This patent application claims priority from European patent application 08 010 430.0 filed Jun. 9, 2008, which is hereby incorporated by reference.
The present invention relates to the field of semiconductors, and in particular to a semiconductor arrangement having at least two integrated circuits (dies) arranged in a housing or a package and electrically connected to each other via bond conductors.
Bond conductors or bond wires have long been known in the fabrication of integrated circuits. In microelectronic construction and connection technology, bond conductors are commonly made of gold or a gold alloy. Alternatively, some bond conductors are made of aluminum.
Typically, bond conductors are used in an integrated circuit to connect contacts that extend outside a housing (also referred to as “pins”) to electrical contact regions (also referred to as “bond islands” or “pads”) disposed on a chip lying inside the housing. The bond conductor provides an electrical connection between the integrated circuit proper and the wiring substrate of an electronic circuit. The bond conductor extends between and electrically connects/couples the contact pads of the chip and the inner part of the external contact. The bond conductors may be coupled to the pad and the contact using either thermosonic bonding or ultrasonic bonding. After bonding, the integrated circuits are hermetically potted into a housing, preferably a plastic housing.
Bond conductors are also used for electrically connecting respective contact pads disposed on two or more dies in a housing. According to G. G. Harman, Wire Bonding in Microelectronics, McGraw-Hill, 1997, pages 1-10, pages 67 ff. and pages 203 ff., in the ball-wedge technique, the bond wire is bonded to the contact pad of a first integrated circuit using flamed-off sphere (also known as a “free-air ball” (FAB)), and at the other end is flattened into a wedge shape and connected to the contact pad of the second integrated circuit. However, disadvantageously, the ball-wedge technique exerts compressive loading (e.g., using ultrasonic techniques) on the second integrated circuit when the bond wire is flattened and pressed thereon. In order to reduce the compressive loading on the second integrated circuit, spherical intermediate elements made of electrically conductive material are provided to sit on the contact pad of the second integrated circuit. The second end of the bond conductor, flattened into a wedge shape, is pressed onto this spherical intermediate element. This intermediate element serves to relieve the pressure on the second integrated circuit as the bond wire is pressed thereon.
Prior art bond conductors may be made from materials such as copper and silver. However, these materials may tarnish (i.e., oxidize upon contact with air), for example, during the manufacturing process, thereby reducing the bonding capacity of the bond conductors. Therefore, bonding of, for example, copper bond conductors is often carried out using a shielding gas in order to prevent the oxidation of the copper. As a result, chip-to-chip bond conductors are generally made of gold, despite its inferior electrical and mechanical properties to that of copper and silver, since, unlike copper and silver, gold does not tarnish. However, disadvantageously, gold bond conductor increase manufacturing costs due to the high price of the material (i.e., gold). This becomes especially problematic where a large number (e.g., hundreds to thousands) of bond conductors are necessary in a semiconductor arrangement due to the increasingly high packing density inside housings.
Due to the high costs related to gold bond conductors, alternative techniques have been used to utilize other more favorable materials. In a first example, according to published U.S. Patent Application 2003/0113574 A1, gold-jacketed silver or palladium wires, as compared with pure gold wires, have been furnished to reduce costs. In a second example, German patent application DE 10 2005 011028 A1 discloses the use of copper-gold alloys in bond conductors. In comparison with pure gold, copper-gold alloys have a significantly greater hardness. However, this hardness is undesirable for bond wires because integrated circuits may be damaged by the pressing of the bond wire or bond conductor onto the contact pad of the integrated circuit. For example, gold-copper alloys on copper wires can cause cracking in the silicon chip of the integrated circuit when pressed against the contact pad, which may lead to the failure of the integrated circuit. In a third example, German patent application DE 10 2005 011028 A1 discloses a copper bond conductor containing a small quantity of gold in the surface thereof. This publication discloses that it is especially preferable to use a copper bond conductor having gold enriched surface. The quantity of gold used to enrich the surface corresponds to a jacketing of at most fifty nano-meters (50 nm) thick, if the gold were fashioned uniformly as a coating on the wire. However, similar to pure gold bond conductors, such gold-coated copper wires are relatively expensive to manufacture.
Therefore, there is a need in the art for a semiconductor arrangement having a bond conductor that reduces associated manufacturing costs.
According to an aspect of the invention, a semiconductor arrangement includes at least two integrated circuits arranged in a housing and are electrically connected to each other via bond conductors. At least one of the bond conductors has a first end electrically connected to a first contact pad of the first integrated circuit, and a second end, tapering in a wedge shape, electrically connected to an electrically conductive intermediate element disposed on a contact pad of the second integrated circuit. The bond conductor is made of a different material from the intermediate element, where the material of the intermediate element is softer than the material of the bond conductor.
According to another aspect of the invention, a method for fabricating a semiconductor arrangement includes providing a first integrated circuit having at least one first contact pad, a second integrated circuit having at least one second contact pad, a bond conductor for electrically connecting the first contact pad and the second contact pad; applying an electrically conductive intermediate element on the second contact pad of the second integrated circuit such that the electrically conductive intermediate element is in electrically conductive connection with the contact pad of the second integrated circuit; attaching a first end of the bond conductor to the first contact pad of the first integrated circuit; and attaching a second, wedge-shaped end of the bond conductor to the intermediate element, where the material of the intermediate element is softer than the material of the bond conductor.
According to yet another aspect of the invention, a semiconductor arrangement includes first and second dies, an electrically conductive intermediate element and one or more bond conductors. The first and the second dies are arranged in a package. The first die has a first contact pad. The second die has a second contact pad. The electrically conductive intermediate element is disposed on the second contact pad. The one or more bond conductors electrically connected the first and the second dies, where at least one of the bond conductors has a first end electrically connected to the first contact pad, and a second wedge shaped end electrically connected to the intermediate element. The bond conductor is made of a first material and the intermediate element is made of a second material which is softer than the first material.
Manufacturing costs and complexity may be reduced using bond conductors of the present invention. For example, a wedge-shaped end of a bond conductor, which is made from, for example, copper or a copper alloy, is indirectly connected to an integrated-circuit contact pad made from, for example, aluminum or an aluminum alloy. This is accomplished by applying and contacting the wedge-shaped end of the bond conductor to an intermediate element that sits on the contact pad of the integrated circuit. This intermediate element is preferably fashioned in a spherical or an approximately spherical shape and is made of a material softer than the bond conductor (e.g., gold, a gold alloy or doped gold).
When the wedge-shaped end of the bond conductor is pressed onto the intermediate element, the associated pressure is indirectly transferred onto the semiconductor of the integrated circuit by being intercepted and dispersed by the intermediate element. As a result, the mechanical loading of the integrated circuit may be significantly reduced in comparison with conventional prior art methods where, in contrast, the wedge-shaped end of the bond conductor is pressed directly onto the contact pad of the integrated circuit.
It falls within the scope of the invention that the bond conductor contacts the contact pads of two integrated circuits (dies) that are installed in a common housing or package. The two integrated circuits may be arranged one beside the other or one above the other. In some embodiments, the bond conductor has a diameter of approximately 20-30 μm (nano-meters) and/or a Vickers hardness less than or equal to seventy (<70).
These and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of preferred embodiments thereof, as illustrated in the accompanying drawings.
In the Drawings, unless stated to the contrary, identical reference characters identify similar parts with similar meaning. The drawings are as follows:
The bond conductor 10 is attached to the first integrated circuit IC1 using the ball-wedge method (also known as “ball-wedge bonding”). Alternatively, other attaching/contacting methods may also be used. When using the ball-wedge bonding method, a suitable tool is used to guide the bond conductor 10 inside a capillary made of sintered metal or ceramic. The end of the bond conductor 10 protruding from the bottom of the capillary is melted by a flame or an electrical discharge such that a sphere forms as a result of surface tension. This sphere is bonded to the contact pad 3 of the first integrated circuit IC1 by applying pressure, heat and ultrasound. The sphere is spread out to some degree by the capillary, such that a “nail head” configuration 12 is formed.
The bond conductor 10 is led/extended to the second contact point, the contact pad 6 of the second integrated circuit IC2. In contrast to conventional techniques, however, the bond conductor 10 is not pressed directly onto the contact pad 6. Instead, an intermediate element 20 having, for example, a substantially spherical or globular shape is placed on the contact pad 6. This intermediate element 20 is made of a softer material than the bond conductor 10. For example, where the bond conductor 10 is made of copper, the intermediate element 20 is made of a material such as, but not limited to, gold, a gold alloy or doped gold.
The bond conductor 10 is disposed on and tightly bonded to the intermediate element 20 by ultrasound, heat and pressure. A wire clamp mounted above the capillary of the bonding tool prevents the bond conductor 10 from being pulled along when the tool is lifted. Instead, the bond conductor 10 is broken in the region of the intermediate element 20. As a result, a wedge-shaped end 14 of the bond conductor 10 is produced, which is electrically connected to the intermediate element 20.
The spherical intermediate element 20 may be placed on the contact pad 6 of the second integrated circuit IC2 with, for example, a second tool. The second tool may be a capillary made of sintered metal or ceramic. As in the shaping of the spherical end 12 of the bond conductor 10, a gold wire, for example, is led through the capillary of this second tool. The gold wire end protruding from the bottom of the capillary of the second tool may be melted with a flame or an electrical discharge, such that a sphere or ball is formed as a result of surface tension. This sphere or ball formed from the gold wire is placed on the contact pad 6 of the second integrated circuit IC2 by pressure, heat and ultrasound. The gold wire is then broken by the tool such that the spherical intermediate element 20 having a pin-shaped extension remains on the contact pad 6.
Although
Although the present invention has been illustrated and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
08010430 | Jun 2008 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3718272 | Eltzroth et al. | Feb 1973 | A |
4096983 | Beilein et al. | Jun 1978 | A |
4845543 | Okikawa et al. | Jul 1989 | A |
4993618 | Toyozawa et al. | Feb 1991 | A |
6476506 | O'Connor et al. | Nov 2002 | B1 |
6787926 | Chen et al. | Sep 2004 | B2 |
6835898 | Eldridge et al. | Dec 2004 | B2 |
7276437 | Yano et al. | Oct 2007 | B2 |
7285854 | Ishikawa et al. | Oct 2007 | B2 |
7768135 | St. Amand et al. | Aug 2010 | B1 |
7906855 | Kim et al. | Mar 2011 | B1 |
20030042621 | Chen et al. | Mar 2003 | A1 |
20030113574 | Liao | Jun 2003 | A1 |
20030151135 | Sakamoto et al. | Aug 2003 | A1 |
20040072396 | Tiziani et al. | Apr 2004 | A1 |
20060012024 | Lin et al. | Jan 2006 | A1 |
20060216863 | Arakawa | Sep 2006 | A1 |
20060223238 | Koh et al. | Oct 2006 | A1 |
20070102798 | Nishizawa et al. | May 2007 | A1 |
20070222087 | Lee et al. | Sep 2007 | A1 |
20080076251 | Bischoff et al. | Mar 2008 | A1 |
20080258291 | Liu et al. | Oct 2008 | A1 |
20090014848 | Ong Wai Lian et al. | Jan 2009 | A1 |
20090321501 | Liang et al. | Dec 2009 | A1 |
20100003904 | Duescher | Jan 2010 | A1 |
20100133688 | Shigihara et al. | Jun 2010 | A1 |
20100148349 | Kim et al. | Jun 2010 | A1 |
20110089566 | Pendse et al. | Apr 2011 | A1 |
20110104510 | Uno et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
1 367 644 | Dec 2003 | EP |
1 818 984 | Aug 2007 | EP |
2157607 | Oct 1985 | GB |
61259555 | Nov 1986 | JP |
10-229100 | Aug 1998 | JP |
2005-294874 | Oct 2005 | JP |
2007134504 | May 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20090302447 A1 | Dec 2009 | US |