Interconnect structures and methods of forming same

Information

  • Patent Grant
  • 11043463
  • Patent Number
    11,043,463
  • Date Filed
    Wednesday, July 8, 2020
    4 years ago
  • Date Issued
    Tuesday, June 22, 2021
    3 years ago
Abstract
Embodiments of the present disclosure include interconnect structures and methods of forming interconnect structures. An embodiment is an interconnect structure including a post-passivation interconnect (PPI) over a first substrate and a conductive connector on the PPI. The interconnect structure further includes a molding compound on a top surface of the PPI and surrounding a portion of the conductive connector, a top surface of the molding compound adjoining the conductive connector at an angle from about 10 degrees to about 60 degrees relative to a plane parallel with a major surface of the first substrate, the conductive connector having a first width at the adjoining top surface of the molding compound, and a second substrate over the conductive connector, the second substrate being mounted to the conductive connector.
Description
BACKGROUND

Semiconductor devices are used in a variety of electronic applications, such as personal computers, cell phones, digital cameras, and other electronic equipment, as examples. Semiconductor devices are typically fabricated by sequentially depositing insulating or dielectric layers, conductive layers, and semiconductor layers of material over a semiconductor substrate, and patterning the various material layers using lithography to form circuit components and elements thereon.


The semiconductor industry continues to improve the integration density of various electronic components (e.g., transistors, diodes, resistors, capacitors, etc.) by continual reductions in minimum feature size, which allow more components to be integrated into a given area. These smaller electronic components also require smaller packages that utilize less area than packages of the past, in some applications.


Solder ball grid arrays are also a technique sometimes used to join substrate, dies or packages, with an array of solder balls deposited on the bonding pads of a first substrate, and with a second substrate, die or package joined at its own bonding pad sites to the first pad via the solder balls. Solder balls may be formed on a pad as liquid solder, and then solidified for additional processing. The environment with the solder balls is subsequently heated to melt the solder balls and the packages compressed to cause the solder balls to contact the upper and lower pads.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIGS. 1, 2, 3, 4, 5, 6, and 7 illustrate cross-sectional views of intermediate stages in the manufacturing of an interconnect structure in accordance with an embodiment;



FIGS. 8A and 8B illustrate cross-sectional views of an interconnect structure in accordance with an embodiment;



FIGS. 9A and 9B illustrate cross-sectional views of an interconnect structure in accordance with an embodiment; and



FIG. 10 illustrates a process flow of the process illustrated in FIGS. 1 through 7 in accordance with an embodiment.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. In the drawings, the shape and thickness may be exaggerated for clarity and convenience. This description will be directed in particular to elements forming part of, or cooperating more directly with, methods and apparatus in accordance with the present disclosure. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art. Many alternatives and modifications will be apparent to those skilled in the art, once informed by the present disclosure.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be appreciated that the following figures are not drawn to scale; rather, these figures are merely intended for illustration.


Embodiments will be described with respect to a specific context, namely making and using interconnects useful in, for example, WLCSP assemblies. Other embodiments may also be applied, however, to other semiconductor devices, including, but not limited to, package-on-package assemblies, die-to-die assemblies, wafer-to-wafer assemblies, die-to-substrate assemblies, in assembling packaging, in processing substrates, interposers, substrates, or the like, or mounting input components, boards, dies or other components, or for connection packaging or mounting combinations of any type of integrated circuit or electrical component.



FIGS. 1 through 7 are cross-sectional views of intermediate stages in the manufacturing of an interconnect structure in accordance with an embodiment, and FIG. 9 is a process flow of the process shown in FIGS. 1 through 7.



FIG. 1 illustrates an interconnect structure 100 in an intermediate stage of manufacture. The interconnector structure 100 may include a substrate 20, a contact pad 22, a first passivation layer 24, a second passivation 26, a post-passivation interconnect (PPI) 28, and an optional flux 30. Substrate 20 may comprise a semiconductor material such as silicon, germanium, diamond, or the like. Alternatively, compound materials such as silicon germanium, silicon carbide, gallium arsenic, indium arsenide, indium phosphide, silicon germanium carbide, gallium arsenic phosphide, gallium indium phosphide, combinations of these, and the like, may also be used. Additionally, the substrate 20 may comprise a silicon-on-insulator (SOI) substrate. Generally, an SOI substrate comprises a layer of a semiconductor material such as epitaxial silicon, germanium, silicon germanium, SOI, silicon germanium on insulator (SGOI), or combinations thereof.


The substrate 20 may include active and passive devices (not shown in FIG. 1). As one of ordinary skill in the art will recognize, a wide variety of devices such as transistors, capacitors, resistors, combinations of these, and the like may be used to generate the structural and functional requirements of the design for the interconnect structure 100. The devices may be formed using any suitable methods. Only a portion of the substrate 20 is illustrated in the figures, as this is sufficient to fully describe the illustrative embodiments.


The substrate 20 may also include metallization layers (not shown). The metallization layers may be formed over the active and passive devices and are designed to connect the various devices to form functional circuitry. The metallization layers may be formed of alternating layers of dielectric (e.g., low-k dielectric material) and conductive material (e.g., copper) and may be formed through any suitable process (such as deposition, damascene, dual damascene, or the like).


The contact pad 22 may be formed over and in electrical contact with the metallization layers in order to help provide external connections to the active and passive devices. The contact pad 22 may comprise aluminum, copper, nickel, the like, or a combination thereof. The contact pad 22 may be formed using a deposition process, such as sputtering, to form a layer of material (not shown). Portions of the layer of material may then be removed through a suitable process, such as photolithographic masking and etching, to form the contact pad 22. However, any other suitable process may be utilized to form contact pad 22. The contact pad 22 may be formed to have a thickness of between about 0.5 μm and about 4 μm.


A first passivation layer 24 may be formed on the substrate 20 and over the contact pad 22. The first passivation layer 24 may be made of one or more suitable dielectric materials such as silicon oxide, silicon nitride, low-k dielectrics such as carbon doped oxides, extremely low-k dielectrics such as porous carbon doped silicon dioxide, a polymer such as polyimide, solder resist, polybenzoxazole (PBO), benzocyclobutene (BCB), molding compound, the like, or a combination thereof. The first passivation layer 24 may be formed through a process such as chemical vapor deposition (CVD), although any suitable process may be utilized, and may have a thickness between about 0.5 μm and about 30 μm. In some embodiments, a top surface of contact pad 22 and a portion of a bottom surface of the first passivation layer 24 are substantially level.


After the first passivation layer 24 has been formed, an opening may be formed through the first passivation layer 24 to expose at least a portion of the underlying contact pad 22. This opening through the first passivation layer 24 to expose the portion of the underlying contact pad 22 allows for physical and electrical contact between the contact pad 22 and the PPI 28 (discussed further below). The opening through the first passivation layer 24 may be formed using a suitable photolithographic mask and etching process, although any other suitable process to expose portions of the contact pad 22 may alternatively be used.


The second passivation layer 26 may be formed over the contact pad 22 and the first passivation layer 24. The second passivation layer 26 may be formed from a polymer such as polyimide. Alternatively, the second passivation layer 26 may be formed of a material similar to the material used as the first passivation layer 24, such as silicon oxides, silicon nitrides, low-k dielectrics, extremely low-k dielectrics, BCB, PBO, the like, or a combination thereof. The second passivation layer 26 may be formed to have a thickness between about 2 μm and about 30 μm.


After the second passivation layer 26 has been formed, another opening through the second passivation layer 26 to expose at least a portion of the underlying contact pad 22 may be made. The opening through the second passivation layer 26 to the underlying contact pad 22 allows for physical and electrical contact between the contact pad 22 and the PPI 28 (discussed further below). The opening through the second passivation layer 26 may be formed using a suitable photolithographic mask and etching process, although any suitable process to expose portions of the contact pad 22 may be used.


After the opening through the second passivation layer 26 has been formed, the PPI 28 may be formed to extend through the second passivation layer 26 and to extend along the second passivation layer 26. The PPI 28 may provide electrical connection between the contact pad 22 and the subsequently formed connector 32 (see FIG. 2). In some embodiments, the PPI 28 may include a thin barrier layer (not shown) conformally deposited on the second passivation layer 26 and in the opening, such as by CVD, atomic layer deposition (ALD), the like, or a combination thereof. The barrier layer may comprise a nitride or an oxynitride, such as titanium nitride, titanium oxynitride, tantalum nitride, tantalum oxynitride, tungsten nitride, silicon dioxide, the like, or a combination thereof. The conductive material of the PPI 28 may be deposited over the thin barrier layer and in the opening. The conductive material may be formed by an electro-chemical plating process, CVD, ALD, physical vapor deposition (PVD), the like, or a combination thereof. In an embodiment, the conductive material of the PPI 28 may comprise copper, tungsten, aluminum, silver, gold, the like, or a combination thereof. The conductive material may then be patterned to form the PPI 28. In other embodiments, the PPI 28 may be formed by first forming and patterning a photo resist (not shown), and then forming the PPI 28 in the patterned photo resist. In these embodiments, after the PPI 28 is formed, the photo resist (not shown) may be removed.


After the PPI 28 has been formed, an optional flux 30 may be formed to the PPI 28. The flux 30 may be formed on the PPI 28 to control the spread of the subsequently formed connector 32 (see FIG. 2) on the PPI 28. The flux 30 tends to cause the connector 32 to remain within the region where the flux 30 was applied. In an embodiment, the flux 30 may be formed on the PPI 28 by dipping the PPI 28 in flux so that the flux 30 may be deposited on the PPI 28. In another embodiment, the flux 30 may be depositing as a paste and may be printed on the PPI 28.



FIG. 2 illustrates the formation of connector 32 (step 402) on the PPI 28. The connector 32 may be a solder ball, a micro bump, a metal pillar, a controlled collapse chip connection (C4) bump, an electroless nickel-electroless palladium-immersion gold technique (ENEPIG) formed bump, or the like. The connector 32 may comprise a conductive material such as copper, aluminum, gold, nickel, silver, palladium, tin, the like, or a combination thereof. In an embodiment in which the connector 32 is a tin solder bump, the connector 32 may be formed by initially forming a layer of tin through such commonly used methods such as evaporation, electroplating, printing, solder transfer, ball placement, or the like. Once a layer of tin has been formed on the structure, a reflow may be performed in order to shape the material into the desired bump shape. In another embodiment, the connector 32 may be a metal pillar (such as a copper pillar) formed by a plating process and may be solder free and comprise substantially vertical sidewalls.



FIG. 3 illustrates the formation of a molding compound 34 (step 404) over the PPI 28 and the second passivation layer 26 and may be formed adjoining the connector 32. The molding compound 34 may provide lateral support to the connector 32 during reflow. In an embodiment, the molding compound 34 may be a nonconductive material, such as an epoxy, a resin, polyimide, polybenzoxazole (PBO), benzocyclobutene (BCB), a silicone, an acrylate, the like, or a combination thereof. The molding compound 34 may be formed to have a top surface over, substantially level with, or below an apex of the connector 32.



FIG. 4 illustrates applying a mold 42 to the molding compound 34 (step 406). The mold 42 may shape or mold the molding compound 34. In an embodiment, a release compound 40 may be applied to the mold 42 to prevent the molding compound 34 from adhering to the mold 42. The release compound 40 may comprise ethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), the like, or a combination thereof. In an embodiment, the mold 42 may be configured to accept one or more connectors 32 by way of recesses formed in the mold 42. The molding compound 34 may also be shaped by the mold 42 using a layer of release compound 40 thick enough to compress the molding compound 34 while still separating the mold 42 from the connector 32. In an embodiment, the mold 42 may be used to pressure mold the molding compound 34 to force the molding compound into openings and recesses, and may avoid air pockets or the like in the molding compound 34.


After the application of the mold 42 and the release compound 40, the molding compound may be cured (step 408) and the mold 42 and the release compound 40 may be removed as illustrated in FIG. 5. In some embodiments, the molding compound 34 may be applied while substantially liquid, and then may be cured through a chemical reaction, such as in an epoxy or resin. In some other embodiments the molding compound 34 may be an ultraviolet (UV) cured polymer applied as a gel or malleable solid capable of being disposed on the PPI 28 and second passivation layer 26 and around or conforming to the connector 32 surface.


As illustrated in FIG. 6, the molding compound 34 may be molded over a lower portion of the connector 32 so that a portion of the molding compound 34 reaches at least about half of the height of the connector 32. In an embodiment, the molding compound 34 may have a final molded height from about 50 μm to about 350 μm. An upper portion of the connector 32 may be exposed through the molding compound 34. The molding compound 34 is contoured to the body of the solidified connector 32 during application, molding, and curing of the molding compound 34. A top surface 34A of the molding compound 34 near the connector 32 may have a concave shape due to the meniscus effect of the liquid during and after the application and curing processes of the molding compound 34. In some embodiments, the top surface 34A of the molding compound 34 contacts the connector 32 at an angle 46 relative to a plane parallel with a major surface of the substrate 20. In an embodiment, the angle 46 is from about 10 degrees to about 60 degrees.


The molding compound 34 may be formed to support the connector 32 in later processing steps, such as reflowing the connector 32 for attaching a second substrate (see FIG. 7). In such an example, the molding compound 34 may confine the connector 32 and prevent bridging between adjacent connectors during the reflow process.


After the mold 42 and the release compound 40 are removed, a plasma cleaning process may be performed (step 410) on the connector 32. The plasma cleaning process may be used to clean the connector 32 and to remove any residual release compound 40 or molding compound 34.



FIG. 7 illustrates bonding a second substrate 50 to the connector 32 (step 412). The second substrate 50 may be similar to the substrate 20 as described above, although the substrate 20 and the second substrate 50 need not be the same. The second substrate 50 may be a carrier, a package substrate, an interposer, or a printed circuit board (PCB) based on an insulating core such as a fiberglass reinforced resin core. One example core material is fiberglass resin such as FR4. Alternatives for the core material include bismaleimide-triazine (BT) resin, or alternatively, other PCB materials or films. Build up films such as Ajinomoto build-up film (ABF) or other laminates may be used for second substrate 50.


The second substrate 50 has a bond pad 52 which will be physically and electrically coupled to the connector 32. In some embodiments, the bond pad 52 may comprise a pre-solder layer, and in other embodiments, the bond pad 52 may comprise a contact pad or an under bump metallization (UBM). The bond pad 52 may comprise copper, nickel, aluminum, gold, silver, tin, the like, or a combination thereof. In an embodiment, the second substrate 50 may be bonded to the connector 32 by a reflow process. During this reflow process, the bond pad 52 on the second substrate 50 is in contact with the connector 32 to physically and electrically couple the second substrate 50 to the PPI 28. The connector 32 bonded to the bond pad 52 of the second substrate 50 may also be referred to as a bonding structure 32. In an embodiment, the second substrate 50 has a standoff height H1 from the top surface 34A of the molding compound 34 from about 20 μm to about 150 μm.


As illustrated in FIG. 7, the connector 32 has a width W1 at the top surface 34A of the molding compound 34 and the bond pad 52 has a width W2. In an embodiment, the ratio of W1 to W2 may be from about 1:1 to about 1.2:1. For example, if the width W2 of the bond pad 52 were 150 μm, then width W1 of the connector 32 at the top surface 34A of the molding compound 34 is in the range from 150 μm to about 180 μm.


The number of connectors 32, the number of bond pads 52, the number of PPIs 28, and the number of contact pads 22 in FIG. 7 are only for illustrative purposes and are not limiting. There could be any suitable number of connectors 32, bond pads 52, PPIs 28, and contact pads 22



FIG. 8A illustrates a cross-sectional view of an interconnect structure 200 with a third passivation layer 60 on the second passivation layer 26 and the PPI 28. Details regarding this embodiment that are similar to those for the previously described embodiment will not be repeated herein.


The substrate 20, the contact pad 22, the first passivation layer 24, the second passivation layer 26, the PPI 28 may be similar to those described above and the descriptions will not be repeated herein. The connector 64 may be similar to the connector 32 described above and the description will not be repeated herein, although the connectors 64 and 32 need not be the same. The manufacture of interconnect structure 200 may be similar to interconnect structure 100 in FIGS. 1 and 2.


After the formation of the connector 64, a third passivation layer 60 may be formed on the second passivation layer 26 and the PPI 28 and surrounding a lower portion of the connector 64. The third passivation layer 60 may be formed from a polymer such as polyimide. Alternatively, the third passivation layer 60 may be formed of silicon oxides, silicon nitrides, low-k dielectrics, extremely low-k dielectrics, BCB, PBO, the like, or a combination thereof. The third passivation layer 60 may be formed to have a thickness between about 2 μm and about 30 μm.


After the third passivation layer 60 has been formed, a molding compound 62 may be formed on the third passivation layer 60 and surrounding a middle portion of the connector 64. The molding compound 62 may be similar to the molding compound 34 described above except that it is formed on the third passivation layer 60 rather than the PPI 28 and the second passivation layer 26 and the description of the molding compound will not be repeated. The molding compound may undergo similar processing as molding compound 34 such as pressure molding, curing, and plasma cleaning as described above. In some embodiments, the pressure molding and curing of the molding compound 62 may cause a portion 62B of molding compound 62 to fill between the connector 64 and the third passivation layer 60.


As illustrated in FIG. 8A, a top surface 62A of the molding compound 62 near the connector 64 may have a concave shape due to the meniscus effect of the liquid during and after the application and curing processes of the molding compound 62. In some embodiments, the top surface 62A of the molding compound 62 contacts the connector 64 at an angle 66 relative to a plane parallel with a major surface of the substrate 20. In an embodiment, the angle 66 is from about 10 degrees to about 60 degrees.



FIG. 8B illustrates the bonding of a second substrate 50 to the connector 64. This bonding process was previously described and the description will not be repeated herein. Second substrate 50 and bond pad 52 have been previously described and the descriptions will not be repeated herein. In an embodiment, the second substrate 50 has a standoff height H2 from the top surface 34A of the molding compound 34 from about 20 μm to about 150 μm. As illustrated in FIG. 8B, the connector 64 has a width W3 at the top surface 62A of the molding compound 62 and the bond pad 52 has a width W4. In an embodiment, the ratio of W3 to W4 may be from about 1:1 to about 1.2:1.



FIG. 9A illustrates a cross-sectional view of an interconnect structure 300 with a under bump metallization (UBM) 70 between the connector 72 and the PPI 28. Details regarding this embodiment that are similar to those for the previously described embodiment will not be repeated herein.


The substrate 20, the contact pad 22, the first passivation layer 24, the second passivation layer 26, the PPI 28, and the third passivation layer 60 may be similar to those described above and the descriptions will not be repeated herein. The connector 72 may be similar to the connector 32 described above and the description will not be repeated herein, although the connectors 72 and 32 need not be the same. The manufacture of interconnect structure 300 may be similar to interconnect structure 100 in FIG. 1.


After the formation of PPI 28, the third passivation layer 60 may be formed on the second passivation layer 26 and the PPI 28. The third passivation layer 60 was previously described and the description will not be repeated herein.


After the third passivation layer 60 has been formed, a UBM 70 may be formed on the PPI 28. An opening (not shown) may be formed through the third passivation layer 60 to expose at least a portion of the PPI 28 to allow for electrical and physical contact between the UBM 70 and the PPI 28. The opening may be formed using a suitable photolithographic mask and etching process, although any suitable process to expose a portion of the PPI 28 may be used.


After the opening is formed through the third passivation layer 60, the UBM 70 may be formed along the third passivation layer 60 and in the opening over the PPI 28. In an embodiment the UBM 70 may comprise three layers of conductive materials, such as a layer of titanium, a layer of copper, and a layer of nickel. However, one of ordinary skill in the art will recognize that there are many suitable arrangements of materials and layers, such as an arrangement of chrome/chrome-copper alloy/copper/gold, an arrangement of titanium/titanium tungsten/copper, or an arrangement of copper/nickel/gold, that are suitable for the formation of the UBM 70. Any suitable materials or layers of material that may be used for the UBM 70 are fully intended to be included within the scope of the current application. In some embodiments, the PPI 28 may be formed as a UBM 28 (not shown) in a similar manner as described above for UBM 70. In these embodiments, the UBM 70 may be formed in contact with the UBM 28.


After the UBM 70 is formed, a connector 72 may be formed on the UBM 70 to electrically couple the connector 72 to the PPI 28. The connector 72 may be similar to the connectors 32 and 64 described above and the description will not be repeated herein.


After the connector 72 has been formed, a molding compound 68 may be formed on the third passivation layer 60 and surrounding the UBM 70 and a lower portion of the connector 72. The molding compound 68 may be similar to the molding compound 34 described above except that it is formed on the third passivation layer 60 rather than the PPI 28 and the second passivation layer 26 and the description of the molding compound will not be repeated. The molding compound may undergo similar processing as molding compound 34 such as pressure molding, curing, and plasma cleaning as described above.


As illustrated in FIG. 9A, a top surface 68A of the molding compound 68 near the connector 72 may have a concave shape due to the meniscus effect of the liquid during and after the application and curing processes of the molding compound 68. In some embodiments, the top surface 68A of the molding compound 68 contacts the connector 72 at an angle 74 relative to a plane parallel with a major surface of the substrate 20. In an embodiment, the angle 74 is from about 10 degrees to about 60 degrees.



FIG. 9B illustrates the bonding of a second subtract 50 to the connector 72. This bonding process was previously described and the description will not be repeated herein. Second substrate 50 and bond pad 52 have been previously described and the descriptions will not be repeated herein. In an embodiment, the second substrate 50 has a standoff height H3 from the top surface 68A of the molding compound 68 from about 20 μm to about 150 μm. As illustrated in FIG. 9B, the connector 72 has a width W5 at the top surface 68A of the molding compound 68 and the bond pad 52 has a width W6. In an embodiment, the ratio of W5 to W6 may be from about 1:1 to about 1.2:1.


It has been found that the molding compound 34 surrounding the connectors 32 and/or the bonding structures 32 protects their shape and reduces the stress between the connectors/bonding structures and the underlying interconnect. Further, the molding compound 34 protects the underlying structures such as the PPI 28, the passivation layers 24 and 26, the contact pad 22, and the substrate 20 from the stresses of later processing steps. This protection afforded by the molding compound 34 results in improved the reliability of the interconnect structure, especially for larger dies and chips.


In an embodiment, an interconnect structure includes: a post-passivation interconnect (PPI) coupled to a first substrate; a conductive connector on the PPI; and a molding compound on a surface of the PPI, the molding compound having a concave top surface adjoining the conductive connector, the conductive connector having a first width at the adjoining concave top surface of the molding compound, the first width being in a range from 150 μm to about 180 μm, the concave top surface of the molding compound having an angle from about 10 degrees to about 60 degrees relative to a plane parallel with a major surface of the first substrate.


In some embodiments, the interconnect structure further includes: a second substrate; and a bond pad on a first surface of the second substrate, the bond pad being bonded to the conductive connector. In some embodiments of the interconnect structure, the bond pad has a second width, a ratio of the first width to the second width being from 1:1 to 1.2:1. In some embodiments of the interconnect structure, a distance between the concave top surface of the molding compound and the first surface of the second substrate is from 20 μm to 150 μm. In some embodiments, the interconnect structure further includes: a contact pad on a top surface of the first substrate; a first passivation layer on the contact pad and the top surface of the first substrate; and a second passivation layer on the first passivation layer and the contact pad, the PPI extending through the first passivation layer and the second passivation layer to physically and electrically couple the contact pad. In some embodiments of the interconnect structure, the molding compound is on the second passivation layer, the molding compound contacting a lower portion and a middle portion of the conductive connector. In some embodiments, the interconnect structure further includes: a third passivation layer on the second passivation layer, the third passivation layer contacting a lower portion of the conductive connector, the molding compound being on the third passivation layer, the molding compound contacting a middle portion of the conductive connector. In some embodiments, the interconnect structure further includes: an under bump metallization (UBM) extending through the third passivation layer to physically and electrically couple the PPI, the UBM being disposed between the PPI and the conductive connector.


In an embodiment, an interconnect structure includes: a contact pad on a surface of a first substrate; a post-passivation interconnect (PPI) contacting a surface of the contact pad; a first passivation layer on a surface of the PPI; a connector on the surface of the PPI, the first passivation layer directly adjoining a lower portion of the connector; a molding compound disposed on a surface of the first passivation layer, the molding compound covering a middle portion of the connector and exposing another portion of the connector; and a bond pad on a surface of a second substrate, the bond pad being bonded to the connector.


In some embodiments, the interconnect structure further includes: a second passivation layer on the contact pad and the surface of the first substrate; and a third passivation layer on the second passivation layer and the contact pad, the PPI extending through the second passivation layer and the third passivation layer, the first passivation layer being disposed on the third passivation layer. In some embodiments of the interconnect structure, the molding compound has a concave top surface adjoining the connector, the connector having a first width at the adjoining concave top surface of the molding compound, the bond pad having a second width, a ratio of the first width to the second width being from 1:1 to 1.2:1. In some embodiments of the interconnect structure, the concave top surface of the molding compound has an angle from about 10 degrees to about 60 degrees relative to a plane parallel with the surface of the first substrate. In some embodiments of the interconnect structure, in the first width is a range from 150 μm to about 180 μm. In some embodiments of the interconnect structure, a distance between the concave top surface of the molding compound and the surface of the second substrate is from about 20 μm to about 150 μm. In some embodiments, the interconnect structure further includes: an under bump metallization (UBM) extending through the first passivation layer to physically and electrically couple the PPI, the UBM being disposed between the PPI and the connector.


In an embodiment, an interconnect structure includes: a contact pad on a top surface of a first substrate; a first passivation layer on the top surface of the first substrate, the first passivation layer directly adjoining a first portion of a top surface of the contact pad; a second passivation layer on the first passivation layer, the second passivation layer directly adjoining a second portion of the top surface of the contact pad; a post-passivation interconnect (PPI) contacting a third portion of the top surface of the contact pad and extending along a top surface of the second passivation layer; a third passivation layer on a top surface of the PPI; a connector on the top surface of the PPI, the third passivation layer directly adjoining a lower portion of the connector; a molding compound disposed on a surface of the third passivation layer and having a concave top surface adjoining the connector, the concave top surface of the molding compound having an angle from about 10 degrees to about 60 degrees relative to a plane parallel with a major surface of the first substrate; and a bond pad on a first surface of a second substrate, the bond pad being bonded to the connector, the bond pad having a second width, the connector having a first width at an adjoining top surface of the molding compound.


In some embodiments of the interconnect structure, a ratio of the first width to the second width is from 1:1 to 1.2:1. In some embodiments of the interconnect structure, in the first width is a range from 150 μm to about 180 μm. In some embodiments, the interconnect structure further includes: an under bump metallization (UBM) extending through the third passivation layer, the UBM directly adjoining the top surface of the PPI, the connector directly adjoining a top surface of the UBM. In some embodiments of the interconnect structure, a distance between the concave top surface of the molding compound and the first surface of the second substrate is from about 20 μm to about 150 μm.


Although the present embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A device comprising: a contact pad on a substrate;a first dielectric layer on the contact pad;a post-passivation interconnect (PPI) extending through the first dielectric layer, the PPI connected to the contact pad;a second dielectric layer on the PPI and the first dielectric layer;a molding compound on the second dielectric layer, the molding compound having a concave top surface; anda conductive connector extending through the molding compound and the second dielectric layer, the conductive connector connected to the PPI, the conductive connector adjoining the concave top surface of the molding compound.
  • 2. The device of claim 1 further comprising: a third dielectric layer between the first dielectric layer and each of the contact pad and the substrate, the PPI extending through the third dielectric layer.
  • 3. The device of claim 2, wherein the first dielectric layer contacts a first portion of the contact pad and the third dielectric layer contacts a second portion of the contact pad.
  • 4. The device of claim 2, wherein the first dielectric layer has a first thickness of between 2 μm and 30 μm, the second dielectric layer has a second thickness of between 2 μm and 30 μm, and the third dielectric layer has a third thickness of between 0.5 μm and 30 μm.
  • 5. The device of claim 1, wherein the first dielectric layer comprises polybenzoxazole (PBO) or benzocyclobutene (BCB).
  • 6. The device of claim 1, wherein the conductive connector comprises: a reflowable connector extending through the molding compound; andan under bump metallization (UBM) extending through the second dielectric layer, the UBM interconnected between the PPI and the reflowable connector.
  • 7. The device of claim 1, wherein the concave top surface of the molding compound forms an acute angle with a plane parallel to a major surface of the substrate, the acute angle being from 10 degrees to 60 degrees.
  • 8. A device comprising: a first dielectric layer on a substrate;a second dielectric layer on the first dielectric layer;a molding compound on the second dielectric layer, the molding compound having a top surface, the top surface forming an acute angle with a plane parallel to a major surface of the substrate;a contact pad between the substrate and the first dielectric layer;a post-passivation interconnect (PPI) connected to the contact pad, the PPI having a first portion and a second portion, the first portion disposed between the first dielectric layer and the second dielectric layer, the second portion extending through the first dielectric layer; anda conductive connector connected to the PPI, the conductive connector extending through the second dielectric layer and the molding compound, the conductive connector adjoining the top surface of the molding compound.
  • 9. The device of claim 8 further comprising: a third dielectric layer between the first dielectric layer and each of the contact pad and the substrate, the second portion of the PPI extending through the third dielectric layer.
  • 10. The device of claim 9, wherein the first dielectric layer and the third dielectric layer each contact the contact pad.
  • 11. The device of claim 9, wherein the first dielectric layer has a first thickness of between 2 μm and 30 μm, the second dielectric layer has a second thickness of between 2 μm and 30 μm, and the third dielectric layer has a third thickness of between 0.5 μm and 30 μm.
  • 12. The device of claim 8, wherein the first dielectric layer comprises polybenzoxazole (PBO) or benzocyclobutene (BCB).
  • 13. The device of claim 8, wherein the conductive connector comprises: a reflowable connector extending through the molding compound; andan under bump metallization (UBM) extending through the second dielectric layer, the UBM interconnected between the PPI and the reflowable connector.
  • 14. The device of claim 8, wherein the acute angle is from 10 degrees to 60 degrees.
  • 15. A device comprising: a contact pad on a first substrate;a post-passivation interconnect (PPI) connected to the contact pad;a conductive connector connected to the PPI;a bond pad connected to the conductive connector;a molding compound surrounding the conductive connector, the molding compound having a first top surface and a second top surface, the first top surface disposed over the contact pad, the first top surface parallel to a major surface of the first substrate, the second top surface extending between the first top surface and a sidewall of the conductive connector, the first top surface and the second top surface forming an obtuse angle;a first dielectric layer disposed between the first substrate and the PPI; anda second dielectric layer disposed between the molding compound and the PPI.
  • 16. The device of claim 15, wherein the conductive connector has a first width at the second top surface of the molding compound and the bond pad has a second width, a ratio of the first width to the second width being from 1:1 to 1.2:1.
  • 17. The device of claim 15 further comprising: a third dielectric layer disposed between the first dielectric layer and the first substrate, the first dielectric layer and the third dielectric layer each contacting the contact pad.
  • 18. The device of claim 15, wherein the conductive connector comprises: a reflowable connector, the molding compound surrounding the reflowable connector; andan under bump metallization (UBM) interconnected between the PPI and the reflowable connector, the second dielectric layer surrounding the UBM.
  • 19. The device of claim 15, wherein the obtuse angle is from 120 degrees to 170 degrees.
  • 20. The device of claim 15, wherein the bond pad is disposed on a second substrate, and a distance between the second substrate and the molding compound is from 20 μm to 150 μm.
PRIORITY CLAIM AND CROSS-REFERENCE

This application is a continuation of U.S. patent application Ser. No. 16/384,136, filed on Apr. 15, 2019, entitled “Interconnect Structures and Methods of Forming the Same,” which is a continuation of U.S. patent application Ser. No. 15/942,692, filed on Apr. 2, 2018, entitled “Interconnect Structures and Methods of Forming the Same,” now U.S. Pat. No. 10,262,964 issued on Apr. 16, 2019, which is a continuation of U.S. patent application Ser. No. 14/991,426, filed on Jan. 8, 2016, entitled “Interconnect Structures and Methods of Forming Same,” now U.S. Pat. No. 9,935,070, issued on Apr. 3, 2018, which is a divisional of U.S. patent application Ser. No. 13/838,748, filed on Mar. 15, 2013, entitled “Interconnected Structures and Methods of Forming Same,” now U.S. Pat. No. 9,257,333, issued on Feb. 9, 2016, which claims the benefit of U.S. Provisional Application No. 61/776,684, filed on Mar. 11, 2013, entitled “Interconnect Structures and Methods of Forming Same”, which applications are hereby incorporated herein by reference. This application relates to the following co-pending and commonly assigned patent applications: Ser. No. 13/349,405, filed Jan. 12, 2012, entitled “Package on Package Interconnect Structure;” Ser. No. 13/751,289, filed Jan. 28, 2013, entitled “System and Method for an Improved Fine Pitch Joint;” Ser. No. 13/868,554, filed Apr. 23, 2013, entitled “Method for Wafer Separation;” Ser. No. 13/913,599, filed Jun. 10, 2013, entitled “Interconnect Joint Protective Layer Apparatus and Method;” Ser. No. 13/914,426, filed Jun. 10, 2013, entitled “Interconnect Structures and Methods of Forming Same;” Ser. No. 13/934,562, filed Jul. 3, 2013, entitled “Packaging Devices, Methods of Manufacture Thereof, and Packaging Methods” and Ser. No. 13/939,966, filed Jul. 11, 2013, entitled “Apparatus for Package Reinforcement Using Molding Underfill.”

US Referenced Citations (121)
Number Name Date Kind
5072520 Nelson Dec 1991 A
5317801 Tamala et al. Jun 1994 A
5869904 Shoji Feb 1999 A
6037065 Hajmrle et al. Mar 2000 A
6158644 Brofman et al. Dec 2000 A
6187615 Kim et al. Feb 2001 B1
6365978 Ibnabdeljalil et al. Apr 2002 B1
6369451 Lin Apr 2002 B2
6425516 Iwatsu et al. Jul 2002 B1
6586322 Chiu et al. Jul 2003 B1
6589870 Katoh Jul 2003 B1
6643923 Hishinuma et al. Nov 2003 B1
6664637 Jimarez et al. Dec 2003 B2
6933613 Akashi Aug 2005 B2
6940169 Jin et al. Sep 2005 B2
7122905 Grigg Oct 2006 B2
7187068 Suh et al. Mar 2007 B2
7372151 Fan et al. May 2008 B1
7749882 Kweon et al. Jul 2010 B2
7977783 Park et al. Jul 2011 B1
8264089 Alvarado et al. Sep 2012 B2
8345435 Hamatani et al. Jan 2013 B2
8362612 Paek et al. Jan 2013 B1
8368214 Tam et al. Feb 2013 B2
8624392 Yew et al. Jan 2014 B2
8735273 Lu et al. May 2014 B2
9263839 Chen et al. Feb 2016 B2
9437564 Lu et al. Sep 2016 B2
9607921 Lu et al. Mar 2017 B2
10714442 Lu Jul 2020 B2
20010050434 Kaneda et al. Dec 2001 A1
20020001937 Kikuchi et al. Jan 2002 A1
20020031868 Capote et al. Mar 2002 A1
20020167077 Vincent Nov 2002 A1
20020175409 Tsubosaki Nov 2002 A1
20020185721 Hwang et al. Dec 2002 A1
20030068847 Watanabe et al. Apr 2003 A1
20030096453 Wang et al. May 2003 A1
20030153172 Yajima et al. Aug 2003 A1
20040012930 Grigg Jan 2004 A1
20040027788 Chiu et al. Feb 2004 A1
20040043675 Hiatt et al. Mar 2004 A1
20040072387 Hong et al. Apr 2004 A1
20040118599 Chason et al. Jun 2004 A1
20040188131 Dunlap Sep 2004 A1
20040251561 Wilson et al. Dec 2004 A1
20040266162 Feng Dec 2004 A1
20050006766 Nakayoshi et al. Jan 2005 A1
20050080956 Zaudtke et al. Apr 2005 A1
20050287699 Brauer Dec 2005 A1
20060038291 Chung et al. Feb 2006 A1
20060063378 Lin et al. Mar 2006 A1
20060189114 Seto et al. Aug 2006 A1
20070045840 Varnau Mar 2007 A1
20070102815 Kaufmann et al. May 2007 A1
20070108573 Chung et al. May 2007 A1
20070176290 Park et al. Aug 2007 A1
20070184577 Chung et al. Aug 2007 A1
20070187825 Hashimoto Aug 2007 A1
20070267745 Chao et al. Nov 2007 A1
20080001290 Chou et al. Jan 2008 A1
20080044951 Bang et al. Feb 2008 A1
20080150134 Shinkai et al. Jun 2008 A1
20080308935 Kim et al. Dec 2008 A1
20090020864 Pu et al. Jan 2009 A1
20090045511 Meyer et al. Feb 2009 A1
20090045513 Kim et al. Feb 2009 A1
20090052218 Kang Feb 2009 A1
20090120215 Jacobson et al. May 2009 A1
20090130840 Wang et al. May 2009 A1
20090140442 Lin Jun 2009 A1
20090140942 Mikkola et al. Jun 2009 A1
20090146317 Shih Jun 2009 A1
20090206479 Daubenspeck et al. Aug 2009 A1
20090256268 Ayotte et al. Oct 2009 A1
20090294949 Meyer Dec 2009 A1
20090314519 Soto et al. Dec 2009 A1
20100065966 Pendse et al. Mar 2010 A1
20100078772 Robinson Apr 2010 A1
20100096754 Lee et al. Apr 2010 A1
20100140760 Tam et al. Jun 2010 A1
20100308449 Yang et al. Dec 2010 A1
20110037158 Youn et al. Feb 2011 A1
20110080713 Sunohara Apr 2011 A1
20110101520 Liu et al. May 2011 A1
20110108983 Lu et al. May 2011 A1
20110128711 Yim et al. Jun 2011 A1
20110157853 Goh Jun 2011 A1
20110278739 Lai et al. Nov 2011 A1
20110285008 Nakano Nov 2011 A1
20120006592 Ouchi et al. Jan 2012 A1
20120199959 Hart et al. Aug 2012 A1
20120199991 Okamoto et al. Aug 2012 A1
20120208321 Foote et al. Aug 2012 A1
20120211884 Stepniak et al. Aug 2012 A1
20120261817 Do et al. Oct 2012 A1
20130009307 Lu et al. Jan 2013 A1
20130093084 Chen et al. Apr 2013 A1
20130105971 Daubenspeck et al. May 2013 A1
20130147031 Chen et al. Jun 2013 A1
20130168850 Samoilov et al. Jul 2013 A1
20130181338 Lu et al. Jul 2013 A1
20140054764 Lu et al. Feb 2014 A1
20140077361 Lin et al. Mar 2014 A1
20140159223 Chen et al. Jun 2014 A1
20140175639 Kim et al. Jun 2014 A1
20140187103 Chen et al. Jul 2014 A1
20140231125 Chen et al. Aug 2014 A1
20140232017 Rampley et al. Aug 2014 A1
20140256092 Kuo et al. Sep 2014 A1
20140264846 Chen et al. Sep 2014 A1
20150014851 Lu Jan 2015 A1
20150123269 Chen et al. May 2015 A1
20150137352 Chen et al. May 2015 A1
20150214145 Lu et al. Jul 2015 A1
20150235977 Shao et al. Aug 2015 A1
20150243613 Chen et al. Aug 2015 A1
20150249066 Lin et al. Sep 2015 A1
20150262948 Lu et al. Sep 2015 A1
20160133482 Chen et al. May 2016 A1
20160218090 Yu et al. Jul 2016 A1
Foreign Referenced Citations (13)
Number Date Country
101002318 Jul 2007 CN
102097397 Jun 2011 CN
102005040213 Mar 2006 DE
112005001949 May 2007 DE
H11255864 Sep 1999 JP
1019990086280 Dec 1999 KR
20050084487 Aug 2005 KR
1020070076846 Jul 2007 KR
100780956 Dec 2007 KR
20090018442 Feb 2009 KR
20090120215 Nov 2009 KR
20100131180 Dec 2010 KR
201246540 Nov 2012 TW
Related Publications (1)
Number Date Country
20200343209 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
61776684 Mar 2013 US
Divisions (1)
Number Date Country
Parent 13838748 Mar 2013 US
Child 14991426 US
Continuations (3)
Number Date Country
Parent 16384136 Apr 2019 US
Child 16923739 US
Parent 15942692 Apr 2018 US
Child 16384136 US
Parent 14991426 Jan 2016 US
Child 15942692 US