1. Field of the Invention
Embodiments of the present invention relate to a low profile semiconductor device and method of fabricating same.
2. Description of the Related Art
The strong growth in demand for portable consumer electronics is driving the need for high-capacity storage devices. Non-volatile semiconductor memory devices, such as flash memory storage cards, are becoming widely used to meet the ever-growing demands on digital information storage and exchange. Their portability, versatility and rugged design, along with their high reliability and large capacity, have made such memory devices ideal for use in a wide variety of electronic devices, including for example digital cameras, digital music players, video game consoles, PDAs and cellular telephones.
While a wide variety of packaging configurations are known, flash memory storage cards may in general be fabricated as system-in-a-package (SiP) or multichip modules (MCM), where a functional system is assembled into a single package. An edge view of a conventional semiconductor package 20 (without molding compound) is shown in prior art
It is known to layer semiconductor die on top of each other either with an offset (prior art
In the stacked configuration of
There is an ever-present drive to increase storage capacity within memory modules. One method of increasing storage capacity is to increase the number of memory die used within the package. In portable memory packages, the number of die which may be used is limited by the thickness of the package. There is accordingly a keen interest in decreasing the thickness of the contents of a package while increasing memory density.
The package 20 shown in prior art
As the ball solidifies, the capillary is lowered to the surface of a die bond pad 40 formed on the semiconductor die 24. The surface of die 24 may be heated to facilitate a better bond. The stitch ball 38 is deposited on the die bond pad 40 under a load, while the transducer applies ultrasonic energy. The combined heat, pressure, and ultrasonic energy create a wire bond between the stitch ball 38 and the die bond pad 40.
The wire bonding capillary is then pulled up and away from the surface of semiconductor die 24, as wire is payed out through the capillary. The capillary then moves over to a contact pad 44 receiving the second end of the stitch on the substrate 26. The second wire bond, referred to as a wedge or tail bond, is then formed on contact pad 44 again using heat, pressure and ultrasonic energy, but instead of forming a ball, the wire is crushed under pressure to make the second wire bond. The wire bonding device then pays out a small length of wire and tears the wire from the surface of the second wire bond. The small tail of wire hanging from the end of the capillary is then used to form the stitch ball 38 for the next subsequent stitch. The above-described cycle can be repeated about 20 to 30 times per second until all stitches 30 are formed between the semiconductor die and the substrate. It is understood that there may be many more stitches 30 than are shown in
Due to the fact that the wire stitch 30 must be pulled upwards from ball 38 on each stitch 30, the stitches shown in
Referring to prior art
A conventional reverse wire bonding process as described above with respect to
Having a ball-wire-ball configuration on the die bond pads of all intermediate die in a die stack has drawbacks. First, having to add an extra stitch ball in a reverse wire bonding process adds processing steps and time to the fabrication process, especially considering the large number of bonds that are required in any given semiconductor package. Additionally, the ball-wire-ball configuration has a relatively cumbersome structure with a high stitch failure rate. In one example of a four-memory die micro SD package, the yield loss has been found to be about 2000 PPM (parts per million).
An embodiment of the present invention relates to a low profile semiconductor package including at least first and second stacked semiconductor die mounted to a substrate. The first semiconductor die may be electrically coupled to the substrate with a plurality of stitches in a forward ball bonding process. The second semiconductor die may in turn be electrically coupled to the first semiconductor die using a second set of stitches bonded between the die bond pads of the first and second semiconductor die. The second set of stitches may each include a lead end having a stitch ball that is bonded to the bond pads of the second semiconductor die. The tail end of each stitch in the second set of stitches may be wedge bonded directly to lead end of a stitch in the first set of stitches.
Affixing the tail end of a stitch directly to the wire bond on the die below provides an improvement over a conventional system including a ball-wire-ball configuration. For example, the present system requires fewer steps and less fabrication time. In particular, conventional reverse bonding techniques required stitch balls to be formed at both the front and tail ends of the stitch. By contrast, the present invention only requires a stitch ball at the front end of a stitch. The tail end of a stitch may be wedge bonded directly to the lead end wire bond of the die below. This results in a reduction of the stitch formation cycle time by 30% to 50% as compared to conventional reverse bonding techniques. Moreover, instead of a conventional ball-wire-ball configuration, the wire-on-wire configuration of the present invention is less bulky, providing the benefits of reduced electrical noise and greater stability which leads to lower stitch fracture rates.
Embodiments will now be described with reference to
The terms “top” and “bottom” and “upper” and “lower” are used herein for convenience and illustrative purposes only, and are not meant to limit the description of the invention inasmuch as the referenced item can be exchanged in position.
A process for forming a semiconductor package in accordance with the present invention will now be explained with reference to the flowchart of
Although not critical to the present invention, substrate 106 may be a variety of different chip carrier mediums, including a PCB, a leadframe or a tape automated bonded (TAB) tape. Where substrate 106 is a PCB, the substrate may be formed of a core having top and/or bottom conductive layers formed thereon. The core may be various dielectric materials such as for example, polyimide laminates, epoxy resins including FR4 and FR5, bismaleimide triazine (BT), and the like.
The conductive layers may be formed of copper or copper alloys, plated copper or plated copper alloys, Alloy 42 (42FE/58NI), copper plated steel or other metals or materials known for use on substrates. The conductive layers may be etched into a conductance pattern as is known for communicating signals between the semiconductor die 102 and an external device (not shown). Substrate 106 may additionally include exposed metal portions forming contact pads 108 (shown for example in
After the first semiconductor die 102 is affixed to substrate 106 in step 200, one or more additional die may be mounted on die 102 in an offset configuration. For example,
As shown in
A second wire bond 128, for example a wedge bond, is then formed between the wire 120 and substrate 106. In particular, after forming the first wire bond 122, the capillary pulls up and away from the ball 126 while paying out wire and bonds the wire to the corresponding contact pad 108 on substrate 106 to complete a stitch 120. The stitch 120 may be applied to the contact pad 108 under a load, while the transducer applies ultrasonic energy. The combined heat, pressure, and ultrasonic energy create a bond between the stitch 120 and the contact pad 108. The wire bonding capillary then pays out a small length of wire and tears the wire from the surface of the contact pad 108. The small tail of wire hanging from the end of the capillary is then used to form the stitch ball 126 for the next subsequent stitch. The above-described cycle can be repeated until all stitches 120 are formed between the die 102 and the substrate 106. It is understood that there may be many more stitches 120 than are shown in
Referring now to
Next, the capillary pulls up and away from the ball 136 while paying out wire and completes the stitch 130 by attaching the tail end of the stitch 130 directly on top of the wire bond 122. The wire for stitch 130 may be bonded on top of wire bond 122 under a load, while the transducer applies ultrasonic energy.
In one embodiment, the capillary may apply a current of 60 mAps and a force of 35 grams over a period of 14 milliseconds in order to bond end 130a of stitch 130 with wire bond 122. This pressure and ultrasonic energy are sufficient to affix and electrically couple the end 130a of stitch 130 to the wire bond 122 on die bond pad 124. It is understood that the above-described current, force and/or time with which tail end 130a is affixed to wire bond 122 are by way of example only, and parameters may vary above and below the values given above in further embodiments. It is further understood that the process for affixing the tail end 130a of a stitch 130 to wire bond 122 may include the physical connection of the tail 130a to a portion of the stitch 120 extending from the stitch ball 126, the physical connection of the tail 130a to the stitch ball 126 itself, or both.
As seen in
After tail end 130a is affixed to wire bond 122, the wire bonding capillary then pays out a small length of wire and tears the wire from the surface of the wire bond 122. The small tail of wire hanging from the end of the capillary is then used to form the stitch ball 136 for the next subsequent stitch. The above-described cycle can be repeated until all stitches 130 are formed between the die 104 and the wire bonds 122 on die 102. It is understood that there may be many more stitches 130 than are shown in
A system of stitching according to the present invention provides an improvement over a conventional system including a ball-wire-ball configuration as discussed in the Background of the Invention section. First, the present system requires fewer steps and less fabrication time. In particular, conventional reverse bonding techniques required stitch balls to be formed at both the front and tail ends of the stitch. By contrast, the present invention only requires a stitch ball at the front end of a stitch. The tail end of a stitch may be wedge bonded directly to the front end wire bond of the die below. This results in a reduction of the stitch formation cycle time for example by 30% to 50% as compared to conventional reverse bonding techniques. Moreover, instead of a ball-wire-ball configuration, a wire bond on an intermediate die (i.e., below the uppermost die in the stack) has a wire-on-wire configuration that is less bulky, providing the benefits of reduced electrical noise and greater stability. Greater stability leads to lower stitch fracture rates. For example, where a four-die Micro SD package of the prior art may have yield losses of 2000 PPM, the same package wire bonded according to the present invention may have yield losses of under 400 PPM.
Depending on how many semiconductor die are included in the stack, step 204 may be repeated (as indicated by the dashed arrow in
In the embodiments described above, all of the die in the die stack are first mounted on the substrate, and then they are wire bonded together. In an alternative embodiment, a die may be affixed to the stack and then wire bonded as described above before the next die in the stack is added.
In the above-described embodiments, the stitches may be uncoated gold, though it may alternatively be copper, aluminum or other metals. In a further embodiment of the present invention, the stitches may be pre-insulated with polymeric insulation that makes the surface of the wire electrically non-conductive. Two examples of a pre-insulated stitches which are suitable for use in the present invention are disclosed in U.S. Pat. No. 5,396,106, entitled, “Resin Coated Bonding Wire, Method Of Manufacturing The Same, And Semiconductor Device,” and U.S. Published Patent Application No. 2004/0124545, entitled, “High Density Integrated Circuits And The Method Of Packaging the Same,” both of which are incorporated by reference herein in their entirety.
As shown in
As shown in the figures, all corresponding (aligned) stitches in the different semiconductor die in the stack are electrically shorted together. For example, in
Semiconductor package 160 as shown in
Package 160 may be used in a standard flash memory enclosure, including for example an SD card, compact flash, smart media, mini SD card, MMC and xD card, or a memory stick. Other standard flash memory packages are also possible. Package 160 may alternatively include semiconductor die configured to perform other functions in further embodiments of the present invention.
The foregoing detailed description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
200810127580.5 | Jun 2008 | CN | national |
The following application is cross-referenced and incorporated by reference herein in its entirety: U.S. patent application Ser. No. ______ [Attorney Docket No. SAND-01335US0], entitled “Method of Fabricating Wire On Wire Stitch Bonding In A Semiconductor Device,” by Liang, et al., filed on even date herewith. This application claims priority to Chinese Application No. ______ filed Jun. 27, 2008 entitled Wire on Wire Stitch Bonding In A Semiconductor Device, with application is incorporated herein in its entirety.