The present application claims priority under 35 U.S.C 119(a) to Korean Application No. 10-2013-0065006, filed on Jun. 5, 2013, in the Korean intellectual property Office, which is incorporated herein by reference in its entirety as set forth in full.
1. Technical Field
Embodiments of the present disclosure generally relate to electronic device packages and, more particularly, to flexible stack packages, electronic systems including the same, and memory cards including the same.
2. Related Art
Electronic devices employed in electronic systems may include various circuit elements, and the circuit elements may be integrated in and/or on a semiconductor substrate to constitute the electronic device (also, referred to as a semiconductor chip or a semiconductor die). The semiconductor chip or the semiconductor die may be encapsulated to form a semiconductor chip package. The semiconductor chip packages are widely employed in electronic systems such as computers, mobile systems or data storage media. Recently, flexible stack packages which are capable of bending or warping are increasingly in demand with development of the mobile systems.
Wearable electronic products are also increasingly in demand with development of the mobile systems. Thus, the wearable electronic products may also require the flexible stack packages. Since the semiconductor substrate or the semiconductor chip can be thinly fabricated to be sufficient to bend or warp it, the semiconductor package in which a single semiconductor chip is embedded may be readily fabricated to have a flexible characteristic. However, there may be some limitations in reducing a total thickness of a stack package including a plurality of stacked semiconductor chips. That is, it may be difficult to fabricate the stack package having a flexible characteristic. When the stack package is warped, a tensile stress or a compressive stress may be locally applied to some portions of the stack package and the stress may cause damage of the stack package. Accordingly, the flexible stack packages including a plurality of stacked semiconductor chips are still required.
Examples of embodiments are directed to flexible stack packages, electronic systems including the same, and memory cards including the same.
According to an embodiment, a flexible stack package includes a first unit package and a second unit package which are sequentially stacked downward. Each of the first and second unit packages has a fixed area and a floating area. The fixed area of the first unit package is connected and fixed to the fixed area of the second unit package by a fixing part. Each of the first and second unit packages includes a lower flexible layer, an upper flexible layer on the lower flexible layer, and a chip between the lower and upper flexible layers.
According to an embodiment, a flexible stack package includes a first chip and a second chip which are sequentially stacked downward. Each of the first and second chips has a fixed area and a floating area. The fixed area of the first chip is connected and fixed to the fixed area of the second chip using a fixing part.
According to an embodiment, a flexible stack package includes a first unit package and a second unit package which are sequentially stacked. Each of the first and second unit packages has a fixed area and a floating area. The fixed area of the first unit package is connected and fixed to the fixed area of the second unit package by a fixing part. Each of the first and second unit packages includes a flexible layer encapsulating a chip therein.
According to an embodiment, an electronic system includes a memory and a controller coupled with the memory through a bus. The memory or the controller includes a first unit package and a second unit package which are sequentially stacked downward. Each of the first and second unit packages has a fixed area and a floating area. The fixed area of the first unit package is connected and fixed to the fixed area of the second unit package by a fixing part. Each of the first and second unit packages includes a lower flexible layer, an upper flexible layer on the lower flexible layer, and a chip between the lower and upper flexible layers.
According to an embodiment, an electronic system includes a memory and a controller coupled with the memory through a bus. The memory or the controller includes a first chip and a second chip which are sequentially stacked downward. Each of the first and second chips has a fixed area and a floating area. The fixed area of the first chip is connected and fixed to the fixed area of the second chip using a fixing part.
According to an embodiment, a memory card includes a memory including a through electrode and a memory controller controlling an operation of the memory. The memory includes a first unit package and a second unit package which are sequentially stacked downward. Each of the first and second unit packages has a fixed area and a floating area. The fixed area of the first unit package is connected and fixed to the fixed area of the second unit package by a fixing part. Each of the first and second unit packages includes a lower flexible layer, an upper flexible layer on the lower flexible layer, and a chip between the lower and upper flexible layers.
According to an embodiment, a memory card includes a memory including a through electrode and a memory controller controlling an operation of the memory. The memory includes a first chip and a second chip which are sequentially stacked downward. Each of the first and second chips has a fixed area and a floating area. The fixed area of the first chip is connected and fixed to the fixed area of the second chip using a fixing part.
Embodiments of the inventive concept will become more apparent in view of the attached drawings and accompanying detailed description, in which:
It will be understood that although the terms first, second, third etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element in various embodiments could be termed a second element in other embodiments without departing from the teachings of the present invention.
It will also be understood that when an element is referred to as being “on”, “above”, “below”, or “under” another element, it can be directly “on”, “above”, “below”, or “under” the other element, respectively, or intervening elements may also be present. Accordingly, the terms such as “on”, “above”, “below”, or “under” which are used herein are for the purpose of describing particular embodiments only and are not intended to limit the inventive concept.
It will be further understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements or layers should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent”, “on” versus “directly on”).
Referring to
The unit packages 10 or the chips 100, which are stacked, may be combined with each other by fixing connectors 200 disposed in the fixed area 21. The fixing connectors 200 are not disposed in the floating area 23. Thus, the portions of the chips 100 or the unit packages 10 located in the floating area 23 may be physically or mechanically disconnected from each other to be independently movable or flexible. Accordingly, the portions of the chips 100 or the unit packages 10 located in the floating area 23 may be freely warped or bended. The fixing connectors 200 may be vertically stacked to constitute a fixing part that electrically connects the chips 100 included in the stacked unit packages 10 to each other. For example, the fixing connectors 200 may be realized using a plurality of conductors such as a plurality of through electrodes, a plurality of bumps or a plurality of solder balls.
As illustrated in
The fixing connectors 200 may be introduced to act as an electrical path or a signal path which is connected to an external device. Each of the fixing connectors 200 may be fabricated using a method of forming redistribution layer or may be fabricated to include a through electrode such as a through silicon via (TSV). Each of the fixing connectors 200 may include a through electrode body 210 penetrating the chip 100, a first contact portion 230 extending from the through electrode body 210 and penetrating the upper flexible layer 330 to be electrically connected to an external device, and a second contact portion 250 extending from the through electrode body 210 and penetrating the lower flexible layer 310 to be electrically connected to an external device. The through electrode body 210 may be formed of a through silicon via (TSV). The first and second contact portion 230 and 250 may be formed of bumps or redistribution layers. Each of the fixing connectors 200 may be formed of a conductive layer such as a metal layer (e.g., a copper layer) to provide an electrical connection structure.
Each of the lower flexible layer 310 and the upper flexible layer 330 may include a material layer providing a stress. For example, each of the lower flexible layer 310 and the upper flexible layer 330 may include a polymer layer, a rubber layer or an elastomer layer. In various embodiments, the flexible layer 300 may be formed of a polyimide layer. The flexible layer 300 may produce a mechanical neutral plane at a region where the chip 100 is located when the chip 100 in the flexible layer 300 is warped or bended. As illustrated in
Referring again to
A plurality of contact protrusions 400 may be disposed on the unit packages 10 in the floating area 23, as illustrated in
The second contact protrusions 432 (or 430) may be disposed between the first contact protrusions 411 (or 410) in the floating area 23, as illustrated in
As illustrated in
The contact protrusions 400 (410 and 430) do not act as joint members or fixing members that fix the unit packages 10 to each other. That is, the contact protrusions 400 (410 and 430) may be members tip portions of which are capable of sliding and moving on a surface of the flexible layer 300 unlike the fixing connectors 200. For example, the contact protrusions 400 (410 and 430) may be movable contact parts. Thus, if the first unit package 11 is warped, the second unit package 12 may also be warped and tip portions of the first contact protrusions 411 (410) of the first unit package 11 may slide on a top surface of the flexible layer 300 of the second unit package 12. As a result, contact positions of the tip portions of the first contact protrusions 411 (410) may vary on the top surface of the flexible layer 300 of the second unit package 12. As such, when the first and second unit packages 11 and 12 are warped to have the same shape, the first contact protrusions 411 (410) are fixed to the first unit package 11 whereas the tip portions of the first contact protrusions 411 (410) may merely contact the second unit package 12 and may slide on the second unit package 12. Accordingly, the first contact protrusions 411 (410) may allow the first and second unit packages 11 and 12 to freely warp.
As illustrated in
The stack structure 20 including the stacked unit packages 10 shown in
The lower substrate 610 may have an interconnection structure including a first outer connector 611, a first inner connector 613 and a first connection via 615 disposed therein, and the stack structure 20 may be electrically connected to an external device through the first outer connector 611, the first inner connector 613 and the first connection via 615. The first outer connector 611 may be disposed at a bottom surface of the lower substrate 610 to act as an electrical contact pad, the first inner connector 613 may be disposed at a top surface of the lower substrate 610 to be electrically connected to the fixing connectors 200 in the stack structure 20, and the first connection via 615 may be disposed between the first outer connector 611 and the first inner connector 613 to electrically connect the first outer connector 611 to the first inner connector 613. Similarly, the upper substrate 630 may have an interconnection structure including a second outer connector 631, a second inner connector 633 and a second connection via 635 disposed therein. That is, the second outer connector 631 may be disposed at a top surface of the upper substrate 630 to act as an electrical contact pad, the second inner connector 633 may be disposed at a bottom surface of the upper substrate 630 to be electrically connected to the fixing connectors 200 in the stack structure 20, and the second connection via 635 may be disposed between the second outer connector 631 and the second inner connector 633 to electrically connect the second outer connector 631 to the second inner connector 633. In various embodiments, a conductive substrate connector 620 may be additionally disposed between the fixing connectors 200 and the first inner connector 613, and another conductive substrate connector 620 may be additionally disposed between the fixing connectors 200 and the second inner connector 633. Each of the conductive substrate connectors 620 may be a conductive connector such as a solder ball or a bump.
At least one of the contact protrusions 400 attached to the flexible layers 300 of the unit packages 10 constituting the stack structure 20 may have a tip portion contacting the lower substrate 610 to conduct the force generated when the stack structure 20 is warped to the lower substrate 610. In various embodiments, third contact protrusions 640 may be additionally attached to a bottom surface of the upper substrate 630, and tip portions of the third contact protrusions 640 may contact a top surface of the topmost unit package 10 of the stack structure 20. In such a case, the third contact protrusions 640 may conduct the force generated when the upper substrate 630 is warped to the unit packages 10.
Referring to
Referring to
Referring to
Referring to
The memory 1810 may include at least any one among nonvolatile memory devices to which the packaging technology of the embodiments of the present invention is applied. The memory controller 1820 may control the memory 1810 such that stored data is read out or data is stored in response to a read/write request from a host 1830.
Referring to
For example, the controller 2711 may include at least any one of at least one microprocessor, at least one digital signal processor, at least one microcontroller, and logic devices capable of performing the same functions as these components. The controller 2711 and the memory 2713 may include at least any one of the flexible stack packages according to the embodiments of the present invention. The input/output unit 2712 may include at least one selected among a keypad, a keyboard, a display device, a touch screen and so forth. The memory 2713 is a device for storing data. The memory 2713 may store data and/or commands to be executed by the controller 2711, and the likes.
The memory 2713 may include a volatile memory device such as a DRAM and/or a nonvolatile memory device such as a flash memory. For example, a flash memory may be mounted to an information processing system such as a mobile terminal or a desk top computer. The flash memory may constitute a solid state disk (SSD). In this case, the electronic system 2710 may stably store a large amount of data in a flash memory system.
The electronic system 2710 may further include an interface 2714 configured to transmit and receive data to and from a communication network. The interface 2714 may be a wired or wireless type. For example, the interface 2714 may include an antenna or a wired or wireless transceiver.
The electronic system 2710 may be realized as a mobile system, a personal computer, an industrial computer or a logic system performing various functions. For example, the mobile system may be any one of a personal digital assistant (PDA), a portable computer, a tablet computer, a mobile phone, a smart phone, a wireless phone, a laptop computer, a memory card, a digital music system and an information transmission/reception system.
In the case where the electronic system 2710 is an equipment capable of performing wireless communication, the electronic system 2710 may be used in a communication system such as of CDMA (code division multiple access), GSM (global system for mobile communications), NADC (north American digital cellular), E-TDMA (enhanced-time division multiple access), WCDAM (wideband code division multiple access), CDMA2000, LTE (long term evolution) and Wibro (wireless broadband Internet).
As described above, flexible stack packages according to the embodiments may provide stack packages which are capable of being warped of bended. In the event that the flexible stack packages are employed in wearable electronic systems, the wearable electronic systems can be improved to have a large storage capacity and a multi-functional characteristic.
The embodiments of the inventive concept have been disclosed above for illustrative purposes. Those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the inventive concept as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0065006 | Jun 2013 | KR | national |