This disclosure relates generally to semiconductor devices and, more particularly, to semiconductor devices having die edge contacts.
Since the invention of the integrated circuit (IC), the semiconductor industry has experienced continued rapid growth due to continuous improvements in the integration density of various electronic components (i.e., transistors, diodes, resistors, capacitors, etc.). For the most part, this improvement in integration density has come from repeated reductions in minimum feature size, which allow more components to be integrated into a given area.
The past few decades have also seen many shifts in semiconductor packaging that have impacted the entire semiconductor industry. The introduction of surface-mount technology (SMT) and ball grid array (BGA) packages were generally important steps for high-throughput assembly of a wide variety of IC devices, while at the same time allowing for reduction of the pad pitch on the printed circuit board. Conventionally packaged ICs have a structure basically interconnected by fine gold wire between metal pads on the die and electrodes spreading out of molded resin packages. On the other hand, some chip scale packages (CSP) or BGA packages rely on bumps/balls of solder to provide an electrical connection between contacts on the die and contacts on a substrate, such as a packaging substrate, a printed circuit board (PCB), another die/wafer, or the like. Other CSP or BGA packages utilize a solder ball or bump placed onto a conductive pillar, relying on the soldered joint for structural integrity. An underfill material is also typically placed between the IC and the underlying substrate, e.g., packaging substrate, to provide mechanical strength and to protect the IC from environmental contaminants.
In these embodiments, the point of electrical contact between the various substrates is the solder bump. The use of different substrates often means a difference in respective coefficients of thermal expansion (CTE). Due to this difference, the various substrates may expand/contract at different rates as the devices experience temperature cycles. This can create excessive amounts of stress in the joint region that may cause the joint to crack and/or cause other problems, such as delamination issues.
A semiconductor device and a method of forming a semiconductor device utilizing die edge contacts are provided. An integrated circuit die has a passivation layer having a conductive trench extending from a contact to a die edge, thereby forming a die edge contact. In an embodiment, a through-substrate via may be formed along a scribe line under the trench such that when the dies are singulated through the through-substrate via, the die-edge contact is larger. The integrated circuit die may be attached to a packaging substrate using the die edge contact such that the packaging substrate has a major surface perpendicular to a major surface of the integrated circuit die. The packaging substrate may include edge contacts for connecting to another substrate, such as a printed circuit board, another packaging substrate, a high-density interconnect, or the like.
In an embodiment, a plurality of packaging substrates are arranged along the sides of the integrated circuit die and may accommodate a plurality of integrated circuit dies in a multi-die package. In an embodiment, the multi-die package includes an inner connection structure and an outer shell. The inner connection structure provides electrical connections between various ones of the integrated circuit dies and between the integrated circuit dies and another substrate.
Other embodiments are disclosed.
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the embodiments, and do not limit the scope of the disclosure.
Referring first to
The optional electrical circuitry 204 formed on the substrate 202 may be any type of circuitry suitable for a particular application. In an embodiment, the electrical circuitry 204 includes electrical devices formed on the substrate 202 with one or more dielectric layers overlying the electrical devices. Metal layers may be formed between dielectric layers to route electrical signals between the electrical devices. Electrical devices may also be formed in one or more dielectric layers.
For example, the electrical circuitry 204 may include various N-type metal-oxide semiconductor (NMOS) and/or P-type metal-oxide semiconductor (PMOS) devices, such as transistors, capacitors, resistors, diodes, photo-diodes, fuses, and the like, interconnected to perform one or more functions. The functions may include memory structures, processing structures, sensors, amplifiers, power distribution, input/output circuitry, or the like. One of ordinary skill in the art will appreciate that the above examples are provided for illustrative purposes only to further explain applications of some illustrative embodiments and are not meant to limit the disclosure in any manner. Other circuitry may be used as appropriate for a given application.
An inter-layer dielectric (ILD) layer 208 may be formed, for example, of a low-K dielectric material, such as phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorinated silicate glass (FSG), SiOxCy, Spin-On-Glass, Spin-On-Polymers, silicon carbon material, compounds thereof, composites thereof, combinations thereof, or the like, by any suitable method known in the art, such as spinning, chemical vapor deposition (CVD), and plasma-enhanced CVD (PECVD). It should also be noted that the ILD layer 208 may comprise a plurality of dielectric layers.
Contacts, such as contacts 210, are formed through the ILD layer 208 to provide an electrical contact to the electrical circuitry 204. The contacts 210 may be formed, for example, by using photolithography techniques to deposit and pattern a photoresist material on the ILD layer 208 to expose portions of the ILD layer 208 that are to become the contacts 210. An etch process, such as an anisotropic dry etch process, may be used to create openings in the ILD layer 208. The openings may be lined with a diffusion barrier layer and/or an adhesion layer (not shown), and filled with a conductive material. In an embodiment, the diffusion barrier layer comprises one or more layers of TaN, Ta, TiN, Ti, CoW, or the like, and the conductive material comprises copper, tungsten, aluminum, silver, and combinations thereof, or the like, thereby forming the contacts 210 as illustrated in
One or more inter-metal dielectric (IMD) layers 212 and the associated metallization layers (not shown) are formed over the ILD layer 208. Generally, the one or more IMD layers 212 and the associated metallization layers are used to interconnect the electrical circuitry 204 to each other and to provide an external electrical connection. The IMD layers 212 may be formed of a low-K dielectric material, such as FSG formed by PECVD techniques or high-density plasma CVD (HDPCVD), or the like, and may include intermediate etch stop layers. Contacts 214 are provided in the uppermost IMD layer to provide external electrical connections.
It should be noted that one or more etch stop layers (not shown) may be positioned between adjacent ones of the dielectric layers, e.g., the ILD layer 208 and the IMD layers 212. Generally, the etch stop layers provide a mechanism to stop an etching process when forming vias and/or contacts. The etch stop layers are formed of a dielectric material having a different etch selectivity from adjacent layers, e.g., the underlying semiconductor substrate 202, the overlying ILD layer 208, and the overlying IMD layers 212. In an embodiment, etch stop layers may be formed of SiN, SiCN, SiCO, CN, combinations thereof, or the like, deposited by CVD or PECVD techniques.
Thereafter, the trenches formed in the passivation layer 316 may be filled with a conductive material, thereby forming traces 318 as part of a post-passivation interconnect layer. The traces may be formed of any suitable conductive material, including Cu, Ni, Pt, Al, Ag, combinations thereof, or the like, and may be formed through any number of suitable techniques, including PVD, CVD, electrochemical deposition (ECD), molecular beam epitaxy (MBE), atomic layer deposition (ALD), electroplating, and the like. It should be noted that in some embodiments, such as those that deposit a conformal layer over the entire surface of the wafer (e.g., PVD and CVD), it may be desirable to perform an etching or planarization process (e.g., a chemical mechanical polishing (CMP)) to remove excess conductive material from the surface of the passivation layer 316.
In an embodiment, the finish layer 522 protrudes out from the surface of the die edge as illustrated in
The traces 318/finish layer 522 form die edge contacts 524. Optionally, a backside thinning process may be performed and a cap layer may be placed on a surface of the dies. The cap layer may also act as a heat sink.
Referring first to
In another technique, the through-substrate via 730 may be formed by etching a via partially through the substrate and depositing a dielectric layer in the via. In this embodiment, the dielectric layer within the via is removed after the backside of the substrate is thinned, and a conductive material is re-deposited within the via. Other embodiments may also be used. Furthermore, the through-substrate via 730 may have a liner, such as a barrier layer, preferably formed of a dielectric such as an oxide, nitride, or the like.
Contacts 1008 along an interior surface of the inner connection structure 1006 provide an electrical connection to die edge contacts, such as the die edge contacts 524, 950 (see
The outer shell 1004 comprises walls or substrates 1016 positioned along an outer surface of the inner connection structure 1006 and acts to protect the inner connection structure 1006. The outer shell 1004 may also act as a heat sink to aid in the dissipation of heat produced by the plurality of dies during operation. The walls 1016 may be individually fabricated and then assembled using glue or other adhesive. Micro-suspension rods 1018 protruding from an inner surface of the outer shell 1004 act to buffer the inner connection structure 1006 for thermal expansion as well as acting as a heat transfer mechanism between the inner connection structure 1006 and the outer shell 1004.
The metallization layer 1106 may be formed of any suitable conductive material, including Cu, Ni, Pt, Al, Ag, combinations thereof, or the like, and may be formed through any number of suitable techniques, including PVD, CVD, ECD, MBE, ALD, electroplating, and the like.
A passivation layer 1108 may be formed and patterned over a surface of the substrate 1104 such that portions of the metallization layer 1106 corresponding to contact areas for the die edge contacts are exposed. The passivation layer 1108 may comprise one or more layers of dielectric material, such as SiN, PEOX, PE-SiN, PE-USG, a polymer, or the like.
Thereafter, raised contacts 1110, corresponding to the contacts 1008 of
Die supports 1114, corresponding to the die supports 1012 of
It should be noted that
Any suitable process, such as those processes used for forming integrated circuits, interposers, and/or the like, may be used to form the structures discussed above and will not be discussed in greater detail herein. As one of ordinary skill in the art will realize, the above description provides a general description of the features of an embodiment and that numerous other features may be present. For example, other circuitry, liners, barrier layers, under-bump metallization configurations, and the like, may be present. For example, the inner connection structure 1006 may include active and/or passive electrical elements as well as metallization routing lines. The above description is meant only to provide a context for embodiments discussed herein and is not meant to limit the disclosure or the scope of any claims to those specific embodiments.
Although the embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4811082 | Jacobs et al. | Mar 1989 | A |
4990462 | Sliwa, Jr. | Feb 1991 | A |
5075253 | Sliwa, Jr. | Dec 1991 | A |
5356838 | Kim | Oct 1994 | A |
5380681 | Hsu | Jan 1995 | A |
5481133 | Hsu | Jan 1996 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
6002177 | Gaynes et al. | Dec 1999 | A |
6034438 | Petersen | Mar 2000 | A |
6187678 | Gaynes et al. | Feb 2001 | B1 |
6236115 | Gaynes et al. | May 2001 | B1 |
6252302 | Farnworth | Jun 2001 | B1 |
6287949 | Mori et al. | Sep 2001 | B1 |
6355501 | Fung et al. | Mar 2002 | B1 |
6391685 | Hikita et al. | May 2002 | B1 |
6434016 | Zeng et al. | Aug 2002 | B2 |
6448661 | Kim et al. | Sep 2002 | B1 |
6562653 | Ma et al. | May 2003 | B1 |
6570248 | Ahn et al. | May 2003 | B1 |
6607938 | Kwon et al. | Aug 2003 | B2 |
6661085 | Kellar et al. | Dec 2003 | B2 |
6762076 | Kim et al. | Jul 2004 | B2 |
6790748 | Kim et al. | Sep 2004 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6894386 | Poo et al. | May 2005 | B2 |
6946384 | Kloster et al. | Sep 2005 | B2 |
7056807 | Kellar et al. | Jun 2006 | B2 |
7151009 | Kim et al. | Dec 2006 | B2 |
7157787 | Kim et al. | Jan 2007 | B2 |
7215033 | Lee et al. | May 2007 | B2 |
7276799 | Lee et al. | Oct 2007 | B2 |
7317256 | Williams et al. | Jan 2008 | B2 |
7320928 | Kloster et al. | Jan 2008 | B2 |
7345350 | Sinha | Mar 2008 | B2 |
7375009 | Chua et al. | May 2008 | B2 |
7402442 | Condorelli et al. | Jul 2008 | B2 |
7402515 | Arana et al. | Jul 2008 | B2 |
7432592 | Shi et al. | Oct 2008 | B2 |
7494845 | Hwang et al. | Feb 2009 | B2 |
7528494 | Furukawa et al. | May 2009 | B2 |
7531890 | Kim | May 2009 | B2 |
7576435 | Chao | Aug 2009 | B2 |
7834450 | Kang | Nov 2010 | B2 |
7863722 | Chua | Jan 2011 | B2 |
20080067675 | Jeung et al. | Mar 2008 | A1 |
20090230528 | McElrea et al. | Sep 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120056328 A1 | Mar 2012 | US |