Some semiconductor devices employ a high-K dielectric material (relative to SiO2) as a gate dielectric to achieve a desired equivalent oxide thickness (EOT) for the device. The high-K dielectric material may provide a film that is sufficiently thick to avoid undesirable leakage while providing other desirable electrical properties. However, forming a high-K dielectric material directly on some substrates may lead to interactions between the substrate and the high-K dielectric material that may undesirably alter device performance.
Various embodiments are disclosed herein that relate to methods for forming a film stack on a substrate. One example method comprises exposing the substrate to an activated oxygen species and converting an exposed surface of the substrate into a continuous monolayer of a first dielectric material. The example method also includes forming a second dielectric material on the continuous monolayer of the first dielectric material without exposing the substrate to an air break.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Modern semiconductor devices may include high-K gate dielectric materials to improve device performance relative to devices employing a SiO2 gate dielectric at a given architectural size. The thickness of the gate dielectric material may shrink with the transistor size to provide a desired gate capacitance and/or drive current. The physical thickness of a SiO2 gate dielectric may eventually become small enough so that leakage from the gate to the channel (e.g., from tunneling effects) raises power dissipation in the device to unacceptably high levels.
One approach to mitigate this effect is to replace the SiO2 gate dielectric with a gate dielectric material having a dielectric constant value (K) that is relatively higher than the dielectric constant for SiO2 (K˜3-4). For example, some semiconductor devices employ HfO2 (K˜20-25), which may provide an equivalent oxide thickness (EOT) to a physically thinner layer of SiO2 In turn, a gate including a high-K gate dielectric material may provide similar device turn-on characteristics while mitigating gate leakage and power dissipation.
As used herein, a high-K dielectric material refers to any suitable dielectric material having a dielectric constant greater than SiO2. Accordingly, some transition metal oxides such as HfO2 and TiO2 (K˜50) may be considered high-K dielectric materials. Other example high-K dielectric materials include, but are not limited to HfOx, TiOx, SrOx, ZrOx, and LaOx. Some non-transition metal-including oxides such as Al2O3 (K˜8) may be considered high-K dielectric materials. MgO is another non-limiting example of a non-transition metal-including oxide. Some high-K dielectric materials may have a dielectric constant of 200 or more (e.g., ultra-high-K dielectric materials), such as some alkaline earth metal-including metal oxides. For example, SrTixOy, BaTixOy, and SrxBa(1-x)TiyOz may be considered high-K dielectric materials.
However, forming a high-K dielectric material directly on some substrates may lead to undesirable reaction between the substrate and the high-K dielectric material or one or more precursors used to form the high-K dielectric material. For example, a layer of HfO2 formed directly on a silicon substrate may form a hafnium silicide, potentially degrading the intended performance character of the device. One approach to managing interactions between high-K materials and underlying substrates is to form a protective oxide barrier layer on the substrate prior to deposition of the high-K material. For example, an interlayer oxide may be formed on the substrate between the substrate and the high-K gate dielectric to restrict or prevent diffusion of metal cations from the high-K material or from a precursor used to form the high-K gate dielectric material into the substrate.
However, some of the methods of forming interlayer oxides rely on native oxide growth processes that can be difficult to control. For example, one approach for forming a chemical oxide of SiO2 on a silicon substrate uses an HF wet bath to strip the substrate back to bare silicon. The chemical oxide is then formed according to a “Standard Clean 1” or “SCI” process using a wet bath comprising NH4OH, H2O2, and H2O. Diffusion boundary layers formed within the liquid near the substrate surface may make it difficult to control the thickness of an oxide formed using a wet bath short of an equilibrium thickness that may be undesirably thick. For example, some chemical oxides may have a thickness approaching 7 to 8 Å, a thickness that may contribute at an undesirable level to the EOT of a device including a high-K gate dielectric.
Accordingly, the embodiments described herein are related to methods for forming a film stack on a substrate. One example method comprises exposing the substrate to an activated oxygen species and converting an exposed surface of the substrate into a continuous monolayer of a first dielectric material. The example method also includes forming a second dielectric material on the continuous monolayer of the first dielectric material without exposing the substrate to an air break.
The embodiments described herein are also related to methods for determining a conversion time associated with converting an exposed surface of a substrate into a continuous monolayer of a first dielectric material. One example method includes converting the exposed surface of the substrate into the first dielectric material via reaction of an activated oxygen species with the exposed surface of the substrate and then forming a second dielectric material on the first dielectric material without an air break. The example method also includes measuring a thickness of the second dielectric material and determining that a continuous monolayer of the first dielectric material is formed on the exposed surface of the substrate if the thickness matches a preselected thickness.
The embodiments described herein are also related to film stacks used for semiconductor device gate assemblies. In one example, a gate assembly for a semiconductor device comprises a continuous monolayer of a first dielectric material formed from an exposed surface of a semiconducting substrate via reaction of the exposed surface with an activated oxygen species and a high-K dielectric material formed upon the first dielectric material without an intervening air break.
Forming a high-K dielectric material on the first dielectric material without an air break may avoid spontaneous oxidation caused by exposure to ambient conditions that may undesirably thicken the EOT of the device. Such spontaneous oxidation processes may be uncontrolled, potentially causing device performance to vary across the substrate and/or the device. Further, avoiding an air break during processing may also prevent the introduction of contaminants and/or small particles within the device that may degrade performance.
Moreover, by controlling formation of the first dielectric material to a continuous monolayer, the contribution to the device's EOT from the first dielectric material may be managed with more precision than boundary layers formed from native growth processes, such as ambient air exposure and/or chemical oxide formation in a wet bath. For example, in some embodiments, formation of a continuous monolayer of SiO2 on a silicon substrate as described herein may provide an SiO2 film that is physically less than or equal to 6 Å thick. Further, in some embodiments disclosed herein, a gate assembly formed from a film stack comprising a continuous monolayer of SiO2 formed from a silicon using an oxygen plasma and an HfO2 high-K dielectric film formed thereon without an air break may reduce device EOT by approximately 20% relative to devices having the same physical thickness of HfO2 (within an acceptable tolerance) deposited on an SiO2 layer formed via a chemical oxide generated by an HF strip followed by an SC 1 wet bath.
Method 100 comprises, at 102, supporting a substrate in a reactor. A first dielectric material may be formed on an exposed surface of any suitable substrate without departing from the present disclosure. In some embodiments, supporting the substrate in the reactor may include adjusting one or more reactor conditions, such as temperature, pressure, plasma processing conditions, and/or inert gas (e.g., Ar, N2, or He) flow rate, to conditions suitable for film formation prior to processing the substrate, though it will be appreciated that such adjustments may be made at any suitable point during substrate processing. It will also be appreciated that such film formation conditions may vary according to film process chemistry, substrate surface termination, and so on. Further, in some embodiments, reactor conditions may be adjusted to avoid undesirable reactions in the process environment and/or on the substrate. For example, reactor conditions may be adjusted to avoid gas phase decomposition reactions for one or more of precursors and/or reactants, potentially avoiding film contamination from decomposition products and/or poor step coverage resulting from diffusion effects. Further, in some scenarios, reactor conditions may be adjusted to avoid condensation of precursors and/or reactants on various reactor surfaces, potentially avoiding small particle defect generation processes.
For example, Table 1, presented below, provides non-limiting examples for process conditions suitable for forming a first dielectric layer of SiO2 on and/or within a surface of a silicon substrate and for forming a second dielectric layer of HfO2 on the first dielectric layer without an intervening air break.
At 104, method 100 comprises supplying an exposed substrate surface with activated oxygen species. As used herein, an activated oxygen species generally refers to a chemically active state of oxygen generated from an oxygen-including reactant. In some embodiments, activated oxygen species may be provided by an ozone source. For example, ozone may be provided by an ozone generator supplied with oxygen. In some embodiments, activated oxygen species may be provided by an oxygen plasma source. In one scenario, activated oxygen ions may generated from oxygen gas by plasma formed proximate to the substrate (e.g., direct plasma). In another scenario, the activated oxygen ions may be supplied from an oxygen plasma generated away from the substrate surface (e.g., remote plasma). It will be appreciated that selection of a source for generating an activated oxygen species may depend on one or more application-related criteria, such as sensitivity of the substrate to ion bombardment, a desired flux of activated oxygen species at the substrate surface, a desired penetration depth of the activated oxygen species within the substrate surface, and so on. Such considerations or others may also affect selection of the activated oxygen species.
While the description above generally relates to the conversion of an exposed substrate surface into a layer of an oxygen-including dielectric material, it will be appreciated that any other suitable material may also be included in the first dielectric material without departing from the scope of the present disclosure.
For example, in some embodiments, nitrogen may also be included in the first dielectric material to adjust one or more electrical and/or physical characteristics of the first dielectric material, such as the dielectric constant, etch rate, and so on. Accordingly, in some embodiments, supplying the exposed surface with activated oxygen species at 104 may include supplying the exposed surface with an activated nitrogen species. As used herein, an activated nitrogen species generally refers a chemically active state of nitrogen generated from a nitrogen-including reactant. In some embodiments, activated nitrogen species may be provided by a nitrogen plasma source. In one scenario, activated nitrogen ions may generated from nitrogen gas by direct plasma, while, in another scenario, activated nitrogen ions may be supplied by remote plasma.
It will be appreciated that, if supplied, an activated nitrogen species may be provided by a source that is different than a source used to supply activated oxygen species in some embodiments, though in some instances the activated nitrogen and oxygen species may be generated by a common generation source. Further, it will be appreciated that selection of a source for generating an activated nitrogen species may depend on one or more of the application-related criteria noted above or on other suitable factors. Such considerations or others may also affect selection of the activated nitrogen species.
At 106, method 100 comprises converting an exposed surface of the substrate into a continuous monolayer of the first dielectric material. The activated oxygen species, and in some embodiments, the activated nitrogen species, reacts with the surface of the substrate material to form the first dielectric material. The conversion reaction transforms the exposed surface of the substrate into the first dielectric material. Put differently, the activated species consumes a portion of the exposed surface of the substrate to generate the first dielectric material. For example, in some embodiments, activated oxygen species may react with exposed surfaces of a silicon substrate to convert those surfaces into suitable silicon oxides (SiOx), such as SiO2. In some other embodiments, activated oxygen and nitrogen species may react with exposed surfaces of a silicon substrate to convert those surfaces into suitable silicon oxynitrides (SiOxNy), such as SiON.
The conversion reaction is performed until a continuous monolayer of the first dielectric material is formed. As used herein, a continuous monolayer refers to an uninterrupted single layer, within an acceptable tolerance, of a specified material, such as the first dielectric material. Without wishing to be bound by theory, activated species supplied to the substrate may react with the substrate to form islands or domains of the first dielectric material. Continued supply of the activated species may cause new domains to form and existing domains to grow until the domains merge together to form a continuous monolayer.
It will be appreciated that the physical characteristics of a monolayer may depend upon the material being formed. For example, a SiO2 film formed within a silicon substrate may have a monolayer thickness of approximately 4 Å based upon the bond length and unit cell dimensions for SiO2. Other dielectric materials formed from silicon substrates, such as silicon suboxides and silicon oxynitrides may have different monolayer thicknesses. Dielectric materials formed from other substrate materials may also have different monolayer thicknesses that are specific to the selected material systems.
Because the conversion process described above consumes a portion of the substrate, it will be appreciated that activated species may diffuse through the first dielectric material to reach unreacted substrate. If several layers of dielectric material accumulate, these diffusional effects may slow or halt the conversion of the substrate material. However, because several layers of dielectric material may compromise device performance, the supply of active species is managed so that the supply is curtailed after generating a continuous monolayer of the dielectric material. It will be appreciated that the supply may be controlled in any suitable manner without departing from the scope of the present disclosure. In some embodiments, activated species may be supplied only during a predetermined conversion time. Selection of the predetermined conversion time is discussed in more detail below with respect to
At 108, method 100 comprises forming a second dielectric material on the first dielectric material without an air break. The second dielectric material may be formed on the first dielectric material in any suitable manner. For example, the second dielectric material may be formed on the first dielectric material by a thermal and/or plasma moderated deposition technique (e.g., atomic layer deposition or chemical vapor deposition). As one example of an atomic layer deposition technique, the second dielectric material may be deposited on the first dielectric material by adsorbing a dielectric material precursor on the continuous monolayer of the first dielectric material. A layer of the second dielectric material is then formed from interaction of the adsorbed precursor with a subsequently introduced reactant. Repeating the sequence builds additional layers of second dielectric material.
Forming the second dielectric material on the first dielectric material without an air break may avoid oxide growth caused by exposure of the first dielectric material to oxygen and/or humidity present at ambient conditions. In some settings where the first dielectric material is used as a liner or barrier layer prior to formation of a high-K dielectric, spontaneous oxidation caused by exposure to ambient conditions may undesirably thicken the EOT of the device. Moreover, because such spontaneous oxidation processes are relatively uncontrolled, the first dielectric material may vary in thickness across the substrate and/or the device. Further, forming the second dielectric material on the first dielectric material without an air break may also avoid exposing the surface of the first dielectric material to ambient contaminants and/or small particles that may interfere with subsequent processing.
Accordingly, in some embodiments, the first dielectric material may be formed in a first processing module of a semiconductor processing tool. The substrate may then be moved, without exposure to air or ambient humidity, to a second processing module included in the semiconductor processing tool for formation of the second dielectric material.
In some embodiments, forming the second dielectric material on the first dielectric material without an air break may include forming the second dielectric material on the first dielectric material without a vacuum break. In some of such embodiments, the first dielectric material may be formed in a first processing module of a semiconductor processing tool. The substrate may then be moved, without a vacuum break, to a second processing module included in the semiconductor processing tool for formation of the second dielectric material. In some other of such embodiments, the second dielectric material may be formed in the same processing module as the first dielectric material.
It will be appreciated that semiconducting substrate 202 may include any suitable semiconducting substrate without departing from the scope of the present disclosure. Non-limiting examples of semiconducting substrate 202 include Si, Ge, SiGe, GaAs, InGaAs, and InP. In some embodiments, semiconducting substrate 202 may be formed as a suitable wafer, such as a 300-mm double-sided polished wafer of a suitable material. Further, semiconducting substrate 202 may have any suitable topography, including planar and non-planar surfaces.
First dielectric material 204 is a continuous monolayer formed by reaction of an exposed surface of semiconducting substrate 202 with an activated oxygen species. For example, in some embodiments, activated oxygen species may react with exposed surfaces of a silicon substrate to convert those surfaces into suitable silicon oxides (SiOx), such as SiO2. In some other embodiments, activated oxygen and nitrogen species may react with exposed surfaces of a silicon substrate to convert those surfaces into suitable silicon oxynitrides (SiOxNy), such as SiON. It will be appreciated that other suitable first dielectric materials may be formed from other substrate materials. For example, in embodiments where activated oxygen species is supplied to a Ge, SiGe, GaAs, InGaAs, or an InP substrate, first dielectric material 204 comprises a continuous monolayer of GeOx, SiGeOx, GaAsOx, InGaAsOx, or InPOx, respectively. In embodiments where activated oxygen and nitrogen species are supplied to a Ge, SiGe, GaAs, InGaAs, or an InP substrate, first dielectric material 204 comprises a continuous monolayer of GeOxNy, SiGeOxNy, GaAsOxNy, InGaAsOxNy, or InPOxNy, respectively.
Second dielectric material 206 is a dielectric material formed on first dielectric material 204 without an intervening air break. In some embodiments, second dielectric material 206 may include a binary or a tertiary transition metal oxide. In some embodiments, second dielectric material 206 may include a high-K dielectric material. Non-limiting examples of second dielectric material 206 include HfOx, TiOx, SrOx, ZrOx, LaOx, SrTixOy, AlOx, MgO, BaTixOy, and SrxBa(1-x)TiyOz.
While not shown in
As introduced above, a continuous monolayer of the first dielectric is formed by converting at least enough of the substrate to form the continuous monolayer while curtailing conversion thereafter.
At 302, method 300 comprises supplying an active species to exposed surfaces of a silicon substrate for a selected time to form SiO2. The time selected for converting the substrate to the SiO2 may be any suitable time, which may be adjusted as described in more detail below. While it will be appreciated that any suitable process variable such as temperature, pressure, partial pressure, plasma power, and so on may be adjusted during conversion 302, it is preferable that those process parameters be selected in advance. In turn, method 300 may be focused on time selection for a particular substrate material conversion process, which may expedite time selection and overall process development.
At 304, method 300 comprises forming HfO2 on the SiO2 without an air break. Forming the second dielectric material at 304 includes processing the substrate under conditions suited to form a predetermined amount or thickness of the HfO2 layer on the SiO2 layer. In some of such embodiments, the substrate may be processed for a predetermined film formation time. For example, in some embodiments where the second dielectric material is deposited by a thermal- or plasma-based chemical vapor deposition technique, the substrate may be processed for a predetermined deposition time. In some embodiments where the second dielectric material is deposited by an atomic layer deposition technique, the substrate may be processed for a predetermined number of film formation cycles.
Processing the substrate so as to form a predetermined amount of the second dielectric material may provide an approach to identifying whether the SiO2 film was sufficiently formed into a closed, continuous monolayer of film. In some settings, a precursor used to form the second dielectric material may adsorb at a different rate on the substrate than on the SiO2. Relative differences in adsorption rate and/or extent of adsorption may be due to differences in the chemical termination of those surfaces.
For example, HfO2 may be deposited using atomic layer deposition by sequentially supplying a substrate with separate, alternating doses or pulses of a hafnium-including precursor and an oxygen-including reactant. Reactions 1 and 2 illustrate a simplified form of the two processes that make up a sequential cycle used to form a layer of HfO2 using atomic layer deposition.
HfCl4 (gas)+surface active site→HfCl3 (adsorbed)+Cl(adsorbed) Reaction 1:
2H2O(gas)+HfCl3 (adsorbed)+Cl(adsorbed)→HfO2+4HCl(gas) Reaction 2:
It will be appreciated that not all sites on the substrate surface may be active for adsorbing precursor. In some settings, the chemical termination of the surface may affect the population of surface active sites. For example, a surface terminated with hydrogen may be less reactive to some processes than a surface terminated with hydroxyl groups. Without wishing to be bound by theory, hydrogen-terminated surfaces may have fewer dangling bonds relative to other surface substituent groups, potentially providing a lower energy and less reactive surface. Accordingly, some surfaces may undergo a surface transformation before the surface is active for film formation. For example, water may be split to transform the surface from a hydrogen-terminated state into a hydroxyl-terminated state. It may take one or more sequential cycles to nucleate surface active sites suited for precursor adsorption and film deposition. Meanwhile, little film formation may occur during surface active site nucleation.
The delay associated with preparing the surface for subsequent film formation may be referred to as a nucleation phase. It will be appreciated that the duration of the nucleation phase, if any exists, may vary according to the identities of the substrate and the precursor. The nucleation phase duration may also vary according to an identity of the first dielectric material and the extent of conversion of the substrate surface to the first dielectric material. As introduced above, in some settings, a precursor used to form the second dielectric material may adsorb at a different rate on the substrate than on the first dielectric material. For example, a silicon substrate may be hydrogen terminated while a silicon oxide surface formed from the silicon substrate may be terminated with a non-hydrogen species, such as a surface hydroxyl. In some of such examples, a precursor used for forming the second dielectric material, such as HfCl4, may have a higher sticking probability on the silicon oxide surface than on the silicon surface. The difference in sticking probability may lead to a difference in a likelihood of forming the second dielectric material, as a precursor that is more likely to adsorb is may be more likely to participate in subsequent film-forming reactions.
For example,
Ellipsometer data 400 includes film thickness data 402 and film non-uniformity data 404 collected as a function of oxygen plasma exposure time. Ellipsometer data 400 represents data averaged from a suitable number of measurement sites on the substrates. Thickness data 402 was collected from 49 measurement sites arranged on each substrate surface, though any suitable number of sites may be employed without departing from the scope of the present disclosure. Non-uniformity data 404 represents within-substrate non-uniformity, which was calculated by dividing the standard deviation of the measured thickness data by the average thickness. The calculated non-uniformity values are expressed as percentages by multiplying the results by 100.
For illustrative purposes, ellipsometer data 400 is divided into Region A and Region B. Region A illustrates a portion of ellipsometer data 400 roughly corresponding to a silicon surface that exhibits no conversion to SiO2 or conversion to less than a continuous monolayer of SiO2. Consequently, some of the atomic layer deposition cycles are used transforming the surface in a nucleation phase. Only the remaining atomic layer depositions cycles are able to deposit HfO2 film on the surface. Because the total film deposited during the HfO2 formation process in Region A is less than an amount that would ordinarily be deposited by an identical number of atomic layer deposition cycles, the total thickness shown in thickness data 402 in Region A is less than expected. Moreover, because the HfO2 process begins with a nucleation process, islands of HfO2 formed on the surface from nucleation sites may also lead to a surface that has a greater non-uniformity than expected, as shown in non-uniformity data 404.
Region B illustrates a portion of ellipsometer data 400 roughly corresponding to a silicon substrate exhibiting conversion to a continuous monolayer of SiO2 prior to formation of HfO2. Because the SiO2 surface may be more susceptible to HfO2 formation than a silicon surface, fewer atomic layer deposition cycles may be used in a nucleation phase in Region B than in Region A. In turn, more deposition cycles may be available for forming layers of HfO2, so that the total thickness approaches an amount of HfO2 that is expected to be deposited by those atomic layer deposition cycles. In settings where there is virtually no nucleation phase for forming HfO2 on the SiO2 surface, the thickness of HfO2 formed may approach a theoretical value for atomic layer deposition. Further, because the HfO2 films are formed on a continuous monolayer of film, the total film stack exhibits a more uniform surface relative to surfaces having discontinuous, sub-monolayer films of SiO2 beneath the HfO2, as shown in non-uniformity data 404.
In the example shown in
Returning to
At 308, method 300 comprises determining whether the thickness of the film stack is less than expected based upon the HfO2 formation conditions. In turn, it may be possible to determine whether a continuous monolayer of SiO2 is formed. If the thickness of the film stack is less than expected, method 300 continues to 310 in
Without wishing to be bound by theory, a thinner than expected HfO2 layer may result when an HfO2 precursor or reactant has a higher probability of sticking on the SiO2 than on the silicon substrate. Initial formation of the HfO2 layer on the silicon substrate may be inhibited by a nucleation phase that is longer than a nucleation phase associated with forming the HfO2 layer on SiO2, causing the HfO2 layer to be thinner than expected. Consequently, at 312, method 300 includes increasing the selected conversion time and repeating method 300. Increasing the selected conversion time may provide additional time for the SiO2 material to close into a continuous monolayer.
If the thickness of the film stack is not less than expected at 308, method 300 continues to 314 in
If the thickness of the film stack is greater than expected, method 300 continues to 318, where it is determined that more than one monolayer of SiO2 was formed. Consequently, at 320, method 300 includes decreasing the selected conversion time and repeating method 300. Decreasing the selected conversion time may reduce the time available for the SiO2 material to grow beyond a continuous monolayer.
It will be appreciated that the silicon/SiO2 example disclosed above is merely illustrative, and that some portions of method 300 may vary according to materials- and/or process-related considerations. In some embodiments, determinations based on thickness comparisons may be related to the extent of conversion of the substrate into the first dielectric material may depend on a sticking probability of a precursor, reactant, and/or reaction product (e.g., a gas phase deposition product participating in a CVD reaction) associated with formation of the second dielectric material on the first dielectric material relative to the substrate. In some embodiments, determinations based on thickness comparisons may be related to variations in substrate and first dielectric material physical surface conditions (e.g., faceting and so on) and chemical surface conditions (e.g., the population of dangling bonds, surface adsorbed groups including hydrogen, hydroxyl, and so on).
For example, if a precursor used to form the second dielectric material has a higher sticking probability on the substrate than on the first dielectric material, the thickness of the second dielectric material may be greater than expected. In such embodiments, the greater-than-expected thickness may be used to increase the selected conversion time. Further, in some of such embodiments, the measured thickness of the second dielectric material, on its own, may be helpful in distinguishing between a film stack comprising an incomplete, discontinuous layer of first dielectric material and a film stack comprising more than one monolayer of the first dielectric material.
In some embodiments, the film stacks and structures described herein may be formed using a suitable semiconductor processing tool.
System process controller 622 comprises a computing system that includes a data-holding subsystem 624 and a logic subsystem 626. Data-holding subsystem 624 may include one or more physical, non-transitory devices configured to hold data and/or instructions executable by logic subsystem 626 to implement the methods and processes described herein. Logic subsystem 626 may include one or more physical devices configured to execute one or more instructions stored in data-holding subsystem 624. Logic subsystem 826 may include one or more processors that are configured to execute software instructions.
In some embodiments, such instructions may control the execution of process recipes. Generally, a process recipe includes a sequential description of process parameters used to process a substrate, such parameters including, but not limited to, time, temperature, pressure, and concentration, as well as various parameters describing electrical, mechanical, and environmental aspects of the tool during substrate processing. The instructions may also control the execution of various maintenance recipes used during maintenance procedures.
In some embodiments, such instructions may be stored on removable computer-readable storage media 628, which may be used to store and/or transfer data and/or instructions executable to implement the methods and processes described herein, excluding a signal per se. It will be appreciated that any suitable removable computer-readable storage media 628 may be employed without departing from the scope of the present disclosure. Non-limiting examples include DVDs, CD-ROMs, floppy discs, and flash drives.
It is to be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The specific routines or methods described herein may represent one or more of any number of processing strategies. Thus, the various acts illustrated may be performed in the sequence illustrated, in other sequences, or omitted in some cases.
The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/465,340, filed May 7, 2012, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2745640 | Cushman | May 1956 | A |
2990045 | Root | Sep 1959 | A |
3833492 | Bollyky | Sep 1974 | A |
3854443 | Baerg | Dec 1974 | A |
3862397 | Anderson et al. | Jan 1975 | A |
3887790 | Ferguson | Jun 1975 | A |
4054071 | Patejak | Oct 1977 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4145699 | Hu et al. | Mar 1979 | A |
4176630 | Elmer | Dec 1979 | A |
4181330 | Kojima | Jan 1980 | A |
4194536 | Stine et al. | Mar 1980 | A |
4322592 | Martin | Mar 1982 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4393013 | McMenamin | Jul 1983 | A |
4436674 | McMenamin | Mar 1984 | A |
4499354 | Hill et al. | Feb 1985 | A |
4512113 | Budinger | Apr 1985 | A |
4570328 | Price et al. | Feb 1986 | A |
D288556 | Wallgren | Mar 1987 | S |
4653541 | Oehlschlaeger et al. | Mar 1987 | A |
4722298 | Rubin et al. | Feb 1988 | A |
4735259 | Vincent | Apr 1988 | A |
4753192 | Goldsmith et al. | Jun 1988 | A |
4789294 | Sato et al. | Dec 1988 | A |
4821674 | deBoer et al. | Apr 1989 | A |
4827430 | Aid et al. | May 1989 | A |
4882199 | Sadoway et al. | Nov 1989 | A |
4986215 | Yamada | Jan 1991 | A |
4991614 | Hammel | Feb 1991 | A |
5062386 | Christensen | Nov 1991 | A |
5074017 | Toya et al. | Dec 1991 | A |
5119760 | McMillan et al. | Jun 1992 | A |
5167716 | Boitnott et al. | Dec 1992 | A |
5199603 | Prescott | Apr 1993 | A |
5221556 | Hawkins et al. | Jun 1993 | A |
5242539 | Kumihashi et al. | Sep 1993 | A |
5243195 | Nishi | Sep 1993 | A |
5326427 | Jerbic | Jul 1994 | A |
5380367 | Bertone | Jan 1995 | A |
5421893 | Perlov | Jun 1995 | A |
5422139 | Fischer | Jun 1995 | A |
5518549 | Hellwig | May 1996 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5616947 | Tamura | Apr 1997 | A |
5632919 | MacCracken et al. | May 1997 | A |
5681779 | Pasch et al. | Oct 1997 | A |
5695567 | Kordina | Dec 1997 | A |
5730801 | Tepman | Mar 1998 | A |
5732744 | Barr et al. | Mar 1998 | A |
5736314 | Hayes et al. | Apr 1998 | A |
5796074 | Edelstein et al. | Aug 1998 | A |
5836483 | Disel | Nov 1998 | A |
5837320 | Hampden-Smith et al. | Nov 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5920798 | Higuchi et al. | Jul 1999 | A |
5979506 | Aarseth | Nov 1999 | A |
6013553 | Wallace et al. | Jan 2000 | A |
6015465 | Kholodenko et al. | Jan 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6060691 | Minami et al. | May 2000 | A |
6074443 | Venkatesh | Jun 2000 | A |
6083321 | Lei et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6122036 | Yamasaki et al. | Sep 2000 | A |
6125789 | Gupta et al. | Oct 2000 | A |
6129044 | Zhao et al. | Oct 2000 | A |
6148761 | Majewski et al. | Nov 2000 | A |
6160244 | Ohashi | Dec 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6201999 | Jevtic | Mar 2001 | B1 |
6274878 | Li et al. | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6312525 | Bright et al. | Nov 2001 | B1 |
D451893 | Robson | Dec 2001 | S |
D452220 | Robson | Dec 2001 | S |
6326597 | Lubomirsky et al. | Dec 2001 | B1 |
6342427 | Choi et al. | Jan 2002 | B1 |
6367410 | Leahey et al. | Apr 2002 | B1 |
6368987 | Kopacz et al. | Apr 2002 | B1 |
6383566 | Zagdoun | May 2002 | B1 |
6410459 | Blalock et al. | Jun 2002 | B2 |
6420279 | Ono et al. | Jul 2002 | B1 |
6454860 | Metzner et al. | Sep 2002 | B2 |
6478872 | Chae et al. | Nov 2002 | B1 |
6482331 | Lu et al. | Nov 2002 | B2 |
6483989 | Okada et al. | Nov 2002 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6521295 | Remington | Feb 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6569239 | Arai et al. | May 2003 | B2 |
6579833 | McNallan et al. | Jun 2003 | B1 |
6590251 | Kang et al. | Jul 2003 | B2 |
6594550 | Okrah | Jul 2003 | B1 |
6598559 | Vellore et al. | Jul 2003 | B1 |
6627503 | Ma et al. | Sep 2003 | B2 |
6633364 | Hayashi | Oct 2003 | B2 |
6645304 | Yamaguchi | Nov 2003 | B2 |
6648974 | Ogliari et al. | Nov 2003 | B1 |
6673196 | Oyabu | Jan 2004 | B1 |
6682973 | Paton et al. | Jan 2004 | B1 |
6709989 | Ramdani et al. | Mar 2004 | B2 |
6710364 | Guldi et al. | Mar 2004 | B2 |
6734090 | Agarwala et al. | May 2004 | B2 |
6820570 | Kilpela et al. | Nov 2004 | B2 |
6821910 | Adomaitis et al. | Nov 2004 | B2 |
6824665 | Shelnut et al. | Nov 2004 | B2 |
6847014 | Benjamin et al. | Jan 2005 | B1 |
6858524 | Haukka et al. | Feb 2005 | B2 |
6858547 | Metzner | Feb 2005 | B2 |
6863019 | Shamouilian et al. | Mar 2005 | B2 |
6874480 | Ismailov | Apr 2005 | B1 |
6875677 | Conley, Jr. et al. | Apr 2005 | B1 |
6884066 | Nguyen et al. | Apr 2005 | B2 |
6884319 | Kim | Apr 2005 | B2 |
6889864 | Lindfors et al. | May 2005 | B2 |
6909839 | Wang et al. | Jun 2005 | B2 |
6930059 | Conley, Jr. et al. | Aug 2005 | B2 |
6935269 | Lee et al. | Aug 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
6972478 | Waite et al. | Dec 2005 | B1 |
7045430 | Ahn et al. | May 2006 | B2 |
7053009 | Conley, Jr. et al. | May 2006 | B2 |
7071051 | Jeon et al. | Jul 2006 | B1 |
7115838 | Kurara et al. | Oct 2006 | B2 |
7122085 | Shero et al. | Oct 2006 | B2 |
7129165 | Basol et al. | Oct 2006 | B2 |
7132360 | Schaeffer et al. | Nov 2006 | B2 |
7135421 | Ahn et al. | Nov 2006 | B2 |
7147766 | Uzoh et al. | Dec 2006 | B2 |
7172497 | Basol et al. | Feb 2007 | B2 |
7192824 | Ahn et al. | Mar 2007 | B2 |
7192892 | Ahn et al. | Mar 2007 | B2 |
7195693 | Cowans | Mar 2007 | B2 |
7204887 | Kawamura et al. | Apr 2007 | B2 |
7205247 | Lee et al. | Apr 2007 | B2 |
7235501 | Ahn et al. | Jun 2007 | B2 |
7238596 | Kouvetakis et al. | Jul 2007 | B2 |
D553104 | Oohashi et al. | Oct 2007 | S |
7298009 | Yan et al. | Nov 2007 | B2 |
D557226 | Uchino et al. | Dec 2007 | S |
7312494 | Ahn et al. | Dec 2007 | B2 |
7329947 | Adachi et al. | Feb 2008 | B2 |
7357138 | Ji et al. | Apr 2008 | B2 |
7393418 | Yokogawa | Jul 2008 | B2 |
7393736 | Ahn et al. | Jul 2008 | B2 |
7402534 | Mahajani | Jul 2008 | B2 |
7405166 | Liang et al. | Jul 2008 | B2 |
7405454 | Ahn et al. | Jul 2008 | B2 |
7414281 | Fastow | Aug 2008 | B1 |
7431966 | Derderian et al. | Oct 2008 | B2 |
7437060 | Wang et al. | Oct 2008 | B2 |
7442275 | Cowans | Oct 2008 | B2 |
7489389 | Shibazaki | Feb 2009 | B2 |
D593969 | Li | Jun 2009 | S |
7547363 | Tomiyasu et al. | Jun 2009 | B2 |
7575968 | Sadaka et al. | Aug 2009 | B2 |
7589003 | Kouvetakis et al. | Sep 2009 | B2 |
7601223 | Lindfors et al. | Oct 2009 | B2 |
7601225 | Tuominen et al. | Oct 2009 | B2 |
7640142 | Tachikawa et al. | Dec 2009 | B2 |
7651583 | Kent et al. | Jan 2010 | B2 |
D609655 | Sugimoto | Feb 2010 | S |
7678197 | Maki | Mar 2010 | B2 |
D614153 | Fondurulia et al. | Apr 2010 | S |
7720560 | Menser et al. | May 2010 | B2 |
7723648 | Tsukamoto et al. | May 2010 | B2 |
7740705 | Li | Jun 2010 | B2 |
7780440 | Shibagaki et al. | Aug 2010 | B2 |
7833353 | Furukawahara et al. | Nov 2010 | B2 |
7838084 | Derderian et al. | Nov 2010 | B2 |
7851019 | Tuominen et al. | Dec 2010 | B2 |
7884918 | Hattori | Feb 2011 | B2 |
D634719 | Yasuda et al. | Mar 2011 | S |
8041197 | Kasai et al. | Oct 2011 | B2 |
8055378 | Numakura | Nov 2011 | B2 |
8071451 | Berry | Dec 2011 | B2 |
8071452 | Raisanen | Dec 2011 | B2 |
8072578 | Yasuda | Dec 2011 | B2 |
8076230 | Wei | Dec 2011 | B2 |
8076237 | Uzoh | Dec 2011 | B2 |
8082946 | Laverdiere et al. | Dec 2011 | B2 |
8092604 | Tomiyasu et al. | Jan 2012 | B2 |
8137462 | Fondurulia et al. | Mar 2012 | B2 |
8147242 | Shibagaki et al. | Apr 2012 | B2 |
8216380 | White et al. | Jul 2012 | B2 |
8278176 | Bauer et al. | Oct 2012 | B2 |
8282769 | Iizuka | Oct 2012 | B2 |
8287648 | Reed et al. | Oct 2012 | B2 |
8293016 | Bahng et al. | Oct 2012 | B2 |
8309173 | Tuominen et al. | Nov 2012 | B2 |
8323413 | Son | Dec 2012 | B2 |
8367528 | Bauer et al. | Feb 2013 | B2 |
8372204 | Nakamura | Feb 2013 | B2 |
8444120 | Gregg et al. | May 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
D691974 | Osada et al. | Oct 2013 | S |
8608885 | Goto et al. | Dec 2013 | B2 |
8683943 | Onodera et al. | Apr 2014 | B2 |
8711338 | Liu et al. | Apr 2014 | B2 |
D705745 | Kurs et al. | May 2014 | S |
8726837 | Patalay et al. | May 2014 | B2 |
8728832 | Raisanen et al. | May 2014 | B2 |
8802201 | Raisanen et al. | Aug 2014 | B2 |
D716742 | Jang et al. | Nov 2014 | S |
8877655 | Shero et al. | Nov 2014 | B2 |
8883270 | Shero et al. | Nov 2014 | B2 |
8986456 | Fondurulia et al. | Mar 2015 | B2 |
8993054 | Jung et al. | Mar 2015 | B2 |
9005539 | Halpin et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9018111 | Milligan et al. | Apr 2015 | B2 |
9021985 | Alokozai et al. | May 2015 | B2 |
9029253 | Milligan et al. | May 2015 | B2 |
9096931 | Yednak et al. | Aug 2015 | B2 |
20010017103 | Takeshita et al. | Aug 2001 | A1 |
20010046765 | Cappellani et al. | Nov 2001 | A1 |
20020001974 | Chan | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020064592 | Datta et al. | May 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020108670 | Baker et al. | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020172768 | Endo et al. | Nov 2002 | A1 |
20020187650 | Blalock et al. | Dec 2002 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030025146 | Narwankar et al. | Feb 2003 | A1 |
20030040158 | Saitoh | Feb 2003 | A1 |
20030042419 | Katsumata et al. | Mar 2003 | A1 |
20030066826 | Lee et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20030094133 | Yoshidome et al. | May 2003 | A1 |
20030111963 | Tolmachev et al. | Jun 2003 | A1 |
20030141820 | White et al. | Jul 2003 | A1 |
20030168001 | Sneh | Sep 2003 | A1 |
20030180458 | Sneh | Sep 2003 | A1 |
20030228772 | Cowans | Dec 2003 | A1 |
20030232138 | Tuominen et al. | Dec 2003 | A1 |
20040009679 | Yeo et al. | Jan 2004 | A1 |
20040013577 | Ganguli et al. | Jan 2004 | A1 |
20040018307 | Park et al. | Jan 2004 | A1 |
20040018750 | Sophie et al. | Jan 2004 | A1 |
20040023516 | Londergan et al. | Feb 2004 | A1 |
20040036129 | Forbes et al. | Feb 2004 | A1 |
20040077182 | Lim et al. | Apr 2004 | A1 |
20040101622 | Park et al. | May 2004 | A1 |
20040106249 | Huotari | Jun 2004 | A1 |
20040144980 | Ahn et al. | Jul 2004 | A1 |
20040168627 | Conley et al. | Sep 2004 | A1 |
20040169032 | Murayama et al. | Sep 2004 | A1 |
20040198069 | Metzner et al. | Oct 2004 | A1 |
20040200499 | Harvey et al. | Oct 2004 | A1 |
20040219793 | Hishiya et al. | Nov 2004 | A1 |
20040221807 | Verghese et al. | Nov 2004 | A1 |
20040266011 | Lee et al. | Dec 2004 | A1 |
20050008799 | Tomiyasu et al. | Jan 2005 | A1 |
20050019026 | Wang et al. | Jan 2005 | A1 |
20050020071 | Sonobe et al. | Jan 2005 | A1 |
20050023624 | Ahn et al. | Feb 2005 | A1 |
20050054228 | March | Mar 2005 | A1 |
20050066893 | Soininen | Mar 2005 | A1 |
20050070123 | Hirano | Mar 2005 | A1 |
20050072357 | Shero et al. | Apr 2005 | A1 |
20050092249 | Kilpela et al. | May 2005 | A1 |
20050100669 | Kools et al. | May 2005 | A1 |
20050106893 | Wilk | May 2005 | A1 |
20050110069 | Kil et al. | May 2005 | A1 |
20050123690 | Derderian et al. | Jun 2005 | A1 |
20050173003 | Laverdiere et al. | Aug 2005 | A1 |
20050187647 | Wang et al. | Aug 2005 | A1 |
20050212119 | Shero | Sep 2005 | A1 |
20050214457 | Schmitt et al. | Sep 2005 | A1 |
20050214458 | Meiere | Sep 2005 | A1 |
20050218462 | Ahn et al. | Oct 2005 | A1 |
20050229848 | Shinriki | Oct 2005 | A1 |
20050229972 | Hoshi et al. | Oct 2005 | A1 |
20050241176 | Shero et al. | Nov 2005 | A1 |
20050263075 | Wang et al. | Dec 2005 | A1 |
20050271813 | Kher et al. | Dec 2005 | A1 |
20050282101 | Adachi | Dec 2005 | A1 |
20050287725 | Kitagawa | Dec 2005 | A1 |
20060013946 | Park et al. | Jan 2006 | A1 |
20060014384 | Lee et al. | Jan 2006 | A1 |
20060019033 | Muthukrishnan et al. | Jan 2006 | A1 |
20060024439 | Tuominen et al. | Feb 2006 | A2 |
20060046518 | Hill et al. | Mar 2006 | A1 |
20060051925 | Ahn et al. | Mar 2006 | A1 |
20060060930 | Metz et al. | Mar 2006 | A1 |
20060062910 | Meiere | Mar 2006 | A1 |
20060063346 | Lee et al. | Mar 2006 | A1 |
20060068125 | Radhakrishnan | Mar 2006 | A1 |
20060110934 | Fukuchi | May 2006 | A1 |
20060113675 | Chang et al. | Jun 2006 | A1 |
20060128168 | Ahn et al. | Jun 2006 | A1 |
20060148180 | Ahn et al. | Jul 2006 | A1 |
20060163612 | Kouvetakis et al. | Jul 2006 | A1 |
20060193979 | Meiere et al. | Aug 2006 | A1 |
20060208215 | Metzner et al. | Sep 2006 | A1 |
20060213439 | Ishizaka | Sep 2006 | A1 |
20060223301 | Vanhaelemeersch et al. | Oct 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060228888 | Lee et al. | Oct 2006 | A1 |
20060240574 | Yoshie | Oct 2006 | A1 |
20060257563 | Doh et al. | Nov 2006 | A1 |
20060257584 | Derderian et al. | Nov 2006 | A1 |
20060258078 | Lee et al. | Nov 2006 | A1 |
20060266289 | Verghese et al. | Nov 2006 | A1 |
20070010072 | Bailey et al. | Jan 2007 | A1 |
20070020953 | Tsai et al. | Jan 2007 | A1 |
20070022954 | Iizuka et al. | Feb 2007 | A1 |
20070028842 | Inagawa et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070031599 | Gschwandtner et al. | Feb 2007 | A1 |
20070037412 | Dip et al. | Feb 2007 | A1 |
20070042117 | Kupurao et al. | Feb 2007 | A1 |
20070049053 | Mahajani | Mar 2007 | A1 |
20070059948 | Metzner et al. | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070066010 | Ando | Mar 2007 | A1 |
20070077355 | Chacin et al. | Apr 2007 | A1 |
20070084405 | Kim | Apr 2007 | A1 |
20070096194 | Streck et al. | May 2007 | A1 |
20070116873 | Li et al. | May 2007 | A1 |
20070134942 | Ahn et al. | Jun 2007 | A1 |
20070146621 | Yeom | Jun 2007 | A1 |
20070155138 | Tomasini et al. | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070166457 | Yamoto et al. | Jul 2007 | A1 |
20070175397 | Tomiyasu et al. | Aug 2007 | A1 |
20070209590 | Li | Sep 2007 | A1 |
20070232501 | Tonomura | Oct 2007 | A1 |
20070237697 | Clark | Oct 2007 | A1 |
20070249131 | Allen et al. | Oct 2007 | A1 |
20070252244 | Srividya et al. | Nov 2007 | A1 |
20070264807 | Leone et al. | Nov 2007 | A1 |
20080006208 | Ueno et al. | Jan 2008 | A1 |
20080029790 | Ahn et al. | Feb 2008 | A1 |
20080054332 | Kim et al. | Mar 2008 | A1 |
20080057659 | Forbes et al. | Mar 2008 | A1 |
20080075881 | Won et al. | Mar 2008 | A1 |
20080085226 | Fondurulia et al. | Apr 2008 | A1 |
20080113096 | Mahajani | May 2008 | A1 |
20080113097 | Mahajani et al. | May 2008 | A1 |
20080124908 | Forbes et al. | May 2008 | A1 |
20080149031 | Chu et al. | Jun 2008 | A1 |
20080176375 | Erben et al. | Jul 2008 | A1 |
20080216077 | Emani et al. | Sep 2008 | A1 |
20080224240 | Ahn et al. | Sep 2008 | A1 |
20080233288 | Clark | Sep 2008 | A1 |
20080237572 | Chui et al. | Oct 2008 | A1 |
20080248310 | Kim et al. | Oct 2008 | A1 |
20080261413 | Mahajani | Oct 2008 | A1 |
20080277715 | Ohmi et al. | Nov 2008 | A1 |
20080282970 | Heys et al. | Nov 2008 | A1 |
20080315292 | Ji et al. | Dec 2008 | A1 |
20090000550 | Tran et al. | Jan 2009 | A1 |
20090011608 | Nabatame | Jan 2009 | A1 |
20090020072 | Mizunaga et al. | Jan 2009 | A1 |
20090029564 | Yamashita et al. | Jan 2009 | A1 |
20090035947 | Horii et al. | Feb 2009 | A1 |
20090061644 | Chiang et al. | Mar 2009 | A1 |
20090085156 | Dewey et al. | Apr 2009 | A1 |
20090093094 | Ye et al. | Apr 2009 | A1 |
20090095221 | Tam et al. | Apr 2009 | A1 |
20090107404 | Ogliari et al. | Apr 2009 | A1 |
20090136668 | Gregg et al. | May 2009 | A1 |
20090139657 | Lee et al. | Jun 2009 | A1 |
20090211523 | Kuppurao et al. | Aug 2009 | A1 |
20090211525 | Sarigiannis et al. | Aug 2009 | A1 |
20090239386 | Suzaki et al. | Sep 2009 | A1 |
20090242957 | Ma et al. | Oct 2009 | A1 |
20090246374 | Vukovic | Oct 2009 | A1 |
20090261331 | Yang et al. | Oct 2009 | A1 |
20090277510 | Shikata | Nov 2009 | A1 |
20090283041 | Tomiyasu et al. | Nov 2009 | A1 |
20090289300 | Sasaki et al. | Nov 2009 | A1 |
20100024727 | Kim et al. | Feb 2010 | A1 |
20100025796 | Dabiran | Feb 2010 | A1 |
20100055312 | Kato et al. | Mar 2010 | A1 |
20100075507 | Chang et al. | Mar 2010 | A1 |
20100102417 | Ganguli et al. | Apr 2010 | A1 |
20100124610 | Aikawa et al. | May 2010 | A1 |
20100130017 | Luo et al. | May 2010 | A1 |
20100162752 | Tabata et al. | Jul 2010 | A1 |
20100170441 | Won et al. | Jul 2010 | A1 |
20100193501 | Zucker et al. | Aug 2010 | A1 |
20100230051 | Iizuka | Sep 2010 | A1 |
20100255198 | Cleary et al. | Oct 2010 | A1 |
20100275846 | Kitagawa | Nov 2010 | A1 |
20100307415 | Shero et al. | Dec 2010 | A1 |
20100322604 | Fondurulia et al. | Dec 2010 | A1 |
20110000619 | Suh | Jan 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110070380 | Shero et al. | Mar 2011 | A1 |
20110089469 | Merckling | Apr 2011 | A1 |
20110097901 | Banna et al. | Apr 2011 | A1 |
20110108194 | Yoshioka et al. | May 2011 | A1 |
20110236600 | Fox et al. | Sep 2011 | A1 |
20110239936 | Suzaki et al. | Oct 2011 | A1 |
20110254052 | Kouvetakis | Oct 2011 | A1 |
20110256734 | Hausmann et al. | Oct 2011 | A1 |
20110275166 | Shero et al. | Nov 2011 | A1 |
20110308460 | Hong et al. | Dec 2011 | A1 |
20120024479 | Palagashvili et al. | Feb 2012 | A1 |
20120070136 | Koelmel et al. | Mar 2012 | A1 |
20120070997 | Larson | Mar 2012 | A1 |
20120090704 | Laverdiere et al. | Apr 2012 | A1 |
20120098107 | Raisanen et al. | Apr 2012 | A1 |
20120114877 | Lee | May 2012 | A1 |
20120156108 | Fondurulia et al. | Jun 2012 | A1 |
20120160172 | Wamura et al. | Jun 2012 | A1 |
20120240858 | Taniyama et al. | Sep 2012 | A1 |
20120270393 | Pore et al. | Oct 2012 | A1 |
20120289053 | Holland et al. | Nov 2012 | A1 |
20120295427 | Bauer | Nov 2012 | A1 |
20120304935 | Oosterlaken et al. | Dec 2012 | A1 |
20120318334 | Bedell et al. | Dec 2012 | A1 |
20120321786 | Satitpunwaycha et al. | Dec 2012 | A1 |
20130023129 | Reed | Jan 2013 | A1 |
20130104988 | Yednak et al. | May 2013 | A1 |
20130104992 | Yednak et al. | May 2013 | A1 |
20130115383 | Lu et al. | May 2013 | A1 |
20130126515 | Shero et al. | May 2013 | A1 |
20130129577 | Halpin et al. | May 2013 | A1 |
20130230814 | Dunn et al. | Sep 2013 | A1 |
20130256838 | Sanchez et al. | Oct 2013 | A1 |
20130264659 | Jung | Oct 2013 | A1 |
20130292676 | Milligan et al. | Nov 2013 | A1 |
20130292807 | Raisanen et al. | Nov 2013 | A1 |
20130330911 | Huang et al. | Dec 2013 | A1 |
20140000843 | Dunn et al. | Jan 2014 | A1 |
20140014644 | Akiba et al. | Jan 2014 | A1 |
20140020619 | Vincent et al. | Jan 2014 | A1 |
20140027884 | Fang et al. | Jan 2014 | A1 |
20140036274 | Marquardt et al. | Feb 2014 | A1 |
20140060147 | Sarin et al. | Mar 2014 | A1 |
20140067110 | Lawson et al. | Mar 2014 | A1 |
20140073143 | Alokozai et al. | Mar 2014 | A1 |
20140077240 | Roucka et al. | Mar 2014 | A1 |
20140084341 | Weeks | Mar 2014 | A1 |
20140087544 | Tolle | Mar 2014 | A1 |
20140103145 | White et al. | Apr 2014 | A1 |
20140120487 | Kaneko | May 2014 | A1 |
20140175054 | Carlson et al. | Jun 2014 | A1 |
20140217065 | Winkler et al. | Aug 2014 | A1 |
20140220247 | Haukka et al. | Aug 2014 | A1 |
20140225065 | Rachmady et al. | Aug 2014 | A1 |
20140251953 | Winkler et al. | Sep 2014 | A1 |
20140251954 | Winkler et al. | Sep 2014 | A1 |
20140346650 | Raisanen et al. | Nov 2014 | A1 |
20150004316 | Thompson et al. | Jan 2015 | A1 |
20150014632 | Kim et al. | Jan 2015 | A1 |
20150024609 | Milligan et al. | Jan 2015 | A1 |
20150048485 | Tolle | Feb 2015 | A1 |
20150091057 | Xie et al. | Apr 2015 | A1 |
20150096973 | Dunn et al. | Apr 2015 | A1 |
20150132212 | Winkler et al. | May 2015 | A1 |
20150140210 | Jung et al. | May 2015 | A1 |
20150147877 | Jung | May 2015 | A1 |
20150167159 | Halpin et al. | Jun 2015 | A1 |
20150184291 | Alokozai et al. | Jul 2015 | A1 |
20150187568 | Pettinger et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
1563483 | Jan 2005 | CN |
101330015 | Dec 2008 | CN |
101522943 | Sep 2009 | CN |
101423937 | Sep 2011 | CN |
2036600 | Mar 2009 | EP |
07283149 | Oct 1995 | JP |
08335558 | Dec 1996 | JP |
2001342570 | Dec 2001 | JP |
2004014952 | Jan 2004 | JP |
2004091848 | Mar 2004 | JP |
2004538374 | Dec 2004 | JP |
2005507030 | Mar 2005 | JP |
2006186271 | Jul 2006 | JP |
2008527748 | Jul 2008 | JP |
1226380 | Jan 2005 | TW |
200701301 | Jan 2007 | TW |
2006056091 | Jun 2006 | WO |
2006078666 | Jul 2006 | WO |
Entry |
---|
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408. |
USPTO; Non-Final Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066. |
USPTO; Non-Final Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538. |
USPTO; Non-Final Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708. |
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6. |
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511. |
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596. |
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642. |
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,258. |
USPTO; Office Action dated Mar. 24, 2014 in U.S. Appl. No. 13/439,258. |
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340. |
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214. |
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538. |
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362. |
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126. |
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368. |
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343. |
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347. |
Chinese Patent Office; Office Action dated Jan. 10, 2013 in Serial No. 201080015699.9. |
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Serial No. 201080036764.6. |
Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Serial No. 201080036764.6. |
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Serial No. 2012-504786. |
Chang et al. Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric; IEEE Electron Device Letters; Feb. 2009; 133-135; vol. 30, No. 2; IEEE Electron Device Society. |
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, Apr. 2008, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. |
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351. |
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037. |
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300. |
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591. |
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043. |
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134. |
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187. |
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056. |
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTal-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011). |
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037. |
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642. |
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271. |
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151. |
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044. |
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9. |
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056. |
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786. |
Taiwan Patent Office; Office Action dated Dec. 30, 2014 in Application No. 099114330. |
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Application No. 099127063. |
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300. |
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043. |
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144. |
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246. |
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708. |
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216. |
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298. |
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992). |
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology A 21.5, (2003): S88-S95. |
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, vol. 32, pp. 3987-4000, (1986). |
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223. |
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216. |
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782. |
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298. |
Number | Date | Country | |
---|---|---|---|
20140159170 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13465340 | May 2012 | US |
Child | 14183187 | US |