The present invention relates in general to fabricating chips first single or multichip packaging structures and more particularly, to structures and methods for temporarily holding one or more integrated circuit chips in accurate alignment during fabrication of chip scale packaging or multichip modules.
“Chips first” packaging structures are discussed in detail in commonly assigned U.S. Letters Pat. No. 5,841,193 by Charles W. Eichelberger entitled, “Single Chip Modules, Repairable Multichip Modules, and Methods of Fabrication Thereof,” the entirety of which is hereby incorporated herein by reference. The major approaches to chips first packaging (which are described therein) are the Advance Multichip Module (AMCM) approach, and the High Density Interconnect (HDI) approach, along with its off-shoots including the Plastic Encapsulated MCM. In each of these structures, the chips are covered by a layer of polymer that contains via holes down to interconnection pads on the underlying integrated circuit (IC) chips. Metallization is applied and patterned to provide an interconnect layer on the polymer above the IC chips and also to provide connection to the bond pads of the IC chips themselves.
More particular to the present invention, the problem addressed herein relates to the alignment carrier which is used in the fabrication process of single and multichip modules. In the above-incorporated U.S. Letters Pat. No. 5,841,193, methods for adhesively bonding multiple bare (i.e., unpackaged) IC chips to an alignment carrier are disclosed. In one method, an alignment carrier is formed by coating a glass plate with a hot melt adhesive. Subsequently, back grinding tape is bonded to the hot metal adhesive using double sided adhesive tape. Integrated circuit chips are then attached to the adhesive side of the back grinding tape. One problem with this alignment carrier approach is that the pick and place machine which places the IC chips on the back grinding tape must apply excessive pressure to obtain satisfactory wet out of the adhesive. This is because the adhesive cannot be allowed to flow readily or it would not hold the chips once accurately positioned.
In addition, when the structural filler material of the process described in U.S. Letter Pat. No. 5,841,193 is dispensed and cured, it tends to shrink. This shrinkage puts additional stress on the various alignment carrier materials between the glass plate and the IC chips. This stress tends to pull the IC chips towards the center of the alignment carrier displacing them from the original accurate positioning of the pick and place equipment. The amount of displacement has been found to be too variable to compensate accurately so that the net accuracy of placement of the chips suffers.
The problem addressed herein, therefore, is to provide an alignment carrier and process which accurately holds the IC chips in position throughout the subsequent packaging steps and which requires low pressure to set the IC chips during the pick and place operation.
In view of the above, an object of the invention is to provide an alignment carrier which accurately holds integrated circuit chips throughout the packaging operations of chip placement, filler application, attach of the process carrier substrate and removal of the alignment carrier.
Another object of the invention is to provide an alignment carrier on which integrated circuit chips can be placed by available high-speed automated pick and place equipment without requiring undue pressure to set the chips in position.
A further object of the invention is to provide an alignment carrier that can be easily removed from the filler and chip surface after the process carrier substrate has been attached.
A yet further object of the present invention is to provide methods for temporarily holding integrated circuit chips in accurate alignment during packaging thereof.
Briefly summarized, the invention comprises in one aspect a structure for temporarily holding at least one integrated circuit chip during packaging thereof. The structure includes a support plate with a release film secured to a main surface thereof. The support plate and release film allow UV light to pass therethrough. The structure further includes a UV curable chip adhesive disposed over the release film for holding the at least one integrated circuit chip during packaging thereof, wherein after accurate placement of the at least one integrated circuit chip in the UV curable chip adhesive, the UV curable chip adhesive can be cured by UV light shone through the support plate and release film.
In a further aspect, a method for temporarily holding at least one integrated circuit chip during packaging thereof is provided. The method includes: providing a support plate with a release film secured to a main surface thereof, the support plate and release film allowing UV light to pass therethrough; providing a UV curable chip adhesive secured over the release film; placing the at least one integrated circuit chip or the UV curable chip adhesive; and shining UV light through the support plate and release film to cure the UV curable chip adhesive, thereby securing the at least one integrated circuit chip where placed.
To restate, provided herein are a novel structure and method for temporarily holding IC chips in accurate alignment during fabrication of chip scale packages and multichip modules. The structure/method employs a glass plate with a laminated UV release film. A Uv curable adhesive is coated to the back of the UV release film. Integrated circuit chips are then accurately placed on the UV curable adhesive, and the UV curable adhesive is cured using much less irradiation than required to release the UV release film. Advantageously, picking and placing of chips into the UV curable chip attach can occur with low placement pressure but with good wet out and good sealing properties, and at the same time allow for rigid and accurate holding of the alignment of the chips after irradiation with UV light. The UV curable chip attach adhesive comprises a low shear (liquid) material prior to curing thereof. Curing of the UV curable adhesive occurs at a differential energy relative to the energy required to release the UV release adhesive. Alternatively, the structure could be fabricated with different frequencies needed to cure the UV curable chip attach adhesive and release the UV release film. The structure can be easily removed when desired by further irradiating the UV release film with UV light. Further, a process carrier attached after curing of the UV curable chip adhesive could itself be a permanently attached substrate giving added stiffness to the package and added protection for the IC chips.
The above-described objects, advantages and features of the present invention, as well as others, will be more readily understood from the following detailed description of certain preferred embodiments of the invention, when considered in conjunction with the accompanying drawings in which:
In accordance with the principles of the present invention, a UV curable chip attach adhesive 20 is spray coated on the non-adhesive side of UV release film 14. This UV curable chip adhesive 20 has low holding strength in its uncured (e.g., liquid) state but it requires very little pressure to wet out on the surface of IC chips which are placed into the adhesive. A suitable UV curable adhesive formulation is achieved by combining 120 grams of acrylated urethane oligomer, particularly an alipatic diacrylate with a polyether backbone, a molecular weight >5000 and functionality=2 available as UCB IRR 245™ from UCB Chemicals of Smyrna Ga.; 223.5 grams propylene glycol methyl ether acetate, available from Shipley of Newton, Mass.; 9.5 grams of 2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)-1-butanone photo initiator available as Irgacure 369™ from Ciba-Geigy Corporation of Hawthorne, N.Y.; and 0.03 grams of a fluoroaliphatic polyester wetting agent available as FC430™ from 3M Specialty Chemicals of St. Paul, Minn. The combination is mixed thoroughly and filtered through a 1 micron absolute filter to remove any particulate. This material is then sprayed onto film 14 to form adhesive coating 20, e.g., in the 3 to 5 micron thickness range.
Preferred ranges for the various components of the mix, assuming that the UCB IRR 245™ is held constant, are discussed below. The amount of propylene glycol methyl ether acetate required as a solvent is governed by the thickness desired and the characteristics of the spray system. Increasing the solvent will allow thinner coatings to be sprayed; decreasing the solvent will allow thicker coatings to be sprayed. Increases significantly beyond 50% may result in uneven drying and therefore uneven thickness. Decreases significantly below the 50% level often result in improper flow out during spray, which will produce orange peel effects when air-type spray equipment is used. The Irgacure 369™ curing agent can be increased by 100% with no adverse effects. The cost of the material will be increased and the cure time will be slightly decreased. Decreasing the curing agent will increase the curing time. Significant reduction below 50% may result in incomplete surface cure due to air inhibition. The FC430™ wetting agent can be increased by 25% with no adverse effect. Increasing by significantly greater than this amount may result in the filler layer dewetting on the carrier when it is applied. The FC430™ wetting agent can be decreased by 25% with no adverse effect. Decreasing by significantly greater than this amount may result in the chip attach adhesive not properly wetting the non-adhesive side of the UV release film 14.
As shown in
At this point, the IC chips are only held by the low tack of the UV curable chip adhesive 20. To rigidly hold the chips in place so that they will not move during the filler application and curing processes (see the above-incorporated U.S. Letters Pat. No. 5,841,193), UV light 30 is used to cure adhesive 20 as shown in
This corresponds to a total UV energy of 75 mJ/cm2 at a wavelength of 365 nM. To release the UV releasable film it has been found that an energy of 3000 mJ/cm2 at 365 nM is required. This large differential allows the chip attach adhesive to be cured without causing the UV release film to release. In an alternative embodiment, a curing agent can be used in the chip attach adhesive which responds to a wavelength other than 365 nM. As an example, Irgacure 784 DC™ can be is substituted for Irgacure 369™ in the above formulation. Irgacure 784 DC™ is available from Ciba Specialty Chemicals Additives of Tarrytown, N.Y. Its generic chemical designation is Bis (η5-2,4-cyclopentadien-1-yl)-bis-[2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium. When this is done the chip attach adhesive is sensitive to higher wavelengths of light. Irradiation of 200 mJ/cm2 in the 480-460 nM range will cure the chip attach adhesive but will not release the UV release film which only releases in the presence of 365 nM wavelength UV irradiation.
After curing the UV chip attach adhesive, filler material is dispensed to surround the chips on all uncovered sides. After the filler is applied and cured, it is lapped to form a planar back surface.
As noted above, when the filler is cured it tends to shrink. This puts stress on the IC chips and tends to move them toward the center of the panel. This stress is resisted by the elements of the alignment carrier. Since the IC chips are rigidly held by a thin UV curable chip adhesive they do not move due to creep of this adhesive or due to strain of the adhesive because it is only 3 to 5 microns thick. The UV release tape face material is polyester which has a high elastic modulus so although it is 188 microns thick it does not allow significant motion due to the shrinkage forces of the filler, which is of the same order of thickness. Finally the UV release adhesive has very high tack and is only 15 microns thick. This adhesive is well adhered to the glass surface since the roll lamination process puts a high pressure at the point of contact of the rollers thus providing essentially 100 percent wet out.
The next step in the fabrication process is to attach a process carrier to the lapped surface. As shown in
The process for permanent attachment of a substrate is as follows: An alumina substrate 50 mil thick is coated with the attachment adhesive by spreading approximately 10 gm of adhesive over an approximately 4.5 inch square substrate. A suitable adhesive is Two Ton Epoxy available from Devcon of Riviera, Fla. The substrate is placed adhesive side down on the lapped surface. The assembly is placed in a heated lamination press at a temperature of 70° C. The force is slowly raised to 1 ton which applies a pressure of 100 psi to the assembly. This squeezes much of the adhesive out from between the two surfaces and also eliminates the entrapped air. The dwell time in the press is 30 minutes. When the assembly is removed from the press the process carrier substrate is rigidly bonded to the IC chips so that when the alignment carrier is removed the chips will maintain their position.
To remove the alignment carrier, the UV release tape 14 is irradiated with UV light 60 (
While the invention has been described in detail herein in accordance with certain preferred embodiments thereof, many modifications and changes therein may be effected by those skilled in the art. Accordingly, it is intended by the appended claims to cover all such modifications and changes as fall within the true spirit and scope of the invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 10/413,033, filed Apr. 14, 2003, which application is a divisional of U.S. patent application Ser. No. 09/501,177, filed Feb. 10, 2000, and issued as U.S. Letters Pat. No. 6,555,908 on Apr. 29, 2003, both of which are hereby incorporated herein by reference in their entirety. Additionally, this application contains subject matter which is related to the subject matter of the following patents, each of which is assigned to the same assignee as this application and each of which is hereby incorporated herein by reference in its entirety: “Electroless Metal Connection Structures and Methods,” U.S. Letters Pat. No. 6,396,148 B1, issued May 28, 2002; and “Integrated Circuit Structures and Methods Employing a Low Modulus High Elongation Photodielectric,” U.S. Pat. No. 6,426,545 B1, issued Jul. 20, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 09501177 | Feb 2000 | US |
Child | 10413033 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10413033 | Apr 2003 | US |
Child | 10989238 | Nov 2004 | US |