1. Field of the Invention
The present invention relates to composite ceramic substrates, and more specifically, relates to composite ceramic substrates having built-in circuit elements and having laminated ceramic substrates and resin layers.
2. Description of the Related Art
Conventional technologies in this field include a laminated electronic component disclosed in Japanese Unexamined Patent Application Publication No. 9-186042 (Patent Document 1) and a high-frequency semiconductor device disclosed in Japanese Unexamined Patent Application Publication No. 2003-124435 (Patent Document 2).
The laminated electronic component disclosed in Patent Document 1 is formed by laminating a plurality of insulating sheets so as to interpose a circuit element therebetween and to define a laminate having opposing main surfaces and side surfaces connecting the main surfaces, preparing a plurality of external electrodes on the outer surfaces of the laminate so as to be electrically connected to the circuit element, and forming a recess at least at the central portion of a surface at a circuit board side of the laminate when the laminated electronic component is mounted on the circuit board via the external electrodes. With such a recess formed on the surface at the circuit board (specifically, a flexible printed-circuit board) side of the laminate, even if the circuit board is bent, the bent surface of the printed-circuit board does not come into contact with the surface of the circuit board side of the laminate. Therefore, the pressing-up force against the laminate is avoided. Thus, detachment of the laminate from the printed-circuit board and breakage of the laminate are prevented.
The high-frequency semiconductor device disclosed in Patent Document 2 includes a composite resin material layer provided on the bottom of a ceramic substrate. The composite resin material layer is made of an epoxy resin and an inorganic filler material and has a flat bottom on which electrodes for external connection are provided. Semiconductor elements and passive components, which are connected to the ceramic substrate, are embedded in the inside of the composite resin material layer. With such a structure, the bottom surface of the board can be used as a mounting area to improve the mounting density. Furthermore, mechanical properties and reliability in moisture resistance are improved by embedding the semiconductor elements and the passive components in the composite resin material layer.
The laminated electronic component disclosed in Patent Document 1 avoids the pressing-up force by forming the recess at the central portion. However, the entire laminate bends corresponding to bending of the printed-circuit board. It is not a problem when surface-mounted components are not mounted on the top surface or on both top and bottom surfaces of the laminate. However, when the surface-mounted components, such as passive components and active components, are mounted on the laminate, these surface-mounted components cannot correspond to the bending of the laminate, which may cause disconnection of terminals for external connection of the surface-mounted components from the electrodes on the surface of the laminate. Thus, breaking of the wires may occur.
In the high-frequency semiconductor device disclosed in Patent Document 2, the size of the board component can be decreased by mounting the surface-mounted components, such as active components and passive components, on the bottom or top surface of the ceramic substrate. However, the ceramic substrate also bends corresponding to the bending of the printed-circuit board. Therefore, since the surface-mounted components cannot correspond to the bending of the ceramic substrate, the terminals for external connection of the surface-mounted components are disconnected from the electrodes on the surface of the laminate, which causes breaking of the wires as in the case of the laminated electronic component of Patent Document 1.
To overcome the problems described above, preferred embodiments of the present invention provide a composite ceramic substrate which prevents breaking of the wires and detachment caused by disconnection of the composite ceramic substrate from a motherboard which arises from bending of the motherboard and, simultaneously, prevents breaking of the wires of the composite ceramic substrate itself and damage to surface-mounted components caused by disconnection between the surface-mounted components and the board.
A composite ceramic substrate according to a first preferred embodiment of the present invention includes a ceramic substrate having a surface-mounted component mounted thereon, an external terminal electrode connecting a wiring pattern provided on the ceramic substrate and a surface electrode of a motherboard, a convex leg portion made of resin such that an end surface supports the external terminal electrode, and a via-hole conductor provided in the leg portion and connecting the external terminal electrode and the wiring pattern.
In a composite ceramic substrate according to a second preferred embodiment of the present invention, the surface-mounted component in the first preferred embodiment of the present invention is mounted on a first main surface and/or a second main surface of the ceramic substrate and the convex leg portion is disposed on the second main surface of the ceramic substrate.
The convex leg portion is preferably disposed at the periphery of the second main surface of the ceramic substrate.
A plurality of the external terminal electrodes is preferably supported by the end surface of a single convex leg portion.
The external terminal electrodes are preferably not disposed at corners of the second main surface of the ceramic substrate.
The corners are preferably lower than the height at which the external terminal electrodes are disposed.
The surface-mounted components mounted on the second main surface are preferably mounted between the convex leg portions.
The surface-mounted component is preferably supported with the same resin from which the convex leg portion is made.
A round portion is preferably provided between the convex leg portion and the resin coating the surface-mounted components.
The surface of the resin coating the surface-mounted components preferably has a slit.
An edge of the convex leg portion preferably has a rounded shape.
The via-hole conductor is preferably made with conductive resin having flexibility.
The ceramic substrate is preferably a multilayer ceramic substrate formed by laminating a plurality of low temperature co-fired ceramic layers.
In a composite ceramic substrate according to preferred embodiments of the present invention, the surface-mounted component preferably includes an array of external terminal electrodes.
According to various preferred embodiments of the present invention described above, a composite ceramic substrate is provided which prevents breaking of the wires or detachment caused by disconnection of the composite ceramic substrate from a motherboard arising from bending of the motherboard and, simultaneously, prevents breaking of the wires of the composite ceramic substrate itself and damage to surface-mounted component caused by disconnection between the surface-mounted component and the board.
Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.
The present invention will now be described with reference to preferred embodiments shown in
A composite ceramic substrate 10 according to this preferred embodiment, for example, as shown in
Examples of the surface-mounted components 11 to be mounted include passive components, such as capacitors, inductors, and resistors and active devices, such as semiconductor elements and gallium arsenide semiconductor elements. These surface-mounted components 11 are mounted on the top surface of the ceramic substrate 12 by connecting with solder or electrically conductive resin 11A or by wiring with, for example, gold, aluminum, or copper wire.
The ceramic substrate 12 may be formed by sintering one ceramic green sheet or may be a multilayer ceramic substrate formed by sintering a laminate of a plurality of ceramic green sheets. Therefore, the multilayer ceramic substrate will be also described with reference number “12”. When the ceramic substrate 12 is the multilayer ceramic substrate as shown in
The ceramic substrate 12 is preferably formed by sintering a low temperature co-fired ceramic (LTCC) material. The low temperature co-fired ceramic material is a ceramic material which can be sintered at a temperature of about 1050° C. or less and can be co-sintered with a material having a low specific resistance, such as silver or copper. Examples of the low temperature co-fired ceramic material include glass composite LTCC materials which are a mixture of a borosilicate glass and a ceramic powder of alumina, forsterite, or other suitable materials; crystallized glass LTCC materials of ZnO—MgO—Al2O3—SiO2 crystallized glasses; and glass-free LTCC materials of BaO—Al2O3—SiO2 ceramic powder, Al2O3—CaO—SiO2—MgO—B2O3 ceramic powder, or other suitable materials. The wiring patterns 13 can be formed with metal having a low specific resistance and a low melting point, such as silver or copper, by forming the ceramic substrate 12 with the low temperature co-fired ceramic material. Therefore, the ceramic substrate 12 and the wiring patterns 13 can be co-sintered at a low temperature of about 1050° C. or less.
When the ceramic substrate 12 is the multilayer ceramic substrate 12 as shown in
With reference to
The external terminal electrodes 14 are preferably made of metal foil, such as copper. The external terminal electrodes 14 having a low resistance can be formed at low cost by forming the external terminal electrodes 14 with the metal foil. Additionally, the external terminal electrodes 14 can be bonded to the leg portions 15 more tightly by roughening the resin-side surface of the external terminal electrodes 14. The external terminal electrodes 14 cannot be sintered because they are disposed at the resin layer side, i.e., in the leg portions 15 made of composite resin, and a combination of copper foil and resin can be prepared by a method for manufacturing printed wiring board. For these reasons, the external terminal electrodes 14 are made of metal foil, such as copper foil, instead of thick film electrodes.
The resin portions 15A of the leg portions 15 are preferably made of, but are not limited to, a composite resin material which is a mixture of a resin material and an inorganic filler. Examples of the resin material include, but are not limited to, a thermosetting resin and photosetting resin. Preferably, the thermosetting resin, such as an epoxy resin, a phenolic resin, and a cyanate resin is used. With respect to the inorganic filler, since metal powder has electrical conductivity and may harm the insulation of the resin portions, materials having electrical insulation, for example, Al2O3, SiO2, and TiO2, are preferably used, but are not limited to these.
The via-hole conductors 15B of the leg portions 15 preferably have flexibility so as to be bent corresponding to the bending of the resin portions 15A, and are preferably made with, for example, solder or electrically conductive resin. Examples of the electrically conductive resin include, but are not limited to, mixtures of metal particles of gold, silver, copper, nickel, or the like and a thermosetting resin such as an epoxy resin, a phenolic resin, and a cyanate resin. The thickness (height) of the leg portions 15 depends on the area of the multilayer ceramic substrate 12 and the type of the resin material, but is preferably about 30 μm to about 500 μm, and more preferably about 30 μm to about 300 μm, such that the bending of the motherboard 20 will not influence the multilayer ceramic substrate 12 and the strength of the leg portions 15 themselves is maintained.
The composite ceramic substrate of this preferred embodiment can be manufactured as described below. The manufacturing processes of the composite ceramic substrate are schematically shown in
(1) Preparation of Ceramic Green Sheet
In this preferred embodiment, first, for example, about 55 w/t parts of alumina particles having a mean particle size of about 1.0 μm and about 45 w/t parts of borosilicate glass having a mean particle size of about 1.0 μm and a softening point of about 600° C. are mixed, and then, to the resulting mixture, an organic solvent, a dispersant, an organic binder, and a plasticizer are added to prepare a slurry. Then, the slurry is applied to a carrier film of a polyethylene terephthalate resin to prepare a ceramic green sheet of a low temperature co-fired ceramic material having a thickness of about 10 μm to about 200 μm.
Then, via-holes having a diameter of about 0.1 mm are formed in the ceramic green sheet by laser machining or punching, and then the ceramic green sheet is adhered on a flat and smooth supporting table. An electrically conductive paste is prepared by kneading metal powder primarily composed of silver powder or copper powder, a thermosetting resin, and an organic solvent. The electrically conductive paste is compressed into openings for via-hole conductors of the ceramic green sheet adhered on the supporting table from the carrier film side with a squeegee while scraping the excess electrically conductive paste. Thus, via-hole layers for via-hole conductors are formed. In this case, the via-holes can be completely filled with the electrode paste by reducing the pressure in the via-holes using an aspirating mechanism set on the supporting table. Predetermined patterns of electrically conductive paste are printed on the respective ceramic green sheets by screen printing. After drying, printed paste layers and conductive paste layers to be in-plane conductors and via-hole conductors are formed as wiring pattern layers.
(2) Preparation of Ceramic Multilayer Board
The ceramic green sheets, on which the wiring pattern layers are formed, are laminated in predetermined order to prepare a laminate and then are press-bonded at a pressure of about 0.1 MPa to about 1.5 MPa at a temperature of about 40° C. to about 100° C. to prepare a green laminate. After removing the binder from the green laminate, the laminate is sintered in air at about 850° C. when the wiring pattern layer is a silver base and is sintered in a nitrogen atmosphere at about 950° C. when the wiring pattern layer is a copper base. Thus, a multilayer ceramic substrate 12 shown in
(3) Preparation of External Terminal Electrode
The external terminal electrodes 14 to be mounted may be prepared by processing copper foil by a known etching method. Namely, copper foil having a thickness of about 10 μm to about 40 μm is adhered to a carrier film, and patterning of the copper foil by photoresist coating, exposure, development, etching, and removing of the resist film is performed. Thus, the external terminal electrodes 14 shown in
(4) Preparation of Resin Sheet for Leg Portion
A resin sheet for the leg portions 15 is prepared. Namely, a composite resin material mixture of a thermosetting resin, such as an epoxy resin, a phenolic resin, and a cyanate resin and an inorganic filler, such as Al2O3, SiO2, and TiO2 is formed into a sheet on a carrier film by doctor blade method to prepare a resin sheet 15″A of semi-cured state (B-stage) shown in
(5) Preparation of Leg Portion
Via-holes are formed in predetermined portions of the resin sheet 15″A using laser beams, and then, as shown in
(6) Preparation of Composite Ceramic Substrate
As shown in
For example, a thickness of the leg portions 15, i.e., a protrusion size from the multilayer ceramic substrate 12, satisfactory for achieving its function is about 50 μm when the multilayer ceramic substrate 12 is about 10 square mm. The protrusion size of the leg portions 15 must be changed according to a change in the size of the multilayer ceramic substrate 12. When the size of the multilayer ceramic substrate 12 is small, the protrusion size may be small. Conversely, when the size of the multilayer ceramic substrate 12 is large, the protrusion size may be large. The leg portions 15 are preferably formed along the periphery of the bottom surface of the multilayer ceramic substrate 12. The forming of the leg portions 15 along the periphery of the bottom surface of the multilayer ceramic substrate 12 stabilizes the mounting to the motherboard 20, which improves the reliability thereof.
When the composite ceramic substrate 10 of this preferred embodiment is mounted on the motherboard 20 with a mounter, as shown in
In order to achieve a similar purpose, as shown in
As shown in
As described above, according to this preferred embodiment, the composite ceramic substrate 10 includes the multilayer ceramic substrate 12 and the surface-mounted components 11 mounted thereon, the external terminal electrodes 14 connecting the wiring patterns 13 in the multilayer ceramic substrate 12 and the surface electrodes 21 on the motherboard 20, the convex leg portions 15 formed with a composite resin material so as to support the external terminal electrodes 14 at an end surface, and via-hole conductors 15B formed in the leg portions 15 and connecting the external terminal electrodes 14 and the wiring patterns 13. Therefore, when the motherboard 20 is bent as shown in of
A composite ceramic substrate 10A, for example, as shown in
In manufacturing of the composite ceramic substrate 10A of this preferred embodiment, the multilayer ceramic substrate 12 is prepared as in the first preferred embodiment, and then the surface-mounted components 11B are mounted on the bottom surface of the multilayer ceramic substrate 12. Then, the leg portions 15 and the external terminal electrodes 14 are prepared as in the first preferred embodiment and are attached to the multilayer ceramic substrate 12 so as to be arranged at the outer side of the surface-mounted components 11. Thus, the composite ceramic substrate 10A is manufactured.
In this preferred embodiment, the surface-mounted components 11B are mounted on the bottom surface of the multilayer ceramic substrate 12 as in the leg portions 15, so the leg portions 15 are formed so as to protrude further downward than a surface-mounted component 11B having the largest protrusion size (thickness).
Therefore, in this preferred embodiment, since the space between the leg portions 15 of the multilayer ceramic substrate 12 is effectively used for mounting the surface-mounted components 11B, the composite ceramic substrate 10A can be decreased in size and height while achieving the same functions and advantageous effects as those in the first preferred embodiment. The leg portions 15 can bend corresponding to the bending of the motherboard 20 to prevent the multilayer ceramic substrate 12 from being bent even if the motherboard 20 is bent. With this, breaking of the wires caused by disconnection, shown in
A composite ceramic substrate 10B, for example, as shown in
In manufacturing of the composite ceramic substrate 10B of this preferred embodiment, the surface-mounted components 11B are mounted on the bottom surface of the multilayer ceramic substrate 12 as in the second preferred embodiment, and then the leg portions 15 and the external terminal electrodes 14 are prepared as in the first and second preferred embodiments and are attached to the multilayer ceramic substrate 12 so as to be arranged at the outer side of the surface-mounted components 11B. Then, the surface-mounted components 11 are mounted on the top surface of the multilayer ceramic substrate 12 as in the first preferred embodiment. Thus, the composite ceramic substrate 10B is manufactured. In this case, the surface-mounted components 11 and 11A on the top and bottom surfaces of the multilayer ceramic substrate 12 can be suitably selected according to required functions and be mounted.
Therefore, in this preferred embodiment, since the surface-mounted components 11 are mounted on the top surface of the multilayer ceramic substrate 12 and the space between the leg portions 15 of the multilayer ceramic substrate 12 is effectively used for mounting the surface-mounted components 11B, the same functions and advantageous effects as those in the first and second preferred embodiments are achieved, and additionally, advanced capabilities through further high-density mounting are realized.
A composite ceramic substrate 10C, for example, as shown in
In manufacturing of the composite ceramic substrate 10C of this preferred embodiment, the surface-mounted components 11B are mounted on the bottom surface of the multilayer ceramic substrate 12 as in the second preferred embodiment, and then the composite resin layer 18, the leg portions 15, and the external terminal electrodes 14 are attached to the multilayer ceramic substrate 12. These three components 14, 15, and 18 can be attached by, for example, the two methods describe below.
In a first method, after the lamination of the composite resin layer 18, the leg portions 15 are laminated. More specifically, resin sheets having the via-hole conductors 15B are prepared as in the first preferred embodiment. A plurality of resin sheets is stacked so as to have a thickness that is sufficient for embedding the surface-mounted components 11B. Then, after the stacking of the resin sheets, these laminated resin sheets and the multilayer ceramic substrate 12 are arranged so that the laminated resin sheets are laminated on the multilayer ceramic substrate 12 to embed the surface-mounted components 11B. Thus, the composite resin layer 18 is formed. Then, the external terminal electrodes 14 and the leg portions 15, which are prepared as in the first preferred embodiment, are arranged to the multilayer ceramic substrate 12 so as to be laminated to the composite resin layer 18 of the multilayer ceramic substrate 12 as in the first preferred embodiment. The leg portions 15 are press-bonded to the periphery of the composite resin layer 18 by cold isostatic pressing, and then main curing of the composite resin layer 18 and the resin portions 15A of the leg portions 15 are performed. Thus, the composite ceramic substrate 10C is manufactured.
In a second method, the composite resin layer 18 and the leg portions 15 are simultaneously formed. More specifically, copper foil defining the external terminal electrodes 14 and the laminated resin sheets are arranged with respect to the multilayer ceramic substrate 12, and then both components are laminated to the bottom surface of the multilayer ceramic substrate 12 so that the surface-mounted components 11B are embedded in the laminated resin sheets. Thus, the resin layer is formed. Then, the resin layer is pressed from the bottom surface using a metal mold having a convex shape so that the composite resin layer 18 is formed into a concave shape and, simultaneously, the leg portions 15 are formed into a convex shape. Then, main curing of the composite resin layer 18 and the resin portions 15A of the leg portions 15 are performed. Thus, the composite ceramic substrate 10C is manufactured.
In this preferred embodiment, a composite resin material for defining each of the leg portions 15 and the composite resin layer 18 is maintained in a good fluid state when the leg portions 15 and the composite resin layer 18 are formed. A smooth round portion is formed at a portion (c) shown by a circle in
The leg portions 15 in this preferred embodiment are formed at the periphery of the composite resin layer 18, for example, as shown in
Therefore, according to this preferred embodiment, the surface-mounted components 11B mounted on the bottom surface of the multilayer ceramic substrate 12 are protected by the composite resin layer 18. Simultaneously, the leg portions 15 are formed and protrude at the periphery of the composite resin layer 18. Therefore, detachment of the surface-mounted components 11B from the multilayer ceramic substrate 12 is more reliably prevented. Additionally, influences by the bending of the motherboard are absorbed by the leg portions 15 and disconnection of the surface-mounted components 11B is more reliably prevented, as compared to when the composite ceramic substrate is merely mounted on the motherboard via the composite resin layer. Thus, reliability is further improved.
According to this preferred embodiment, since the boundaries of the composite resin layer 18 and the leg portions 15 have a smooth round portion (see portion (c) of
Furthermore, according to this preferred embodiment, since the leg portions 15 are formed at the periphery of the composite resin layer 18, even if the surface-mounted components 11B embedded in the composite resin layer 18 are partially exposed, the exposed portions do not come into contact with the exterior during mounting of the composite ceramic substrate on the motherboard or during handled. Consequently, breakage of the surface-mounted components 11B is prevented so as to further improve the reliability.
In this preferred embodiment, as shown in
The rectangular frame-shaped leg portion 15 shown in
In this preferred embodiment, as shown in
In other words, if the mount board on which the composite ceramic substrate is mounted receives an impact caused, for example, by a fall, the impact causes complicated flexure in the mount board and the stress caused by the flexure is transmitted to the leg portion 15 via the external terminal electrodes 14. At the leg portion 15, the stress transmitted by each of the external terminal electrodes 14 tends to be concentrated at each corner (point where straight lines intersect with each other, each of the straight lines running through the centers of the external terminal electrodes 14 arranged in lines that are substantially perpendicular to each other) via the leg portion 15. However, in this preferred embodiment, since the external terminal electrodes 14 are not disposed at the corners, the external terminal electrodes 14 do not receive the concentrated stress at the corners. Consequently, disconnection of the external terminal electrodes 14 does not occur at the corners, which improves impact resistance. The concentrated stress primarily influences the flat corners of the leg portion 15 at which the external terminal electrodes 14 are disposed. Therefore, as shown in
Even if the external terminal electrodes 14 are not disposed at the corners of the rectangular frame-shaped leg portion 15, or the height of the corners is not lowered, the external terminal electrodes 14 still receive impact forces as long as the composite ceramic substrate is mounted on the mount board. As show in
In a composite ceramic substrate 10D of this preferred embodiment, for example, as shown in
Therefore, according to this preferred embodiment, by forming the slits 18A corresponding to the shapes of the respective surface-mounted components 11B, the composite resin layer 18 having a thickness greater than a certain value is formed at the outside of the surface-mounted components 11B. As a result, the surface-mounted components 11B are prevented from protruding from the composite resin layer 18. Thus, the surface-mounted components 11B are reliably protected.
In a composite ceramic substrate 10E of this preferred embodiment, for example, as shown in
Therefore, according to this preferred embodiment, the same functions and advantageous effects as the first preferred embodiment are achieved. More specifically, the composite resin layer 19 is not flat, and consequently, even if the motherboard is bent to come into contact with the composite ceramic substrate 10E, the contact occurs at a plurality of points to disperse the force. Thus, cracking at the contacting points is prevented.
A composite ceramic substrate 10F of this preferred embodiment is, for example, as shown in
A composite ceramic substrate 10G of this preferred embodiment is, for example, as shown in
In a composite ceramic substrate 10H of this preferred embodiment, for example, as shown in
Therefore, according to this preferred embodiment, the surface-mounted component 11C is mounted on the base of the cavity C′ and the other surface-mounted components 11B are mounted on the bottom surface of the composite resin layer 18 sealing the surface-mounted component 11C. Consequently, higher-density mounting of the surface-mounted components is achieved. Thus, further functional capabilities are realized.
The present invention can be applied to composite ceramic substrates including surface-mounted components that are mounted thereon, such as semiconductors and passive components such as capacitors.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-261692 | Sep 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/012403 | 7/5/2005 | WO | 00 | 6/14/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/027888 | 3/16/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3483308 | Wakely | Dec 1969 | A |
5107329 | Okinaga et al. | Apr 1992 | A |
5900738 | Khandros et al. | May 1999 | A |
5926951 | Khandros et al. | Jul 1999 | A |
5943212 | Horiuchi et al. | Aug 1999 | A |
6184587 | Khandros et al. | Feb 2001 | B1 |
6242803 | Khandros et al. | Jun 2001 | B1 |
6274823 | Khandros et al. | Aug 2001 | B1 |
6279227 | Khandros et al. | Aug 2001 | B1 |
6476333 | Khandros et al. | Nov 2002 | B1 |
6815810 | Takehara et al. | Nov 2004 | B2 |
20030071350 | Takehara et al. | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
1412838 | Apr 2003 | CN |
1263126 | Feb 1972 | GB |
09-083090 | Mar 1997 | JP |
09-186042 | Jul 1997 | JP |
10-261874 | Sep 1998 | JP |
2000-101348 | Apr 2000 | JP |
2003-124435 | Apr 2003 | JP |
02004254037 | Sep 2004 | JP |
9735343 | Sep 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20080283279 A1 | Nov 2008 | US |