1. Field of the Invention
Generally, the present disclosure relates to the manufacture of sophisticated semiconductor devices, and, more specifically, to various methods of packaging stacked semiconductor devices using a glass window wafer with an engineered coefficient of thermal expansion (CTE) and packaged semiconductor devices using such a glass window wafer.
2. Description of the Related Art
The fabrication of advanced integrated circuits, such as CPU's, storage devices, ASIC's (application specific integrated circuits) and the like, requires the formation of a large number of circuit elements in a given chip area according to a specified circuit layout. Field effect transistors (NFET and PFET transistors) represent one important type of circuit element that substantially determines performance of such integrated circuits. During the fabrication of complex integrated circuits using, for instance, MOS technology, millions of transistors, e.g., NFET transistors and/or PFET transistors, are formed on a substrate including a crystalline semiconductor layer. In recent years, the device features of modern, ultra-high density integrated circuits have been steadily decreasing in size in an effort to enhance the overall speed, performance and functionality of the circuit. As a result, the semiconductor industry has experienced tremendous growth due to the significant and ongoing improvements in integration density of a variety of electronic components, such as transistors, capacitors, diodes and the like. These improvements have primarily come about due to a persistent and successful effort to reduce the critical dimension—i.e., minimum feature size—of components, directly resulting in the ability of process designers to integrate more and more components into a given area of a semiconductor chip. As device features have been aggressively reduced, and more semiconductor components are being fit onto the surface of a single chip, the required number of electrical interconnects necessary for creating the “wiring” for the integrated circuit has dramatically increased. As a result, the overall circuit layout has become more complex and more densely-packed. Furthermore, even though improvements in photolithography processes have yielded significant increases in the integration densities of 2D circuit designs, simple reduction in feature size is rapidly approaching the limits of what can presently be achieved in only two dimensions.
Semiconductor manufacturing typically involves forming a plurality of integrated circuit products or die on the front side of a device wafer. The process operation performed to form the die are so-called front-end-of-line (FEOL) processes (e.g., processes up through and including device formation in the substrate) and back-end-of-line (BEOL) processes (e.g., the formation of various metallization layers that constitute the wiring pattern of the chip). In general, very little of the starting thickness of a device wafer is actually used in making semiconductor devices, i.e., the depth of the device regions in the wafer may be less than 10 μm. Thus, a large percentage of the starting thickness of the device wafer is essentially not needed for the integrated circuit device to perform electrically. Thus, after the FEOL and BEOL processes are completed, the thickness of the device wafer is typically reduced by performing a grinding process on the back side of the device wafer to remove the substrate material until the device wafer is reduced to its final desired thickness. However, the final thickness of the device wafer must be large enough to ensure that the integrated circuit can mechanically withstand packaging operations and withstand the intended commercial environment for the integrated circuit product. In short, there is a constant pressure to reduce the overall thickness of the wafers in the final integrated circuit product. In many applications, e.g., cell phones and other portable consumer electronic devices, it is desirable that the substrate in the integrated circuit product be made as thin as possible to reduce the physical size and weight of the final consumer product.
As the number of electronic devices on single chip rapidly increases, three-dimensional (3D) integrated circuit layouts, or stacked chip design, have been utilized for some semiconductor devices in an effort to overcome some of the feature size and density limitations associated with 2D layouts. Typically, in a 3D integrated circuit design, two or more semiconductor dies are bonded together, and electrical connections are formed between each die. One method of facilitating the chip-to-chip electrical connections is by use of so-called through-substrate vias or through-silicon vias (TSV's). A TSV is a vertical electrical connection that passes completely through a silicon wafer or die, allowing for more simplified interconnection of vertically aligned electronic devices, thereby significantly reducing integrated circuit layout complexity as well as the overall dimensions of a multi-chip circuit. A typical TSV may have a diameter that falls within the range of 6-100 μm or smaller, and, as technology advances, there is constant pressure to make them even smaller.
After an integrated circuit product or chip is manufactured, means must be provided to establish electrical communication with the chip. Typically, this involves formation of conductive “bumps” (in various shapes and forms) that are conductively coupled to the die. In some cases, these conductive bumps can be relatively large, e.g., about 100 μm or so, in diameter. As noted above, after the device wafer containing the plurality of die is manufactured, the device wafer is thinned to its desired final thickness by performing a grinding process on the back side of the device wafer. Before the grinding process begins, the front side of the device wafer is attached to a carrier wafer, typically another silicon wafer, by use of an adhesive material. Unfortunately, due to the physical size of the conductive bumps, the layer of adhesive material between the device wafer and the carrier wafer must be relatively thick, which adds to production costs and time. The presence of the relatively large conductive bumps on the front of the device wafer can also have adverse effects on the thinned wafer that results from the grinding process. More specifically, the relatively high topography associated with the presence of the relatively large conductive bumps on the front side of the device wafer can cause undesirable thickness variations in the thinned wafer.
In an attempt to avoid some of the problems mentioned above with respect to stacked die when the conductive bumps are formed on the front side of the device wafer, various techniques have been employed wherein the conductive bumps are formed on the front side after the stacking had been performed.
The various processes that result in the device 10 depicted in
Unfortunately, with respect to the embodiment shown in
The present disclosure is directed to various methods of packaging stacked semiconductor devices using a glass window wafer with an engineered coefficient of thermal expansion (CTE) and packaged semiconductor devices using such a window wafer that may solve or reduce one or more of the problems identified above.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an exhaustive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
Generally, the present disclosure is directed to stacked semiconductor devices using a glass window wafer with an engineered coefficient of thermal expansion (CTE) and methods of making such packaged semiconductor devices. One illustrative device disclosed herein includes a device substrate having a plurality of first die formed adjacent a front side of the device substrate, a glass window wafer attached to a back side of the device substrate, wherein the glass window wafer has a plurality of openings formed therein and a coefficient of thermal expansion that is within plus or minus 200-500% of the coefficient of thermal expansion of the device wafer, and a plurality of second die, each of which is positioned in one of the openings in the glass window wafer and electrically coupled to one of the first die.
Another illustrative device disclosed herein includes a device substrate comprised of silicon having a plurality of first die formed adjacent a front side of the device substrate, a glass window wafer attached to a back side of the device substrate, wherein the glass window wafer has a plurality of openings formed therein and a coefficient of thermal expansion that is within the range of 5.0-12.0 ppm/° C., and a plurality of second die, each of which is positioned in one of the openings in the glass window wafer and electrically coupled to one of the first die.
The disclosure may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the subject matter disclosed herein is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Various illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present subject matter will now be described with reference to the attached figures. Various structures, systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not obscure the present disclosure with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe and explain illustrative examples of the present disclosure. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.
The present disclosure is directed to stacked semiconductor devices using a glass window wafer with an engineered coefficient of thermal expansion (CTE) and methods of making such packaged semiconductor devices. As will be readily apparent to those skilled in the art upon a complete reading of the present application, the methods disclosed herein may be employed with a variety of different technologies, e.g., NMOS, PMOS, CMOS, etc., and in packaging a variety of different devices, including, but not limited to, logic devices, memory devices, etc. With reference to the attached figures, various illustrative embodiments of the methods and devices disclosed herein will now be described in more detail.
With continuing reference to
The glass window wafer 118 may be comprised of a silica-containing or sodium-containing glass material such as, for example, boron silicate glass, pyrex glass, quartz, etc. The thickness 118T of the glass window wafer 118 may vary depending upon the particular application, e.g., the thickness and number of stacked die 120, etc. In one example where only a single die 120 is attached to the device wafer 112, the thickness 118T may fall within the range of about 50-350 μm. The number, size and configuration of the openings 118A that are formed in the glass window wafer 118 may vary depending upon the particular application. The glass window wafer 118 may be supplied from a vendor in either a pre-patterned form, with the openings 118A already formed therein, or it may be supplied in an unpatterned form, in which case the semiconductor manufacturer could pattern the glass window wafer 118 using traditional photolithography tools and etch techniques or by laser drilling, etc. Importantly, the CTE of the glass window wafer 118 is specifically engineered so as to reduce any CTE mismatch between the glass window wafer 118 and the device wafer 112 and minimize or eliminate CTE mismatch between the device 100 and the packaging substrate and the PCB board, as discussed more fully below in connection with
The CTE of the glass material of the glass window wafer 118 may be adjusted or engineered by changing the composition of the glass material or by adding dopant materials to the glass during its manufacture. The techniques by which the CTE of glass material may be adjusted are well known to those skilled in the art of glass manufacturing. Thus, in one example, a semiconductor manufacturer may specify the desired CTE value (or range of values) for the glass window wafer 118 to the glass manufacturer that is appropriate for the stacked semiconductor device 100 under consideration. The CTE of the various materials can be measured using interferometry which looks at the changes in the interference pattern of monochromatic light, usually from a laser.
In this example, as shown in
Next, in this example, as shown in
As indicated in
Next, as shown in
Next, as shown in
Next, as shown in
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, the process steps set forth above may be performed in a different order. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.