Semiconductor package with increased number of input and output pins

Information

  • Patent Grant
  • 6995459
  • Patent Number
    6,995,459
  • Date Filed
    Tuesday, February 22, 2005
    19 years ago
  • Date Issued
    Tuesday, February 7, 2006
    18 years ago
Abstract
In accordance with the present invention, there is provided a semiconductor package which includes a generally planar die paddle defining multiple peripheral edge segments and including at least two slots formed therein and extending along respective ones of a pair of the peripheral edge segments thereof. The semiconductor package further comprises a plurality of first leads which are segregated into at least two sets disposed within respective ones of the slots included in the die paddle. In addition to the first leads, the semiconductor package includes a plurality of second leads which are also segregated into at least two sets extending along respective ones of at least two peripheral edge segments of the die paddle in spaced relation thereto. Electrically connected to the top surface of the die paddle is at least one semiconductor die which is electrically connected to at least some of each of the first and second leads. At least portions of the die paddle, the first and second leads, and the semiconductor die are encapsulated by a package body, the bottom surfaces of the die paddle and the first leads being exposed in a common exterior surface of the package body.
Description
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION 1. Field of the Invention

The present invention relates generally to integrated circuit chip package technology and, more particularly, to a QFP semiconductor package which includes stacked semiconductor dies and exposed leads on the bottom of the package body thereof.


2. Description of the Related Art


Integrated circuit dies are conventionally enclosed in plastic packages that provide protection from hostile environments and enable electrical interconnection between the integrated circuit die and an underlying substrate such as a printed circuit board (PCB). The elements of such a package include a metal leadframe, an integrated circuit die, bonding material to attach the integrated circuit die to the leadframe, bond wires which electrically connect pads on the integrated circuit die to individual leads of the leadframe, and a hard plastic encapsulant material which covers the other components and forms the exterior package body of the semiconductor package.


The leadframe is the central supporting structure of such a package. A portion of the leadframe is internal to the package, i.e., completely surrounded by the package body. Portions of the leads of the leadframe extend externally from the package body of the package, or are partially exposed within the package body for use in electrically connecting the semiconductor package to another component. In certain semiconductor packages, a portion of the die pad of the leadframe also remains exposed within the package body for use as a heat sink.


One type of semiconductor package commonly known in the electronics field is referred to as a quad flat pack (QFP) package. A typical QFP package comprises a thin, generally square package body defining four peripheral sides of substantially equal length. Protruding from each of the four peripheral sides of the package body are a plurality of leads which each have a generally gull-wing configuration. Portions of the leads are internal to the package body, and are electrically connected to respective ones of the pads or terminals of a semiconductor die also encapsulated within the package body. The semiconductor die is itself mounted to a die pad of the QFP package leadframe. In certain types of QFP packages referred to as QFP exposed pad packages, one surface of the die pads is exposed within the bottom surface of the package body.


In the electronics industry and, in particular, in high frequency applications such as cell phones, PDA's, Bluetooth, and IMT2000, there is an increasing need for QFP exposed pad packages of increased functional capacity. The present invention provides such a QFP exposed pad package wherein stacked semiconductor dies are encapsulated by the package body and leads are exposed within the bottom surface of the package body. The semiconductor package of the present invention is provided through the use of standard, low-cost leadframe design techniques. These, as well as other features and attributes of the present invention, will be discussed in more detail below.


BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, there are provided multiple embodiments of a semiconductor package, each embodiment including a uniquely configured leadframe sized and configured to maximize the available number of exposed leads in the semiconductor package. The leadframe of each embodiment of the semiconductor package is fabricated in accordance with standard, low-cost forming techniques, with sawing or similar cutting procedures being completed during the fabrication of the semiconductor package which effectively electrically isolate various sets of the leads from each other within the completed semiconductor package. The semiconductor package of the present invention may include one or more internal semiconductor dies, depending on functional requirements.


The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:



FIG. 1 is a top plan view of a leadframe used to fabricate a semiconductor package constructed in accordance with a first embodiment of the present invention;



FIG. 2A is a cross-sectional view of the semiconductor package of the first embodiment;



FIG. 2B is a bottom plan view of the semiconductor package of the first embodiment shown in FIG. 2A;



FIG. 3 is a top plan view of a leadframe used to fabricate a semiconductor package constructed in accordance with a second embodiment of the present invention;



FIG. 4A is a cross-sectional view of the semiconductor package of the second embodiment;



FIG. 4B is a bottom plan view of the semiconductor package of the second embodiment shown in FIG. 4A;



FIG. 5 is a top plan view of a leadframe used to fabricate a semiconductor package constructed in accordance with a third embodiment of the present invention;



FIG. 6A is a cross-sectional view of the semiconductor package of the third embodiment;



FIG. 6B is a bottom plan view of the semiconductor package of the third embodiment shown in FIG. 6A;



FIG. 7 is a top plan view of a leadframe used to fabricate a semiconductor package constructed in accordance with a fourth embodiment of the present invention;



FIG. 8A is a cross-sectional view of the semiconductor package of the fourth embodiment;



FIG. 8B is a bottom plan view of the semiconductor package of the fourth embodiment shown in FIG. 8A;



FIGS. 9A–9G are step-by-step illustrations of an exemplary method used to fabricate the semiconductor package of the first embodiment shown in FIGS. 2A and 2B;



FIG. 10 is a top plan view of a leadframe used to fabricate a semiconductor package constructed in accordance with a fifth embodiment of the present invention;



FIG. 11A is a cross-sectional view of the semiconductor package of the fifth embodiment;



FIG. 11B is a bottom plan view of the semiconductor package of the fifth embodiment shown in FIG. 11A;



FIGS. 12A–12G are step-by-step illustrations of an exemplary method used to fabricate the semiconductor package of the fifth embodiment shown in FIGS. 11A and 11B;



FIG. 13A is a top plan view of a leadframe used to fabricate a semiconductor package constructed in accordance with a sixth embodiment of the present invention;



FIG. 13B is a cross-sectional view of the semiconductor package of the sixth embodiment;



FIG. 14A is a top plan view of a leadframe used to fabricate a semiconductor package constructed in accordance with a seventh embodiment of the present invention;



FIG. 14B is a cross-sectional view of the semiconductor package of the seventh embodiment;



FIG. 15 is a cross-sectional view of a semiconductor package constructed in accordance with an eighth embodiment of the present invention;



FIG. 16 is a cross-sectional view of a semiconductor package constructed in accordance with a ninth embodiment of the present invention; and



FIG. 17 is a cross-sectional view of a semiconductor package constructed in accordance with a tenth embodiment of the present invention.





Common reference numerals are used throughout the drawings and detailed description to indicate like elements.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating various embodiments of the present invention only, and not for purposes of limiting the same, FIG. 1 provides a plan view of a leadframe 100 which is used to fabricate a semiconductor package 200 constructed in accordance with a first embodiment of the present invention, as is seen in FIGS. 2A and 2B. The leadframe 100 is generally planar, and includes a peripheral outer frame 110 which is quadrangular in shape and defines a central opening 1112. Located within the central opening 112 of the outer frame 110 is a generally quadrangular die paddle 130. The die paddle 130 is connected to the outer frame 110 by a plurality of tie bars 120 which extend diagonally from respective ones of four corners defined by the die paddle 130. In addition to the outer frame 110, tie bars 120 and die paddle 130, the leadframe 100 includes a plurality of first leads 140 which are connected to the die paddle 130, and a plurality of second leads 150 which are connected to the outer frame 110 and extend within the central opening 112 toward the die paddle 130.


As seen in FIG. 1, the second leads 150 are segregated into four sets, with the second leads 150 of each set extending toward a respective one of the four peripheral edge segments defined by the die paddle 130 in spaced relation thereto. The first leads 140 are also segregated into four sets which extend along respective ones of the four peripheral edge segments defined by the die paddle 130. In the leadframe 100, each set of the first leads 140 is defined by a respective one of four slots 132 formed in the die paddle 130. As a result of the inclusion of the slots 132 therein, the die paddle 130 defines four supporting bars 134, each of which defines a portion of a respective one of the four peripheral edge segments of the die paddle 130. The first leads 140 of each set are connected to and extend inwardly from a respective one of the supporting bars 134.


In the leadframe 100, the generally planar die paddle 130 does not extend in co-planar relation to the generally planar outer frame 110. Rather, each tie bar 120 is preferably formed to include a downset portion 122 which results in the die paddle 130 residing on a plane which is disposed below the plane of the outer frame 110. In the leadframe 100, dambars 152 are used to provide support to the second leads 150 by connecting the second leads 150 to the outer frame 110 and to each other.


The leadframe 100 shown in FIG. 1 is preferably fabricated from a conventional metal material, such as copper, copper alloy, steel plated with copper, or a functional equivalent. However, those of ordinary skill in the art will recognize that the present invention is not limited to any particular material for the leadframe 100. Additionally, the number, position and path of the first and second leads 140, 150 as shown in FIG. 1 is for illustrative purposes only, and may be modified according to application field. Along these lines, the first and second leads 140, 150 may have alternative designs or configurations, depending on the number and position of the pads or terminals of the semiconductor die(s) of the semiconductor package 200. Though, as shown in FIG. 1, the leadframe 100 is generally square, it may alternatively have a rectangular configuration. Additionally, though the first and second leads 140, 150 are shown as each being segregated into four sets, it will be recognized that fewer sets of the first and second leads 140, 150 may be provided, and may be arranged along any combination of two or three of the peripheral sides of the die paddle 130. Moreover, less than four tie bars 120 may be included in the leadframe 100, extending to respective corners of the die paddle 130 in any combination. As an alternative to the inclusion of the tie bars 120, one or more of the second leads 150 can be directly connected to the die paddle 130. The dambars 152 also need not necessarily be included in the leadframe 100. The above-described potential structural variations are also applicable to alternative embodiments of the leadframe which will be described in more detail below.


The semiconductor package 200 fabricated through the use of the leadframe 100 is shown in FIGS. 2A and 2B. The semiconductor package 200 includes a die paddle 230, a plurality of first leads 240, and a plurality of second leads 250. As will be recognized, the die paddle 230 corresponds to the die paddle 130 shown in FIG. 1, with the first and second leads 240, 250 corresponding to the first and second leads 140, 150 shown in FIG. 1. In this regard, the first leads 240 are formed as a result of the inclusion of the slots 232 in the die paddle 230, the slots 232 corresponding to the slots 132 shown in FIG. 1.


The semiconductor package 200 further includes a semiconductor die 260 which is attached to the top surface of the die paddle 230. The semiconductor die 260 is preferably bonded to the top surface of the die paddle 230 through the use of a die attach material 265. Included on the top surface of the semiconductor die 260 is a plurality of terminals or bond pads 262. Additionally, attached to the top surface of the semiconductor die 260 is another semiconductor die 270. The upper semiconductor die 270 is attached to the lower semiconductor die 260 through the use of a die attach material 275. Included on the top surface of the semiconductor die 270 is a plurality of terminals or bond pads 272. The inclusion of the second or upper semiconductor die 270 in the semiconductor package 200 is optional depending on functionality requirements. Due to its inclusion of the stacked semiconductor dies 260, 270, the semiconductor package 200 may be used in a wide range of diverse applications.


As seen in FIG. 2A, the bond pads 262, 272 of the semiconductor dies 260, 270 are electrically connected to respective ones of the first and second leads 240, 250 through the use of conductive wires 280. In this regard, the bond pads 262, 272 through which high frequency signals are intended to pass are typically electrically connected to the first leads 240 through the use of the conductive wires 280, wherein the bond pads 262, 272 through which low frequency signals pass are typically electrically connected to the second leads 250. The conductive wires 280 may be fabricated from aluminum, copper, gold, silver, or a functional equivalent. However, those of ordinary skill in the art will recognize that the present invention is not limited to any particular material for the conductive wires 280.


In the semiconductor package 200, the die paddle 230, first and second leads 240, 250, semiconductor dies 260, 270 and conductive wires 280 are encapsulated by an encapsulant material which, upon hardening, forms a package body 290 of the semiconductor package 200. As seen in FIG. 2B, the bottom surfaces of the die paddle 230 and the first leads 240 are exposed in and substantially flush with the bottom surface of the package body 290. Distal portions of the second leads 250 protrude from respective ones of four side surfaces defined by the package body. The exposed portions of the second leads 250 are preferably bent so as to impart a generally gull-wing configuration thereto. The inner portions of the second leads 250 which are encapsulated by the package body 290 are not exposed in the bottom surface thereof as a result of the downset of the die paddle 230 (and hence the first leads 240) relative thereto. The semiconductor package 200 may be mounted to an external device through the use of the first leads 240 which are exposed in the bottom surface of the package body 290, and also through the use of the second leads 250 which protrude from the side surfaces of the package body 290.


As seen in FIG. 2B, formed in the bottom surface of the package body 290 are four generally straight recesses 292. As will be discussed in more detail below, the recesses 292 are formed in a manner effectively removing the above-described supporting bars 134 from the leadframe 100, thus electrically isolating the first leads 240 from the die paddle 230 and each other.



FIGS. 9A–9G provide step-by-step illustrations of an exemplary method for fabricating the semiconductor package 200 shown in FIGS. 2A and 2B. It should be noted that the various elements labeled with the 900 series reference numerals in FIGS. 9A–9G correspond to the same elements labeled with the 100 and 200 series reference numerals in FIGS. 1, 2A and 2B. In the initial steps of the exemplary method, the above-described leadframe 100 is provided (FIGS. 9A and 9B). Thereafter, the first, lower semiconductor die 960 is attached to the top surface of the die paddle 930 through the use of the die attach material 965, with the second, upper semiconductor die 970 then being bonded to the top surface of the lower semiconductor die 960 through the use of the die attach material 975 (FIG. 9C). The bond pads 962, 972 of the semiconductor dies 960, 970 are then electrically connected to the first and second leads 940, 950 through the use of the conductive wires 980 (FIG. 9D). As indicated above in relation to FIG. 2A, the bond pads 962, 972 for high frequency signals are typically electrically connected to the first leads 940 through the use of the conductive wires 980, with the bond pads 962, 972 for general or low frequency signals being electrically connected to the second leads 950 through the use of the conductive wires 980.


Thereafter, the package body 990 is formed through the use of conventional molding techniques (FIG. 9E). As indicated above in relation to FIGS. 2 and 2A, the bottom surfaces of the die paddle 930 and first leads 940 are exposed in and substantially flush with the bottom surface of the package body 990. Also exposed in and substantially flush with the bottom surface of the package body 990 are the bottom surfaces of the supporting bars 934. The second leads 950 protrude from respective side surfaces of the package body 990.


Subsequent to the formation of the package body 990, a partial sawing step is completed (FIG. 9F). In this partial sawing step, the supporting bars 934 exposed in the packaged body 990 are sawed in a manner effectuating their complete removal, thus effectively electrically isolating or insulating the first leads 940 from each other. The penetration of the saw into the package body 990 preferably occurs to a depth which slightly exceeds the thickness of the supporting bars 934, thus ensuring their complete removal and resultant electrical insulation of the first leads 940 from each other. The removal process may be completed through the use of a diamond blade method, a waterjet method, a laser method, a grinding method, or a chemical etching method. However, those of ordinary skill in the art will recognize that the present invention is not limited to any particular method for the removal of the supporting bars 934. As a result of the completion of the sawing or other removal process, recesses 992 are formed in the bottom surface of the package body 990, the recesses 992 corresponding to the recesses 292 shown in FIGS. 2A and 2B. Either prior or subsequent to the above-described sawing process, the dambars 952 (corresponding to the dambars 152 shown in FIG. 1) may be removed through conventional processes, thus effectively electrically isolating the second leads 950 from each other.


The last step of the method involves the cutting or singulation of the outer frame 910 from the tie bars 920 and second leads 950. Either prior or subsequent to such singulation, the second leads 950 are subjected to a bending operation (FIG. 9G) so as to impart a generally gull-wing configuration thereto. The completion of these bending and singulation processes completes the formation of the semiconductor package 200 shown in FIGS. 2A and 2B.


Referring now to FIG. 3, there is shown a leadframe 300 constructed in accordance with a second embodiment of the present invention which is used to fabricate a semiconductor package 400 of a second embodiment as is seen in FIGS. 4A and 4B. The leadframe 300 is substantially similar in structure to the leadframe 100 of the first embodiment described above. In this regard, various elements labeled with the 300 series reference numerals in FIG. 3 correspond to the same elements labeled with the 100 series reference numerals in FIG. 1. The structural distinction between the leadframes 300, 100 lies in that the leadframe 300 further includes four sets of third leads 342. The third leads 342 of each set are connected to and extend outwardly from a respective one of the supporting bars 334. The third leads 342 of each set also extend in opposed relation to a respective one of the first leads 340 of the corresponding set connected to the common supporting bar 334. Though the first and third leads 340, 342 are shown in FIG. 3 as being located on both sides of each supporting bar 334 symmetrically, those of ordinary skill in the art will recognize that the first and third leads 340, 342 of each set may be oriented asymmetrically relative to the common supporting bar 334.


The semiconductor package 400 fabricated through the use of the leadframe 300 is shown in FIGS. 4A and 4B. The various elements labeled with the 400 series reference numerals in FIGS. 4A and 4B correspond to the same elements labeled with the 200 and 300 series reference numerals in FIGS. 2A, 2B and 3. The primary distinction between the semiconductor package 400 and the semiconductor package 200 lies in the addition of the third leads 442 in the semiconductor package 400. As is seen in FIGS. 4A and 4B, the package body 490 of the semiconductor package 400 is formed such that the bottom surfaces of the third leads 442 are exposed in and substantially flush with the bottom surface of the package body 490, as are the bottom surfaces of the die paddle 430 and first leads 440. The recesses 492 formed in the bottom surface of the package body 490 as a result of the removal of the above-described supporting bars 334 from the leadframe 300 electrically isolate the first and third leads 440, 442 from the die paddle 430 and from each other. In the semiconductor package 400, additional conductive wires 480 are used to electrically connect certain bond pads 462, 472 of the semiconductor dies 460, 470 to the top surfaces of the third leads 442.


The manufacturing process for the semiconductor package 400 essentially mirrors that used in relation to the semiconductor package 200 as described above. In this regard, the recesses 492 shown in FIGS. 4A and 4B are formed in the same manner described above in relation to the recesses 992 shown in FIGS. 9F and 9G.



FIG. 5 provides a plan view of a leadframe 500 which is used to fabricate a semiconductor package 600 constructed in accordance with a third embodiment of the present invention, as is seen in FIGS. 6A and 6B. The leadframe 500 is generally planar and includes a peripheral outer frame 510 which is quadrangular in shape and defines a central opening 512. Located within the central opening 512 of the outer frame 510 is a die paddle 530. The die paddle 530 is connected to the outer frame 510 by a plurality of tie bars 520 which extend diagonally from respective ones of the four corners defined by the die paddle 530. In addition to the outer frame 510, tie bars 520 and die paddle 530, the leadframe 500 includes a plurality of first leads 540 which are connected to the die paddle 530, and a plurality of second leads 550 which are connected to the outer frame 510 and extend within the central opening 512 toward the die paddle 530.


The second leads 550 are segregated into four sets, with the second leads 550 of each set extending toward a respective one of the four sides defined by the die paddle 530 in spaced relation thereto. The first leads 540 are also segregated into four sets, with the first leads 540 of each set being connected to and extending perpendicularly from respective ones of the peripheral sides of the die paddle 530. The distal ends of the leads 540 of each set are connected to a supporting bar 544. Thus, the four supporting bars 544 included in the leadframe 500 effectively interconnect the first leads 540 of the corresponding sets thereof to each other.


In the leadframe 500, the generally planar die paddle 530 does not extend in co-planar relation to the generally planar outer frame 510. Rather, each tie bar 520 is formed to include a downset portion 522 which results in the die paddle 530 residing on a plane which is disposed below the plane of the outer frame 510. In the leadframe 500, dambars 552 are used to provide support to the second leads 550 by connecting the second leads 550 to the outer frame 510 and to each other.


The semiconductor package 600 fabricated through the use of the leadframe 500 is shown in FIGS. 6A and 6B. The various elements labeled with the 600 series reference numerals in FIGS. 6A and 6B correspond to the same elements labeled with the 200 and 500 series reference numerals in FIGS. 2A, 2B and 5. In the semiconductor package 600, formed in the bottom surface of the package body 690 are four generally straight recesses 692. The recesses 692 are formed in a manner effectively separating or electrically isolating the first leads 640 of each set from the die paddle 630. In addition to the recesses 692, formed in the bottom surface of the package body 690 are four generally straight recesses 694. The recesses 694 are themselves formed in a manner effectively removing the above-described supporting bars 544 from the leadframe 500, thus electrically isolating the first leads 640 from each other. As seen in FIG. 6B, each recess 692 extends in spaced, generally parallel relation to a corresponding recess 694, the recesses 692, 694 of each pair extending along respective ones of the opposed ends of the first leads 640 of each set. The manufacturing process for the semiconductor package 600 essentially mirrors that used in relation to the semiconductor package 200 as described above, except that the recesses 692, 694 shown in FIGS. 6A and 6B are formed in the bottom surface of the package body 690 in the aforementioned locations.


Referring now to FIG. 7, there is shown a leadframe 700 constructed in accordance with a fourth embodiment of the present invention which is used to fabricate a semiconductor package 800 of a fourth embodiment as is seen in FIGS. 8A and 8B. The leadframe 700 is substantially similar in structure to the leadframe 500 of the third embodiment described above. In this regard, various elements labeled with the 700 series reference numerals in FIG. 7 correspond to the same elements labeled with the 500 series reference numerals in FIG. 5. The structural distinction between the leadframes 700, 500 lies in that the leadframe 700 does not include the supporting bars 544 described above in relation to the leadframe 500. In this regard, the distal ends of the first lead 740 of each set included in the leadframe 700 are free, and are not interconnected.


The semiconductor package 800 fabricated through the use of the leadframe 700 is shown in FIGS. 8A and 8B. The various elements labeled with the 800 series reference numerals in FIGS. 8A and 8B correspond to the same elements labeled with the 600 and 700 series reference numerals in FIGS. 6A, 6B and 7. The primary distinction between the semiconductor package 800 and the semiconductor package 600 lies in the orientation of the recesses 894 in the semiconductor package 800 as compared to the recesses 694 in the semiconductor package 600. In the semiconductor package 800, the recesses 892 have the same orientations as the recesses 692 of the semiconductor package 600. In this regard, like the recesses 692, the recesses 892 of the semiconductor package 800 are used to separate or electrically isolate the first leads 840 of each set from the die paddle 830. Rather than being used to effectuate the removal of the supporting bar 544 described above, each recess 894 is formed in the bottom surface of the package body 890 of the semiconductor package 800 in a manner effectively cutting the first leads 840 of each set in half, thus resulting in the formation of four sets of third leads 841 corresponding to respective sets of the first leads 840. In the semiconductor package 800, additional conductive wires 880 are used to electrically connect certain bond pads 862, 872 of the semiconductor dies 860, 870 to the top surfaces of the third leads 841 in addition to the top surfaces of the first leads 840. The conductive wires 880 are also used to electrically connect certain bond pads 862, 872 to the top surfaces of the second leads 850.


The manufacturing process for the semiconductor package 800 essentially mirrors that used in relation to the semiconductor package 600 as described above. In this regard, the distinction lies in the formation of the second recesses 894 in the bottom surface of the package body 890 in locations effectively cutting each of the first leads 840 in half, thus resulting in the formation of the third leads 841.


Referring now to FIG. 10, there is shown a leadframe 1000 constructed in accordance with a fifth embodiment of the present invention which is used to fabricate a semiconductor package 1100 of a fifth embodiment as is seen in FIGS. 11A and 11B. The leadframe 1000 is similar in structure to the leadframe 100 of the first embodiment described above. In this regard, various elements labeled with the 1000 series reference numerals in FIG. 10 correspond to the same elements labeled with the 100 series reference numerals in FIG. 1. In the leadframe 1000, four etched portions 1032 are formed in the die paddle 1030 as an alternative to the above-described slots 132 of the leadframe 100. The formation of the etched portions 1032 effectively results in the definition of four sets of island-type first leads 1040, the first leads 1040 of each set extending along a respective one of the four peripheral edge segments defined by the die paddle 1030. The top and bottom surfaces of the first leads 1040 extend in substantially co-planar relation to respective ones of the top and bottom surfaces of the die paddle 1030. The preferred depth of each etched portion 1032 is approximately two-thirds to three-quarters of the thickness of the die paddle 1030, and hence the total thickness of each of the first leads 1040.


The semiconductor package 1100 fabricated through the use of the leadframe 1000 is shown in FIGS. 11A and 11B. The various elements labeled with the 1100 series reference numerals in FIGS. 11A and 11B correspond to the same elements labeled with the 200 and 1000 series reference numerals in FIGS. 2A, 2B and 10. In the semiconductor package 1100, the bottom surfaces of the first leads 1140 and bottom surface of the die paddle 1130 are exposed in and substantially flush with the bottom surface of the package body 1190 of the semiconductor package 1100. The thickness of the die paddle 1130 and first leads 1140 is slightly less than the thickness of each of the second leads 1150 due to the etching of the bottom surfaces of the die paddle 1130, first leads 1140 and package body 1190 in a manner which will be described below.



FIGS. 12A–12G provide step-by-step illustrations of an exemplary method for fabricating the semiconductor package 1100 shown in FIGS. 11A and 11B. It should be noted that the various elements labeled with the 1200 series reference numerals in FIGS. 12A–12G correspond to the same elements labeled with the 1000 and 1100 series reference numerals in FIGS. 10, 11A and 11B. In the initial steps of the exemplary method, the above-described leadframe 1000 is provided (FIGS. 12A and 12B). Thereafter, the first, lower semiconductor die 1260 is attached to the top surface of the die paddle 1230 through the use of the die attach material 1265, with the second, upper semiconductor die 1270 then being bonded to the top surface of the lower semiconductor die 1260 through the use of the die attach material 1275 (FIG. 12C). The bond pads 1262, 1272 of the semiconductor dies 1260, 1270 are then electrically connected to the first and second leads 1240, 1250 through the use of conductive wires 1280 (FIG. 12D).


Thereafter, the package body 1290 is formed through the use of conventional molding techniques (FIG. 12E). Subsequent to the formation of the package body 1290, a partial etching step is completed (FIG. 12F). In this partial etching step, the bottom surface of the die paddle 1230 and the bottom surface of the package body 1290 are etched in a manner facilitating the removal of material sufficient to effectively electrically isolate the first leads 1240 from each other. Upon the completion of such etching, the bottom surfaces of the die paddle 1230 and first leads 1240 are exposed in and substantially flush with the bottom surface of the package body 1290. As indicated above, the completion of this etching process results in the thicknesses of the die paddle 1230 and first leads 1240 being substantially equal to each other, but slightly less than that of the second leads 1250. Either prior or subsequent to the above-described etching process, the dambars 1252 may be removed through conventional processes, thus effectively electrically isolating the second leads 1250 from each other.


The last step of the method involves the cutting or singulation of the outer frame 1210 from the tie bars 1220 and second leads 1250. Either prior or subsequent to such singulation, the second leads 1250 are subjected to a bending operation (FIG. 12G) so as to impart a generally gull-wing configuration thereto. The completion of these bending and singulation processes completes the formation of the semiconductor package 1100 shown in FIGS. 11A and 11B.


Referring now to FIG. 13A, there is shown a leadframe 1300 which is used to fabricate a semiconductor package 1400 constructed in accordance with a sixth embodiment of the present invention, as is seen in FIG. 13B. The leadframe 1300 is generally planar, and includes a peripheral outer frame 1310 which is quadrangular in shape and defines a central opening 1312. Located within the central opening 1312 of the outer frame 1310 is a generally quadrangular die paddle 1330. The die paddle 1330 is connected to the outer frame 1310 by a plurality of tie bars 1320 which extend diagonally from respective ones of the four corners defined by the die paddle 1330. In addition to the outer frame 1310, tie bars 1320 and die paddle 1330, the leadframe 1300 includes a plurality of first leads 1340 which are connected to the die paddle 1330, and a plurality of second leads 1350 which are connected to the outer frame 1310 and extend within the central opening 1312 toward the die paddle 1330.


As seen in FIG. 13A, the second leads 1350 are segregated into four sets, with the second leads 1350 of each set extending toward a respective one of the four peripheral edge segments defined by the die paddle 1330 in spaced relation thereto. The first leads 1340 are also segregated into four sets which extend along respective ones of the four peripheral edge segments defined by the die paddle 1330. In the leadframe 1300, each of the first leads 1340 is defined by a respective one of four slots 1332 formed in the die paddle 1330. As a result of the inclusion of the slots 1332 therein, the die paddle 1330 defines four supporting bars 1334, each of which defines a portion of a respective one of the four peripheral edge segments of the die paddle 1330. The first leads 1340 of each set are connected to and extend inwardly from a respective one of the supporting bars 1334. In the leadframe 1000, the die paddle 1330, first and second leads 1340, 1350, and outer frame 1310 extend in generally co-planar relation to each other.


The semiconductor package 1400 fabricated through the use of the leadframe 1300 is shown in FIG. 13B. The semiconductor package 1400 includes a die paddle 1430, a plurality of first leads 1440, and a plurality of second leads 1450. As will be recognized, the die paddle 1430 corresponds to the die paddle 1330 shown in FIG. 13A, with the first and second leads 1440, 1450 corresponding to the first and second leads 1340, 1350 shown in FIG. 13A.


The semiconductor package 1400 further includes a semiconductor die 1460 which is attached to the top surface of the die paddle 1430. Additionally, attached to the top surface of the semiconductor die 1460 is another semiconductor die 1470. The bond pads of the semiconductor dies 1460, 1470 are electrically connected to the top surfaces of the first and second leads 1440, 1450 through the use of conductive wires 1480. Conductive wires 1480 may also optionally be used to electrically connect the top surface of the die paddle 1430 to the top surfaces of either the first or second leads 1440, 1450.


In the semiconductor package 1400, the die paddle 1430, first and second leads 1440, 1450, semiconductor dies 1460, 1470 and conductive wires 1480 are encapsulated by an encapsulant material which, upon hardening, forms a package body 1490 of the semiconductor package 1400. The bottom surfaces of the die paddle 1430, first leads 1440, and second leads 1450 are exposed in and substantially flush with the bottom surface of the package body 1490. The semiconductor package 1400 may be mounted to an external device through the use of the first and second leads 1440, 1450 which are exposed in the bottom surface of the package body 1490.


As is seen in FIGS. 13A and 13B, formed in the bottom surface of the package body 1490 are four generally straight recesses 1492. The recesses 1492 are formed in the bottom surface of the package body 1490 in the same manner described above in relation to the recesses 992 in a manner effectively removing the above-described supporting bars 1334 from the leadframe 1300, thus electrically isolating the first leads 1440 from the die paddle 1430 and each other. In addition to the recesses 1492, formed in the bottom surface of the package body 1490 are four generally straight recesses 1494. The recesses 1494 are formed in a manner effectively cutting each of the second leads 1450 in half, thus effectively facilitating the formation of four sets of third leads 1451. Thus, the third leads 1451 of each set are arranged in opposed relation to respective ones of the second leads 1450 of the corresponding set. As is seen in FIG. 13B, the conductive wires 1480 extend to the top surfaces of the second leads 1450 as well as the third leads 1451. As a result of the formation of the recesses 1494, the bottom surfaces of the third leads 1451, like the bottom surfaces of the first and second leads 1440, 1450 and die paddle 1430, are exposed in and substantially flush with the bottom surface of the package body 1490 of the semiconductor package 1400. The steps used to facilitate the fabrication of the semiconductor package 1400 mirror those described above in relation to the fabrication of the semiconductor package 200, except that the recesses 1494 are arranged in a manner effectively cutting the second leads 1450 in a manner facilitating the formation of the third leads 1451.


Referring now to FIG. 14A, there is shown a leadframe 1500 constructed in accordance with a seventh embodiment of the present invention which is used to fabricate a semiconductor package 1600 of a seventh embodiment as is seen in FIG. 14B. The leadframe 1500 is substantially similar in structure to the leadframe 1300 of the sixth embodiment described above. In this regard, various elements labeled with the 1500 series reference numerals in FIG. 14A correspond to the same elements labeled with the 1300 series reference numerals in FIG. 13A. The structural distinction between the leadframes 1500, 1300 lies in that the leadframe 1500 further includes four sets of fourth leads 1542. The fourth leads 1542 of each set are connected to and extend outwardly from a respective one of the supporting bars 1534. The fourth leads 1542 of each set also extend in opposed relation to respective ones of the first leads 1540 of the corresponding set connected to the common supporting bar 1534. Though the first and fourth leads 1540, 1542 are shown in FIG. 14A as being located on both sides of each supporting bar 1534 symmetrically, those of ordinary skill in the art will recognize that the first and fourth leads 1540, 1542 of each set may be oriented asymmetrically relative to the common supporting bar 1534.


The semiconductor package 1600 fabricated through the use of the leadframe 1500 is shown in FIG. 14B. The various elements labeled with the 1600 series reference numerals in FIG. 14B correspond to the same elements labeled with the 1400 and 1500 series reference numerals in FIGS. 13B and 14A. The primary distinction between the semiconductor package 1600 and the semiconductor package 1400 lies in the addition of four sets of fourth leads 1642 in the semiconductor package 1600. As seen in FIG. 14B, the package body 1690 of the semiconductor package 1600 is formed such that the bottom surfaces of the die paddle 1630, and first, second and fourth leads 1640, 1650, 1642 are exposed in and substantially flush with the bottom surface of the package body 1690. The recesses 1692 formed in the bottom surface of the package body 1690 as a result of the removal of the above-described supporting bars 1534 from the leadframe 1500 electrically isolate the first and fourth leads 1640, 1642 from the die paddle 1630 and from each other. The formation of the recesses 1694 facilitates the creation of the third leads 1651, the bottom surfaces of which are also exposed in and substantially flush with the bottom surface of the package body 1690. In the semiconductor package 1600, additional conductive wires 1680 are used to electrically connect certain bond pads of the semiconductor dies 1660, 1670 to the top surfaces of the fourth leads 1642. The manufacturing process for the semiconductor package 1600 closely mirrors that used in relation to the semiconductor package 1400 described above.


As is apparent from the foregoing, the semiconductor package 1400 shown in FIG. 13B is similar to the semiconductor package 200 of the first embodiment, except that the second leads 1450 are cut to define the third leads 1451, with the bottom surfaces of both the second and third leads 1450, 1451 being exposed in and substantially flush with the bottom surface of the package body 1490, as compared to the leads 250 of the semiconductor package 200 which protrude outwardly from respective sides of the package body 290 and each have a gull-wing configuration. Along the same lines, the semiconductor package 1600 of the seventh embodiment is similar to the semiconductor package 400 of the second embodiment, except that the leads 1650 of the semiconductor package 1600 are also cut so as to further define the third leads 1651. The bottom surfaces of the second and third leads 1650, 1651 are exposed in and substantially flush with the bottom surface of the package body 1690, in contrast to the second leads 1450 of the semiconductor package 400 which protrude from respective sides of the package body 490 and each have a gull-wing configuration.


Referring now to FIG. 15, there is shown in cross-section a semiconductor package 1700 constructed in accordance with an eighth embodiment of the present invention. Similar to the correlation between the semiconductor packages 200 and 1400, and between the semiconductor packages 400 and 1600, the semiconductor package 1700 corresponds to the semiconductor package 600 of the third embodiment. The 1700 series reference numerals are used in FIG. 8 to label elements corresponding to those labeled with the 600 series reference numerals in FIGS. 6A and 6B. In the semiconductor package 1700, four generally straight recesses 1796 are formed in the bottom surface of the package body 1790 in addition to the four recesses 1792 and four recesses 1794. The recesses 1796 are formed as a result of the cutting of the second leads 1750 of each of the four sets in a manner defining the four sets of corresponding third leads 1751. Thus, though being similar to the semiconductor package 600, the semiconductor package 1700 differs in that the bottom surfaces of both the second and third leads 1750, 1751 are exposed in and substantially flush with the bottom surface of the package body 1790, in contrast to only the second leads 650 extending from respective sides of the package body 690 in the case of the semiconductor package 600.


Referring now to FIG. 16, there is shown a semiconductor package 1800 constructed in accordance with a ninth embodiment of the present invention. The semiconductor package 1800 generally corresponds to the semiconductor package 800 of the fourth embodiment shown in FIGS. 8A and 8B. In this regard, the elements labeled with the 1800 series reference numerals in FIG. 16 correspond to those labeled with the 800 series reference numerals in FIGS. 8A and 8B. However, in the semiconductor package 1800, four additional generally straight recesses 1896 are formed in the bottom surface of the package body 1890, in addition to the four recesses 1892 and four recesses 1894. The four additional recesses 1896 are used to effectively cut the second leads 1850 in a manner facilitating the formation of the four sets of fourth leads 1851. Thus, in the semiconductor package 1800, the bottom surfaces of the second and fourth leads 1850, 1851 are each exposed in and substantially flush with the bottom surface of the package body 1890, in contrast to the second leads 850 of the semiconductor package 800 which have generally gull-wing configurations and protrude from respective side surfaces of the package body 890.



FIG. 17 is a cross-sectional view of a semiconductor package 1900 constructed in accordance with a tenth embodiment of the present invention. The semiconductor package 1900 is similar to the semiconductor package 800 of the fourth embodiment shown in FIGS. 8A and 8B. In this regard, the 1900 series reference numerals shown in FIG. 17 are used to label elements corresponding to those labeled with the 800 series reference numerals in FIGS. 8A and 8B. However, the semiconductor package 1900 does not include the four recesses 894 included in the semiconductor package 800. Thus, the first leads 1940 of the semiconductor package 1900 are not cut in half, but rather are electrically isolated from the die paddle 1930 and from each other by respective ones of the four recesses 1992 formed in the bottom surface of the package body 1990. In the semiconductor package 1900, four additional, generally straight recesses 1996 are formed in the bottom surface of the package body 1990 as a result of the sawing or cutting process used to effectively cut the second leads 1950 in a manner facilitating the formation of the four sets of third leads 1951. The bottom surfaces of the second and third leads 1950, 1951 are exposed in and substantially flush with the bottom surface of the package body 1990, as are the bottom surfaces of the first leads 1940 and die paddle 1930.


This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims
  • 1. A semiconductor package comprising: a generally planar die paddle defining opposed top and bottom surfaces and multiple peripheral edge segments;a plurality of first leads defining opposed top and bottom surfaces, the first leads being segregated into at least two sets which extend along respective ones of the peripheral edge segments of the die paddle in spaced relation thereto;a plurality of second leads defining opposed top and bottom surfaces, the second leads being segregated into at least two sets which extend along respective ones of the sets of the first leads in spaced relation thereto;a plurality of third leads defining opposed top and bottom surfaces, the third leads being segregated into at least two sets which each extend between a respective pair of the sets of the first and second leads;a first semiconductor die attached to the top surface of the die paddle and electrically connected to at least one of each of the first, second and third leads;a package body at least partially encapsulating the first, second and third leads and the semiconductor die such that at least the bottom surface of the die paddle and the bottom surfaces of the first, second and third leads are exposed in the package body;at least two inner recesses disposed within the package body, each of the inner recesses being located between one set of the first leads and a respective one of the peripheral edge segments of the die paddle; andat least two outer recesses disposed within the package body, each of the outer recesses being located between one set of the second leads and a respective set of the third leads.
  • 2. The semiconductor package of claim 1 wherein the first leads each communicate with one of the inner recesses and the second leads each communicate with one of the outer recesses.
  • 3. The semiconductor package of claim 2 wherein the third leads each communicate with one of the outer recesses.
  • 4. The semiconductor package of claim 1 further comprising at least two middle recesses disposed within the package body, each of the middle recesses being located between one set of the first leads and a respective set of the third leads.
  • 5. The semiconductor package of claim 4 wherein the first leads each communicate with one of the inner recesses and the second leads each communicate with one of the outer recesses.
  • 6. The semiconductor package of claim 5 wherein the first leads each communicate with one of the middle recesses.
  • 7. The semiconductor package of claim 6 wherein the third leads each communicate with one of the middle recesses.
  • 8. The semiconductor package of claim 1 further comprising a plurality of fourth leads defining opposed top and bottom surfaces, the fourth leads being segregated into at least two sets which each extend between a respective pair of the sets of the second and third leads, the bottom surfaces of the fourth leads being exposed in the package body.
  • 9. The semiconductor package of claim 8 further comprising at least two middle recesses disposed within the package body, each of the middle recesses being located between one set of the first leads and a respective set of the third leads.
  • 10. The semiconductor package of claim 9 wherein each of the outer recesses is located between one set of the second leads and a respective set of the fourth leads.
  • 11. The semiconductor package of claim 10 wherein the first leads each communicate with one of the inner recesses and the second leads each communicate with one of the outer recesses.
  • 12. The semiconductor package of claim 11 wherein the first leads and the third leads each communicate with one of the middle recesses.
  • 13. The semiconductor package of claim 11 wherein the fourth leads each communicate with one of the outer recesses.
  • 14. The semiconductor package of claim 10 wherein: the first leads each communicate with one of the inner recesses;the first leads and the third leads each communicate with one of the middle recesses; andthe second leads and the fourth leads each communicate with one of the outer recesses.
  • 15. The semiconductor package of claim 1 further comprising a second semiconductor die attached to the first semiconductor die and electrically connected to at least one of each of the first, second and third leads, the first and second semiconductor dies being encapusulated by the package body.
  • 16. The semiconductor package of claim 1 wherein: the package body defines a generally planar bottom surface; andthe bottom surfaces of the die paddle, first leads, second leads and third leads are exposed in and substantially flush with the bottom surface of the package body.
  • 17. The semiconductor package of claim 16 wherein the top surfaces of the die paddle, first leads, second leads and third leads extend in generally coplanar relation to each other.
  • 18. The semiconductor package of claim 1 wherein: the first leads are segregated into four sets which extend along respective ones of the peripheral edge segments of the die paddle in spaced relation thereto;the second leads are segregated into four sets which extend along respective ones of the sets of the first leads in spaced relation thereto;the third leads are segregated into four sets which each extend between a respective pair of the sets of the first and second leads;four inner recesses are disposed within the package body between each set of the first leads and a respective one of the peripheral edge segments of the die paddle; andfour outer recesses are disposed within the package body between each set of the third leads and a respective set of the second leads.
  • 19. The semiconductor package of claim 18 further comprising four middle recesses disposed within the package body, each of the middle recesses being located between one set of the first leads and a respective set of the third leads.
  • 20. The semiconductor package of claim 18 further comprising a plurality of fourth leads defining opposed top and bottom surfaces, the fourth leads being segregated into four sets which each extend between a respective pair of the sets of the second and third leads, the bottom surfaces of the fourth leads being exposed in the package body.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 10/447,012 entitled SEMICONDUCTOR PACKAGE WITH INCREASED NUMBER OF INPUT AND OUTPUT PINS filed May 28, 2003, U.S. Pat. No. 6,676,068, which is a continuation-in-part of U.S. application Ser. No. 10/237,293 entitled EXPOSED LEAD QFP PACKAGE USING PARTIAL SAW PROCESS filed Sep. 9, 2002 and issued as U.S. Pat. No. 6,818,973 on Nov. 16, 2004, the disclosure of which is incorporated herein by reference.

US Referenced Citations (306)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Schlesinger et al. Jan 1991 A
5018003 Yasunaga et al. May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5118298 Murphy Jun 1992 A
5122860 Kikuchi et al. Jun 1992 A
5134773 LeMaire et al. Aug 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281849 Singh Deo et al. Jan 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5417905 LeMaire et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608265 Kitano et al. Mar 1997 A
5608267 Mahulikar et al. Mar 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5726493 Yamashita et al. Mar 1998 A
5736432 Mackessy Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davis et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5886398 Low et al. Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5897339 Song et al. Apr 1999 A
5900676 Kweon et al. May 1999 A
5903049 Mori May 1999 A
5903050 Thurairajaratnam et al. May 1999 A
5909053 Fukase et al. Jun 1999 A
5915998 Stidham et al. Jun 1999 A
5917242 Ball Jun 1999 A
5939779 Kim Aug 1999 A
5942794 Okumura et al. Aug 1999 A
5951305 Haba Sep 1999 A
5959356 Oh Sep 1999 A
5969426 Baba et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5977613 Takata et al. Nov 1999 A
5977615 Yamaguchi et al. Nov 1999 A
5977630 Woodworth et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5986333 Nakamura Nov 1999 A
5986885 Wyland Nov 1999 A
6001671 Fjelstad Dec 1999 A
6013947 Lim Jan 2000 A
6018189 Mizuno Jan 2000 A
6020625 Qin et al. Feb 2000 A
6025640 Yagi et al. Feb 2000 A
6031279 Lenz Feb 2000 A
RE36613 Ball Mar 2000 E
6034423 Mostafazadeh et al. Mar 2000 A
6040626 Cheah et al. Mar 2000 A
6043430 Chun Mar 2000 A
6060768 Hayashida et al. May 2000 A
6060769 Wark May 2000 A
6072228 Hinkle et al. Jun 2000 A
6075284 Choi et al. Jun 2000 A
6081029 Yamaguchi Jun 2000 A
6084310 Mizuno et al. Jul 2000 A
6087715 Sawada et al. Jul 2000 A
6087722 Lee et al. Jul 2000 A
6100594 Fukui et al. Aug 2000 A
6113474 Shih et al. Sep 2000 A
6114752 Huang et al. Sep 2000 A
6118174 Kim Sep 2000 A
6118184 Ishio et al. Sep 2000 A
RE36907 Templeton, Jr. et al. Oct 2000 E
6130115 Okumura et al. Oct 2000 A
6130473 Mostafazadeh et al. Oct 2000 A
6133623 Otsuki et al. Oct 2000 A
6140154 Hinkle et al. Oct 2000 A
6143981 Glenn Nov 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6222259 Park et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 Mclellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 Mclellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316822 Venkateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karmezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6400004 Fan et al. Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6459148 Chun-Jen et al. Oct 2002 B1
6464121 Reijnders Oct 2002 B2
6476469 Hung et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6498099 McLellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6534849 Gang Mar 2003 B1
6545332 Huang Apr 2003 B2
6545345 Glenn et al. Apr 2003 B1
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6583503 Akram et al. Jun 2003 B2
6603196 Lee et al. Aug 2003 B2
6624005 Di Caprio et al. Sep 2003 B1
6667546 Huang et al. Dec 2003 B2
6713322 Lee Mar 2004 B2
6838751 Cheng et al. Jan 2005 B2
6879028 Gerber et al. Apr 2005 B2
6927483 Lee et al. Aug 2005 B1
20010008305 McLellan et al. Jul 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20020011654 Kimura Jan 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20030030131 Lee et al. Feb 2003 A1
20030073265 Hu et al. Apr 2003 A1
20040056277 Karnezos Mar 2004 A1
20040061212 Karnezos Apr 2004 A1
20040061213 Karnezos Apr 2004 A1
20040063242 Karnezos Apr 2004 A1
20040063246 Karnezos Apr 2004 A1
20040065963 Karnezos Apr 2004 A1
Foreign Referenced Citations (83)
Number Date Country
19734794 Aug 1997 DE
0393997 Oct 1990 EP
0459493 Dec 1991 EP
0720225 Mar 1996 EP
0720234 Mar 1996 EP
0794572 Oct 1997 EP
0844665 May 1998 EP
0936671 Aug 1999 EP
0989608 Mar 2000 EP
1032037 Aug 2000 EP
55163868 Dec 1980 JP
5745959 Mar 1982 JP
58160096 Aug 1983 JP
59208756 Nov 1984 JP
59227143 Dec 1984 JP
60010756 Jan 1985 JP
60116239 Aug 1985 JP
60195957 Oct 1985 JP
60231349 Nov 1985 JP
6139555 Feb 1986 JP
61248541 Nov 1986 JP
629639 Jan 1987 JP
6333854 Feb 1988 JP
63067762 Mar 1988 JP
63188964 Aug 1988 JP
63205935 Aug 1988 JP
63233555 Sep 1988 JP
63249345 Oct 1988 JP
63289951 Nov 1988 JP
63316470 Dec 1988 JP
64054749 Mar 1989 JP
1106456 Apr 1989 JP
1175250 Jul 1989 JP
1205544 Aug 1989 JP
1251747 Oct 1989 JP
2129948 May 1990 JP
369248 Jul 1991 JP
3177060 Aug 1991 JP
4098864 Sep 1992 JP
5129473 May 1993 JP
5166992 Jul 1993 JP
5283460 Oct 1993 JP
6061401 Mar 1994 JP
692076 Apr 1994 JP
6140563 May 1994 JP
6260532 Sep 1994 JP
7297344 Nov 1995 JP
7312405 Nov 1995 JP
864634 Mar 1996 JP
8083877 Mar 1996 JP
8125066 May 1996 JP
96-4284 Jun 1996 JP
8222682 Aug 1996 JP
8306853 Nov 1996 JP
98205 Jan 1997 JP
98206 Jan 1997 JP
98207 Jan 1997 JP
992775 Apr 1997 JP
9260568 Oct 1997 JP
9293822 Nov 1997 JP
10022447 Jan 1998 JP
10163401 Jun 1998 JP
10199934 Jul 1998 JP
10256240 Sep 1998 JP
11307675 Nov 1999 JP
00150765 May 2000 JP
556398 Oct 2000 JP
2001060648 Mar 2001 JP
200204397 Aug 2002 JP
941979 Jan 1994 KR
19940010938 May 1994 KR
19950018924 Jun 1995 KR
19950041844 Nov 1995 KR
19950044554 Nov 1995 KR
19950052621 Dec 1995 KR
1996074111 Dec 1996 KR
9772358 Nov 1997 KR
100220154 Jun 1999 KR
20000072714 Dec 2000 KR
20000086238 Dec 2000 KR
0049944 Jun 2002 KR
9956316 Nov 1999 WO
9967821 Dec 1999 WO
Related Publications (1)
Number Date Country
20050139969 A1 Jun 2005 US
Continuations (1)
Number Date Country
Parent 10447012 May 2003 US
Child 11063299 US
Continuation in Parts (1)
Number Date Country
Parent 10237293 Sep 2002 US
Child 10447012 US