on Patentability for PCT/US2017/046744, dated Feb. 21, 2019, 11 pages. |
International Preliminary Report on Patentability for PCT/US2017/046758, dated Feb. 21, 2019, 11 pages. |
International Preliminary Report on Patentability for PCT/US2017/046779, dated Feb. 21, 2019, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/992,613, dated Feb. 27, 2019, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 15/695,579, dated Jan. 28, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/992,639, dated May 9, 2019, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/695,579, dated Mar. 20, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated May 13, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Apr. 17, 2019, 9 pages. |
Tsai, Chun-Lin, et al., “Smart GaN platform; Performance & Challenges,” IEEE International Electron Devices Meeting, 2017, 4 pages. |
Tsai, Szu-Ping., et al., “Performance Enhancement of Flip-Chip Packaged AIGAaN/GaN HEMTs by Strain Engineering Design,” IEEE Transcations on Electron Devices, vol. 63, Issue 10, Oct. 2016, pp. 3876-3881. |
Final Office Action for U.S. Appl. No. 15/992,613, dated May 24, 2019, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/873,152, dated May 24, 2019, 11 pages. |
Notice of Allowance for U.S. Appl. No. 16/168,327, dated Jun. 28, 2019, 7 pages. |
Lin, Yueh, Chin, et al., “Enhancement-Mode GaN MIS-HEMTs With LaHfOx Gate Insulator for Power Application,” IEEE Electronic Device Letters, vol. 38, Issue 8, 2017, 4 pages. |
Shukla, Shishir, et al., “GaN-on-Si Switched Mode RF Power Amplifiers for Non-Constant Envelope Signals,” IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, 2017, pp. 88-91. |
International Search Report and Written Opinion for International Patent Application No. PCT/US19/25591, dated Jun. 21, 2019, 7 pages. |
Notice of Reasons for Refusal for Japanese Patent Application No. 2015-180657, dated Jul. 9, 2019, 4 pages. |
Notice of Allowance for U.S. Appl. No. 15/601,858, dated Aug. 16, 2019, 8 pages. |
Advisory Action for U.S. Appl. No. 15/992,613, dated Jul. 29, 2019, 3 pages. |
Final Office Action for U.S. Appl. No. 15/873,152, dated Aug. 8, 2019, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/975,230, dated Jul. 22, 2019, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Aug. 28, 2019, 8 pages. |
Ali, K. Ben et al., “RF SOI CMOS Technology on Commercial Trap-Rich High Resistivity SOI Wafer,” 2012 IEEE International SOI Conference (SOI), Oct. 1-4, 2012, Napa, California, IEEE, 2 pages. |
Anderson, D.R., “Thermal Conductivity of Polymers,” Sandia Corporation, Mar. 8, 1966, pp. 677-690. |
Author Unknown, “96% Alumina, thick-film, as fired,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/DataSheetaspx?MatGUID=3996a734395a4870a9739076918c4297&ckck=1. |
Author Unknown, “CoolPoly D5108 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 2 pages. |
Author Unknown, “CoolPoly D5506 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Dec. 12, 2013, 2 pages. |
Author Unknown, “CoolPoly D-Series—Thermally Conductive Dielectric Plastics,” Cool Polymers, Retrieved Jun. 24, 2013, http://coolpolymers.com/dseries.asp, 1 page. |
Author Unknown, “CoolPoly E2 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Aug. 8, 2007, http://www.coolpolymers.com/FilesiDS/Datasheet_e2.pdf, 1 page. |
Author Unknown, “CoolPoly E3605 Thermally Conductive Polyamide 4,6 (PA 4,6),” Cool Polymers, Inc., Aug. 4, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e3605.pdf. |
Author Unknown, “CoolPoly E5101 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 27, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e5101.pdf. |
Author Unknown, “CoolPoly E5107 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 1 page, http://coolpolymers.com/Files/DS/Datasheet_e5107.pdf. |
Author Unknown, “CoolPoly Selection Tool,” Cool Polymers, Inc., 2006, 1 page, http://www.coolpolymers.com/select.asp?Application=Substrates+%26+Electcronic_Packaging. |
Author Unknown, “CoolPoly Thermally Conductive Plastics for Dielectric Heat Plates,” Cool Polymers, Inc., 2006, 2 pages, http://www.coolpolymers/com/heatplate.asp. |
Author Unknown, “CoolPoly Thermally Conductive Plastics for Substrates and Electronic Packaging,” Cool Polymers, Inc., 2005, 1 page. |
Author Unknown, “Electrical Properties of Plastic Materials,” Professional Plastics, Oct. 28, 2011, http://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf, accessed Dec. 18, 2014, 4 pages. |
Author Unknown, “Fully Sintered Ferrite Powders,” Powder Processing and Technology, LLC, Date Unknown, 1 page. |
Author Unknown, “Heat Transfer,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heattrans.html, 2 pages. |
Author Unknown, “Hysol UF3808,” Henkel Corporation, Technical Data Sheet, May 2013, 2 pages. |
Author Unknown, “PolyOne Therma-Tech™ LC-5000C TC LCP,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/datasheettext.aspx?matguid=89754e8bb26148d083c5ebb05a0cbff1. |
Author Unknown, “Sapphire Substrate,” from CRC Handbook of Chemistry and Physics, Date Unknown, 1 page. |
Author Unknown, “Thermal Properties of Plastic Materials,” Professional Plastics, Aug. 21, 2010, http://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf, accessed Dec. 18, 2014, 4 pages. |
Author Unknown, “Thermal Properties of Solids,” PowerPoint Presentation, No Date, 28 slides, http://www.phys.huji.ac.il/Phys_Hug/Lectures/77602/PHONONS_2_thermal.pdf. |
Author Unknown, “Thermal Resistance & Thermal Conductance,” C-Therm Technologies Ltd., accessed Sep. 19, 2013, 4 pages, http://www.ctherm.com/products/tci_thermal_conductivity/helpful_links_tools/thermal_resistance_thermal_conductance/. |
Author Unknown, “The Technology: Akhan's Approach and Solution: The Miraj Diamond™ Platform,” 2015, accessed Oct. 9, 2016, http://www.akhansemi.com/technology.html#the-miraj-diamond-platform, 5 pages. |
Beck, D., et al., “CMOS on FZ-High Resistivity Substrate for Monolithic Integration of SiGe-RF-Circuitry and Readout Electronics,” IEEE Transactions on Electron Devices, vol. 44, No. 7, Jul. 1997, pp. 1091-1101. |
Botula, A., et al., “A Thin-Film SOI 180nm CMOS RF Switch Technology,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF '09), Jan. 2009, pp. 1-4. |
Carroll, M., et al., “High-Resistivity SOI CMOS Cellular Antenna Switches,” Annual IEEE Compound Semiconductor Integrated Circuit Symposium, (CISC 2009), Oct. 2009, pp. 1-4. |
Colinge, J.P., et al., “A Low-Voltage, Low-Power Microwave SOI MOSFET,” Proceedings of 1996 IEEE International SOI Conference, Oct. 1996, pp. 128-129. |
Costa, J. et al., “Integrated MEMS Switch Technology on SOI-CMOS,” Proceedings of Hilton Head Workshop: A Solid-State Sensors, Actuators and Microsystems Workshop, Jun. 1-5, 2008, Hilton Head Island, SC, IEEE, pp. 300-903. |
Costa, J. et al., “Silicon RFCMOS SOI Technology with Above-IC MEMS Integration for Front End Wireless Applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2008, BCTM 2008, IEEE, pp. 204-207. |
Costa, J., “RFCMOS SOI Technology for 4G Reconfigurable RF Solutions,” Session WEC1-2, Proceedings of the 2013 IEEE International Microwave Symposium, 4 pages. |
Esfeh, Babak Kazemi et al., “RF Non-Linearities from Si-Based Substrates,” 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Apr. 2-4, 2014, IEEE, 3 pages. |
Finne, R. M. et al., “A Water-Amine-Complexing Agent System for Etching Silicon,” Journal of the Electrochemical Society, vol. 114, No. 9, Sep. 1967, pp. 965-970. |
Gamble, H.S. et al., “Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 10, Oct. 1999, pp. 395-397. |
Huang, Xingyi, et al., “A Review of Dielectric Polymer Composites with High Thermal Conductivity,” IEEE Electrical nsulation Magazine, vol. 27, No. 4, Jul./Aug. 2011, pp. 8-16. |
Joshi, V. et al., “MEMS Solutions in RF Applications,” 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Oct. 2013, IEEE, 2 pages. |
Jung, Boo Yang, et al., “Study of FCMBGA with Low CTE Core Substrate,” 2009 Electronic Components and Technology Conference, May 2009, pp. 301-304. |
Kerr, D.C., et al., “Identification of RF Harmonic Distortion on Si Substrates and Its Reduction Using a Trap-Rich Layer,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF 2008), Jan. 2008, pp. 151-154. |
Lederer, D., et al., “New Substrate Passivation Method Dedicated to HR SOI Wafer Fabrication with Increased Substrate Resistivity,” IEEE Electron Device Letters, vol. 26, No. 11, Nov. 2005, pp. 805-807. |
Lederer, Dimitri et al., “Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers,” Solid-State Electronics, vol. 47, No. 11, Nov. 2003, pp. 1927-1936. |
Lee, Kwang Hong et al., “Integration of III-V materials and SI-CMOS through double layer transfer process,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015, pp. 030209-1 to 030209-5. |
Lee, Tzung-Yin, et al., “Modeling of SOI FET for RF Switch Applications,” IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, Anaheim, CA, IEEE, pp. 479-482. |
Lu, J.Q. et al., “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,” Proceedings of the IEEE 2003 International Interconnect Technology Conference, Jun. 2-4, 2003, pp. 74-76. |
Mamunya, YE.P., et al., “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, vol. 38, 2002, pp. 1887-1897. |
Mansour, Raafat R., “RF MEMS-CMOS Device Integration,” IEEE Microwave Magazine, vol. 14, No. 1, Jan. 2013, pp. 39-56. |
Mazuré, C. et al., “Advanced SOI Substrate Manufacturing,” 2004 IEEE International Conference on Integrated Circuit Design and Technology, 2004, IEEE, pp. 105-111. |
Micak, R. et al., “Photo-Assisted Electrochemical Machining of Micromechanical Structures,” Proceedings of Micro Electro Mechanical Systems, Feb. 7-10, 1993, Fort Lauderdale, FL, IEEE, pp. 225-229. |
Morris, Art, “Monolithic Integration of RF-MEMS within CMOS,” 2015 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Apr. 27-29, 2015, IEEE, 2 pages. |
Niklaus, F., et al., “Adhesive Wafer Bonding,” Journal of Applied Physics, vol. 99, No. 3, 031101 (2006), 28 pages. |
Parthasarathy, S., et al., “RF SOI Switch Fet Design and Modeling Tradeoffs for GSM Applications,” 2010 23rd International Conference on VLSI Design, (VLSID '10), Jan. 2010, pp. 194-199. |
Raskin, J.P., et al., “Coupling Effects in High-Resistivity SIMOX Substrates for VHF and Microwave Applications,” Proceedings of 1995 IEEE International SOI Conference, Oct. 1995, pp. 62-63. |
Office Action for Japanese Patent Application No. 2018-526613, dated Nov. 5, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/873,152, dated Dec. 10, 2019, 9 pages. |
Yin, Haizhou, et al., “Fully-depleted Strained-Si on Insulator NMOSFETs without Relaxed SiGe Buffers,” International Electron Devices Meeting, Dec. 2003, San Francisco, California, IEEE, 4 pages. |
Fiorenza, et al., “Detailed Simulation Study of a Reverse Embedded-SiGE Strained-Silicon MOSFET,” IEEE Transactions on Electron Devices, vol. 55, Issue 2, Feb. 2008, pp. 640-648. |
Fiorenza, et al., “Systematic study of thick strained silicon NMOSFETs for digital applications,” International SiGE Technology and Device Meeting, May 2006, IEEE, 2 pages. |
Huang, et al., “Carrier Mobility Enhancement in Strained Si-On-Insulator Fabricated by Wafer Bonding,” Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 57-58. |
Nan, et al., “Effect of Germanium content on mobility enhancement for strained silicon FET,” Student Conference on Research and Development, Dec. 2017, IEEE, pp. 154-157. |
Sugii, Nobuyuki, et al., “Performance Enhancement of Strained-SI MOSFETs Fabricated on a Chemical-Mechanical Polished SiGE Substrate,” IEEE Transactions on Electron Devices, vol. 49, Issue 12, Dec. 2002, pp. 2237-2243. |
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Apr. 15, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/816,637, dated Apr. 2, 2020, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Feb. 5, 2020, 5 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Apr. 1, 2020, 4 pages. |
Final Office Action for U.S. Appl. No. 16/204,214, dated Mar. 6, 2020, 14 pages. |
Advisory Action for U.S. Appl. No. 16/204,214, dated Apr. 15, 2020, 3 pages. |
Decision of Rejection for Japanese Patent Application No. 2015-180657, dated Mar. 17, 2020, 4 pages. |
Intention to Grant for European Patent Application No. 17757646.9, dated Feb. 27, 2020, 55 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/063460, dated Feb. 25, 2020, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055317, dated Feb. 6, 2020, 17 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055321, dated Jan. 27, 2020, 23 pages. |
Quayle Action for U.S. Appl. No. 16/703,251, dated Jun. 26, 2020, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/873,152, dated May 11, 2020, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated May 20, 2020, 4 pages. |
Notice of Allowability for U.S. Appl. No. 15/695,579, dated Jun. 25, 2020, 4 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Apr. 30, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/368,210, dated Jun. 17, 2020, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 16/374,125, dated Jun. 26, 2020, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated May 19, 2020, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 16/454,687, dated May 15, 2020, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 16/454,809, dated May 15, 2020, 12 pages. |
Welser, J. et al., “Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron Device Letters, vol. 15, No. 3, Mar. 1994, IEEE, pp. 100-102. |
Examination Report for European Patent Application No. 16751791.1, dated Apr. 30, 2020, 15 pages. |
Notification of Reasons for Refusal for Japanese Patent Application No. 2018-526613, dated May 11, 2020, 6 pages. |
Examination Report for Singapore Patent Application No. 11201901193U, dated May 26, 2020, 6 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014665, dated May 13, 2020, 17 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014666, dated Jun. 4, 2020, 18 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014667, dated May 18, 2020, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014669, dated Jun. 4, 2020, 15 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014662, dated May 7, 2020, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 16/390,496, dated Jul. 10, 2020, 17 pages. |
First Office Action for Chinese Patent Application No. 201680058198.6, dated Dec. 29, 2020, 14 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/034645, dated Jan. 14, 2021, 9 pages. |
Notice of Allowance U.S. Appl. No. 16/374,125, dated Dec. 16, 2020, 9 pages. |
Final Office Action for U.S. Appl. No. 16/390,496, dated Dec. 24, 2020, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 16/426,527, dated Nov. 20, 2020, 7 pages. |
Final Office Action for U.S. Appl. No. 16/204,214, dated Nov. 30, 2020, 15 pages. |
Notice of Allowance U.S. Appl. No. 16/454,809, dated Nov. 25, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/427,019, dated Nov. 19, 2020, 19 pages. |
Advisory Action for U.S. Appl. No. 16/390,496, dated Mar. 1, 2021, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/204,214, dated Feb. 17, 2021, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/678,573, dated Feb. 19, 2021, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/678,602, dated Feb. 19, 2021, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20190378821 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16004961 | Jun 2018 | US |
Child | 16527702 | US |