This application relates to the following U.S. Patent Application: Application Ser. No. 61/256,090, filed Oct. 29, 2009, and entitled “Copper Bump Joint Structures with Improved Crack Resistance,” which application is hereby incorporated herein by reference.
This disclosure relates generally to integrated circuits and more particularly to flip-chip bond structures.
In the formation of semiconductor chips/wafers, integrated circuit devices, such as transistors are formed at the surfaces of semiconductor substrates in the semiconductor chips/wafers. Interconnect structures are then formed over the integrated circuit devices. Metal or solder bumps are formed on the surfaces of the semiconductor chips/wafers, so that the integrated circuit devices can be accessed.
In the packaging of the semiconductor chips, the semiconductor chips are often bonded with package substrates using flip-chip bonding. Solders are used to join the metal bumps in the semiconductor chips to bond pads in the package substrates. Conventionally, eutectic solder materials containing lead (Pb) and tin (Sn) were used for bonding the metal bumps. For example, a commonly used lead-containing eutectic solder has about 63% tin (Sn) and 37% lead (Pb). This combination gives the solder material a suitable melting point and a low electrical resistivity. Further, the eutectic solders have a good crack-resistance.
Lead is a toxic material and hence lead-free solder bumps are preferred. Solutions to replace lead-containing solders with lead-free solders are thus explored. However, the commonly known lead-free solders, such as SnAg, SnAgCu, and their inter-metallic components, are too brittle and hence suffer from the cracking problem. As a result, the solder joints formed of lead-free solders are often not reliable enough and cannot pass reliability tests, such as thermal cycles.
Solder cracking is typically caused by stress. The coefficient of thermal expansion (CTE) mismatch between materials in the package assemblies is one of the main reasons causing the stress. For example, silicon substrates typically have CTE equal to about 3 ppm/° C., low-k dielectric materials may have CTEs equal to about 20 ppm/° C., while the package substrates may have CTEs equal to about 17 ppm/° C. The significant difference in CTEs results in stress being applied to the structure when a thermal change occurs. The use of copper in the metal bumps further worsens the problem. Since copper is rigid, a high stress may be applied on the solders adjoining the copper bumps and hence the solders are more prone to the cracking. For example, the process window for the reflow, which indicates how many repeated reflows the solders can endure without incurring significant cracks, may be too narrow for mass production of the integrated circuits. Also, the electro-migration resistance of the resulting bonding structure is low.
In accordance with one aspect of the embodiment, an integrated circuit structure includes a first work piece and a second work piece. The first work piece includes a copper bump at a main surface of the first work piece and having a first dimension; and a nickel-containing barrier layer over and adjoining the copper bump. The second work piece is bonded to the first work piece and includes a bond pad at a main surface of the second work piece; and a solder mask at the main surface of the second work piece and having a solder resist opening with a second dimension exposing a portion of the bond pad. A ratio of the first dimension to the second dimension is greater than about 1. Further, a solder region electrically connects the copper bump to the bond pad, with a vertical distance between the bond pad and the copper bump being greater than about 30 μm.
Other embodiments are also disclosed.
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative and do not limit the scope of the disclosure.
A novel integrated circuit structure is provided in accordance with an embodiment. The variations of the embodiment are discussed. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
Referring to
Metal pad 28 is formed over interconnect structure 12. Metal pad 28 may comprise aluminum, copper (Cu), silver (Ag), gold (Au), nickel (Ni), tungsten (W), alloys thereof, and/or multi-layers thereof. Metal pad 28 may be electrically connected to semiconductor devices 14, for example, through the underlying interconnection structure 12. Passivation layer 30 may be formed to cover edge portions of metal pad 28. In an exemplary embodiment, passivation layer 30 is formed of polyimide or other known dielectric materials, such as silicon oxide, silicon nitride, and multi-layers thereof.
Under bump metallurgy (UBM) 32 is formed on, and electrically connected to, metal pad 28. UBM 32 may include a copper layer and a titanium layer (not shown). Copper bump 34 is formed on UBM 32. In an embodiment, copper bump 34 is formed by plating. An exemplary plating process includes forming a UBM layer, forming a mask on the UBM layer, patterning the mask to form an opening, plating copper bump 34 in the opening, and removing the mask and resulting uncovered portions of the UBM layer. Copper bump 34 may be formed of substantially pure copper, which may have a copper atomic percentage greater than about 95 percent, or even greater than about 99 percent. Thickness T of copper bump 34 may be greater than about 30 μm, or even greater than about 45 μm. Thickness T may also be less than about 60 μm. Copper bump 34 may have a horizontal dimension (a length or a width) L1, which may be between about 80 μm and about 110 μm. Dimension L1 may be measured in a plane parallel to the top or the bottom surface of work piece 2. One skilled in the art will realize, however, that the dimensions recited throughout the description are merely examples and will change if different formation technologies are used.
Barrier layer 36 is formed on copper bump 34, for example, by plating. Barrier layer 36 may be formed of nickel or nickel alloys, and hence is alternatively referred to as nickel (containing) barrier layer 36 hereinafter, although it may also be formed of other metals. Solder layer 38 may be formed on nickel barrier layer 36. Solder layer 38 may be relatively thin, for example, with a thickness less than about 35 μm, and may be formed by plating using a same mask (not shown) as the mask for plating copper bump 34 and nickel barrier layer 36. Accordingly, edges of solder layer 38 and nickel barrier layer 36 may be vertically aligned to respective edges of copper bump 34. In other words, solder layer 38 and nickel barrier layer 36 may be limited in the region directly over copper bump 34. An exemplary thickness of nickel barrier layer 36 is greater than about 0.1 μm. Solder layer 38 may have a thickness less than about 35 μm, or between about 1 μm and about 35 μm.
In alternative embodiments, as shown in
Bond pad 110 comprises metal pad 122, which may be formed of copper (for example, pure or substantially pure copper), aluminum, silver, and/or alloys thereof. Barrier layer 124 may optionally be formed over metal pad 122, for example, by electroless or electro plating. Barrier layer 124 may be formed of nickel or nickel alloys, although other metals may be added. Solder mask 128 is formed over metal pad 122, and has a solder resist opening (SRO) 123 through which bond pad 110 is exposed. In an embodiment, SRO 123 has a dimension L2, which may be smaller than about 100 μm, and may be between about 60 μm and about 100 μm, for example.
Solder layer 130 is mounted on bond pad 110. In an embodiment, solder layer 130 is formed of a lead-free solder material containing, for example, SnAg, SnAgCu, or the like, although solder layer 130 may also be formed of eutectic solder material containing, for example, lead (Pb) and tin (Sn).
Work piece 2 as shown in either
In the resulting structure shown in
Although the embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/256,199 filed on Oct. 29, 2009, entitled “Robust Joint Structure for Flip-Chip Bonding,” which application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61256199 | Oct 2009 | US | |
61256090 | Oct 2009 | US |