Silicon integrated circuits have dominated the development of electronics and many technologies based upon silicon processing have been developed over the years. Their continued refinement led to nano-scale feature sizes that can be important for making metal oxide semiconductor CMOS circuits. On the other hand, silicon is not a direct-bandgap material. Although direct-bandgap materials, including III-V compound semiconductor materials, have been developed, there is a need in the art for improved methods and systems related to photonic integrated circuits utilizing silicon substrates.
This application relates to bonding a first semiconductor to a second semiconductor. More specifically, and without limitation, to bonding a III-V semiconductor to a silicon semiconductor.
Embodiments generally relate to bonding a first semiconductor to a second semiconductor, wherein the first semiconductor, and/or the second semiconductor, have micro pillars to assist in bonding. An example of bonding a first semiconductor to a second semiconductor is disclosed in commonly owned U.S. patent application Ser. No. 14/262,529, filed on Apr. 25, 2014, which is incorporated by reference in its entirety for all purposes.
This application discloses devices and methods used for bonding a first semiconductor to a second semiconductor. Though not limiting, in some embodiments micro pillars on a silicon substrate are used to penetrate a bonding material (e.g., indium) when attaching a hetero-material (e.g., III-V; from the periodic table of the elements, group III elements include: B, Al, Ga, In, Tl, and group V elements include: N, P, As, Sb, and Bi) device to a silicon semiconductor structure. Bonding a planar silicon surface to a planar III-V material using indium has some challenges. For example, in some embodiments, a bond between silicon and the hetero-material device is used as an electrical contact (e.g., ohmic contact). Yet indium oxide can form on indium before or during bonding, thus reducing functionality of the electrical contact. In some embodiments, pillars help break indium oxide and penetrate into the indium during bonding. Second, in some embodiments, heat is applied to the III-V material to heat the indium to a desired temperature (e.g., near, at, or above a melting point of the bonding material). If the silicon is planar, the silicon acts as a heat sink, making heating of the indium more difficult. In some embodiments, pillars are used to reduce an initial surface-contact area between the silicon and the indium so that not as much heat is transferred to the silicon during bonding (e.g., making it easier to melt the indium). Though silicon, indium, and III-V material are used as examples of bonding, similar processes and device structures can be applied to other bonding techniques.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and are not intended to necessarily limit the scope of the disclosure.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
The ensuing description provides preferred exemplary embodiment(s), and is not intended to limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description of the preferred exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiment. It is understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope as set forth in the appended claims.
Referring to
Each pillar 108 comprises a proximal end 116, a distal end 120, and one or more sides 124 between the proximal end 116 and the distal end 120. The distal end 120 is opposite the proximal end 116. The proximal end 116 is closer to the substrate 104 than the distal end 120. The thickness t is measured from the proximal end 116 to the distal end 120.
Referring to
The pillars 108 have four sides 124 since the pillars 108 are rectangular. Other cross-sectional shapes can be used. For example, a pillar 108 that is tubular (e.g., circular cross section), may have only one side 124. Whereas a pillar 108 that is triangular has three sides 124.
The width a of pillars 108 and the length b of pillars 108 can vary (e.g., a=0.2, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 20, or 30 μm). In some embodiments, width a and/or length b are less than thickness t (e.g., a<½t, ⅓t, or ¼t).
Referring to
In
In
In
In some embodiments, shapes and density of pillars 108 are optimized to modulate heat transfer. Bonding material is placed on the second semiconductor. Heat is applied to the bonding material by applying heat to the second semiconductor. The second semiconductor is pressed against the first semiconductor 100 while applying heat to the second semiconductor. Heat is used to melt the bonding material. The first semiconductor 100 acts as a heat sink, drawing heat away from the bonding material. Heat transfer is modulated by adjusting the fill ratio of an aggregate of cross-sectional areas of pillars 108 to an exposed area of the substrate 104 (i.e., parts of the top surface 112 not covered by pillars 108. The smaller the fill ratio (up to a limit of mechanical breakdown of the pillars), the lower the heat transfer to the first semiconductor, and the easier it is to melt the bonding material (e.g., indium) while heat is applied to the second semiconductor. But a smaller fill ratio reduces contact area that the first semiconductor 100 has with the bonding material.
In some embodiments, shapes and density of pillars 108 are optimized for pressure transfer to break an outer layer (e.g., oxide) formed on the bonding material. Optimization for pressure transfer is done by also changing the fill ratio and shape of the pillars 108. The smaller the fill ratio (up to the limit of mechanical breakdown of the pillars), the higher the pressure is applied to the outer layer by the pillars 108, and the easier it becomes to break the outer layer of the bonding material. Additionally, the distal end 120 of pillars 108 can be made small (e.g., pointy and/or small cross section) to improve the ability of the pillars 108 to break the outer layer of the bonding material. Maximum widths (e.g., a, or c if the second portion 320 is used) and/or lengths (e.g., b or d if the second portion 320 is used) of pillars 108 for puncturing the bonding material can depend on one or more factors including alloy used as bonding material (e.g., density and/or viscosity), proximal end 120 shape (e.g., whether or not there is a point) bond temperature, bond pressure, and fill ratio. Thus, in some embodiments, a maximum pillar width and/or length for puncturing (e.g., a and/or b, or c and/or d if the second portion 320 is used) is equal to and/or less than 30, 25, 20, and/or 15 μm.
Elements of the rectangular pillar 300, the pointed pillar 304, the t-shaped pillar 324, and/or the fin pillar 334, can be combined with each other to form new pillar designs. For example, the second portion 320 of the t-shaped pillar 324 or the fin pillar 334 can be made with a point similar to the pointed pillar 304 to provide better penetration of the bonding material.
Referring next to
As the second semiconductor 404 is pressed toward the first semiconductor 100, local force on the bonding material 408 is increased due to reduced contact area of the pillars 108. Further, local heat transfer between the bonding material 408 and the first semiconductor 100 is reduced due to a reduced contact area of the pillars 108, thus making it easier to melt the bonding material 408. In some embodiments, both force and heat are applied to the second semiconductor 404. In some embodiments, an oxide forms an outer layer of the bonding material 408 (forming a crust on the bonding material 408). Pillars 108 help break the crust of the bonding material 408 to facilitate bonding and/or extend past the outer layer for increasing connectivity of the first semiconductor 100 to the second semiconductor 404.
Referring to
Referring to
Referring to
The second semiconductor 404 and the first semiconductor 600 are to be pressed together (e.g., by pushing the second semiconductor 404 toward the first semiconductor 600). As the second semiconductor 404 is pressed toward the first semiconductor 600, local force on the bonding material 408 is increased due to reduced contact area of the pillars 108. Further, local heat transfer between the bonding material 408 and the first semiconductor 600 is reduced due to a reduced contact area of the pillars 108, thus making it easier to melt the bonding material 408. In some embodiments, both force and heat are applied to the second semiconductor 404 during bonding.
Referring to
In some embodiments, layer material 804, for example as depicted in
In
In some embodiments, bonding is enhanced by using pillars 108 in the pit. For example, heat transfer from the bonding material 408 (e.g., indium), which is attached to the second semiconductor 404, to the first semiconductor 850 (e.g., made of silicon) is initially reduced because a contact area between the bonding material 408 and the first semiconductor 850 (or the first semiconductor 100, or the first semiconductor 600) is reduced until the bonding material 408 is heated to a threshold temperature that the bonding material 408 begins to melt. The fill ratio area can be varied from 5% to 95% with the control of the density and shape of the pillars 108. In some embodiments, fill ratio is measured using an area for bonding material (e.g., an area between pedestals 624 filled with pillars 108). Reducing the contact area between the bonding material 408 and the first semiconductor 850 helps melt the bonding material 408 because less heat is transferred from the bonding material 408 to the first semiconductor 850. In a further example, once the bonding material 408 melts and the oxide surface is broken and/or penetrated by the pillars 108, space between the pillars 108 is filled with bonding material 408 to the bottom of the pit. Heights and/or shapes of the pillars 108 increases the bond area going from 2D bonding (e.g., bonding to a flat surface of a substrate) to 3D bonding; sides 124 of the pillars 108 provide an increased bond surface area.
Referring next to
In step 908, a second semiconductor is provided (e.g., second semiconductor 404). A bonding material (e.g., bonding material 408, such as indium) is applied to the second semiconductor, step 912. In some embodiments, the bonding material is applied so that the bonding material does not contact top surfaces of the pedestals but does contact distal ends of the pillars. In step 916, heat is applied, using a heating source, to the second semiconductor so that a temperature of the bonding material is increased.
In step 920, the first semiconductor and the second semiconductor are pressed together so that the pillars puncture the bonding material. In some embodiments, the pillars are engulfed within the bonding material as the first semiconductor and the second semiconductor are pressed together, so that surfaces of pillars are surrounded by the bonding material. In some embodiments, the pillars are coated with a second material (e.g., a conducting material used for under-bump metallization) before the first semiconductor and the second semiconductor are pressed together. In some embodiments, the heating source is removed from being applied to the second semiconductor before the first semiconductor and the second semiconductor are pressed together.
In step 924, the bonding material is allowed to cool. In some embodiments, the bonding material contacts more surface area of the first semiconductor as compared to before the pillars punctuate the bonding material, thus increasing heat transfer from the bonding material to the first semiconductor, and the bonding material cools faster.
The specific details of particular embodiments may be combined in any suitable manner without departing from the spirit and scope of embodiments of the invention. However, other embodiments of the invention may be directed to specific embodiments relating to each individual aspect, or specific combinations of these individual aspects.
The above description of exemplary embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form described, and many modifications and variations are possible in light of the teaching above. For example, similar methods could be used to bond electronic devices and/or metal to the first semiconductor. The embodiments were chosen and described in order to explain the principles of the invention and its practical applications to thereby enable others skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
Further, in some embodiments, the second semiconductor comprises an active region for a detector or a modulator. For example, a mach-zehnder interferometer structure could be made in the first semiconductor (e.g., of silicon) and one or more second semiconductors (e.g., made of III-V material) could be used to modulate a phase change in the interferometer. In some embodiments, the first semiconductor comprises at least one of a CMOS device, a BiCMOS device, an NMOS device, a PMOS device, a detector, a CCD, diode, heating element, or a passive optical device (e.g., a waveguide, an optical grating, an optical splitter, an optical combiner, a wavelength multiplexer, a wavelength demultiplexer, an optical polarization rotator, an optical tap, a coupler for coupling a smaller waveguide to a larger waveguide, a coupler for coupling a rectangular silicon waveguide to an optical fiber waveguide, and a multimode interferometer).
Also, it is noted that the embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed, but could have additional steps not included in the figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc.
A recitation of “a”, “an”, or “the” is intended to mean “one or more” unless specifically indicated to the contrary.
All patents, patent applications, publications, and descriptions mentioned here are incorporated by reference in their entirety for all purposes. None is admitted to be prior art.
This application claims priority to U.S. Provisional Application No. 62/012,814, filed on Jun. 16, 2014, the disclosure of which is incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5077878 | Armiento | Jan 1992 | A |
5898806 | Nishimoto | Apr 1999 | A |
6713844 | Tatsuta | Mar 2004 | B2 |
6888989 | Zhou et al. | May 2005 | B1 |
7326611 | Forbes | Feb 2008 | B2 |
7531395 | Blomiley et al. | May 2009 | B2 |
7939934 | Haba et al. | May 2011 | B2 |
8753924 | Wainerdi | Jun 2014 | B2 |
9136233 | Chapelon | Sep 2015 | B2 |
20010010743 | Cayrefourcq | Aug 2001 | A1 |
20040077135 | Fan et al. | Apr 2004 | A1 |
20040182914 | Venugopalan | Sep 2004 | A1 |
20040245425 | Delpiano et al. | Dec 2004 | A1 |
20050082552 | Fang et al. | Apr 2005 | A1 |
20060002443 | Farber et al. | Jan 2006 | A1 |
20060093002 | Park et al. | May 2006 | A1 |
20060104322 | Park et al. | May 2006 | A1 |
20100059897 | Fay | Mar 2010 | A1 |
20100111128 | Qin et al. | May 2010 | A1 |
20100123145 | Lee | May 2010 | A1 |
20110085760 | Han et al. | Apr 2011 | A1 |
20110216997 | Gothoskar et al. | Sep 2011 | A1 |
20110267676 | Dallesasse | Nov 2011 | A1 |
20120002931 | Watanabe | Jan 2012 | A1 |
20130051727 | Mizrahi et al. | Feb 2013 | A1 |
20130301975 | Spann et al. | Nov 2013 | A1 |
20140319656 | Marchena et al. | Oct 2014 | A1 |
20150097211 | Krasulick et al. | Apr 2015 | A1 |
Entry |
---|
U.S. Appl. No. 62/012,814, filed Jun. 16, 2014, Damien Lambert, all pages. |
International Search Report and Written Opinion of PCT/US2014/035563 dated Aug. 27, 2014, 15 pages. |
International Preliminary Report on Patentability of PCT/US2014/035563 dated Nov. 5, 2015, 15 pages. |
International Search Report and Written Opinion dated Jan. 22, 2015 for International Patent Application No. PCT/US2014/059900 filed on Oct. 9, 2014, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20150364441 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62012814 | Jun 2014 | US |