This disclosure is related to flip chip quad flat no lead packages, and more particularly, to methods of flip chip attachment in quad flat no lead packages using an embedded component for very thin packages.
Quad Flat No-lead (QFN) packages are leadframe based packages that are becoming more widely used. This well known package has several advantages including a smaller footprint which is almost chip scale, reduced lead inductance, thin profile, and low weight. The leads at the periphery of the package are ideal for better printed circuit board (PCB) routing. Thermal and electrical performance are also enhanced by the exposed copper die paddle underneath the leadframe which is directly connected to the PCB. QFN packages are a common choice in the industry for optimal size, weight, and thermal and electrical performance.
U.S. Pat. No. 9,136,256 (Joshi) and U.S. Pat. No. 9,184,121 (Lopez et al) and U.S. Patent Application 2009/0309198 (Lee et al) discuss chips placed in recesses of a leadframe, but these packages are different from those in the present disclosure.
It is the primary objective of the present disclosure to provide an extremely thin flip chip quad flat no lead package.
Yet another objective is to provide an extremely thin flip chip quad flat no lead package having a chip embedded in a recess in the leadframe die paddle.
A further objective is to provide an extremely thin flip chip quad flat no lead package without wire bonds.
In accordance with the objectives of the present disclosure, an extremely thin flip chip quad flat no lead package is achieved. At least one first integrated circuit die is embedded in a recess in a die paddle of a metal leadframe. A second integrated circuit die is attached to the at least one first integrated circuit die wherein the first and second integrated circuit dies are electrically connected to each other and wherein the second integrated circuit die is connected to leads of the leadframe through copper pillars.
Also in accordance with the objectives of the present disclosure, a method of forming an extremely thin flip chip quad flat no lead package is achieved. A leadframe is provided having at least one recess formed in a top surface of a die paddle portion of the leadframe. At least one first integrated circuit die is embedded in the at least one recess. Solder bumps are formed on the at least one first integrated circuit die. Copper pillars are formed on the die paddle portion and on leads of the leadframe. An underfill material is coated on the die paddle portion of the leadframe surrounding the solder bumps and copper pillars. Thereafter a second integrated circuit die is flip chip attached to the at least one first integrated circuit die, wherein the first and second integrated circuit dies are electrically connected through the solder bumps and wherein the second integrated circuit die is electrically connected to the die paddle portion of the leadframe and to the leads through the copper pillars. The package is thereafter encapsulated with a molding compound wherein a top surface of the second integrated circuit die is exposed to complete the quad flat no lead package.
In the accompanying drawings forming a material part of this description, there is shown:
The present disclosure presents a process of manufacturing an extremely thin quad flat no lead (QFN) package using Flip Chip technology and embedding optionally multiple chips on the metal frame. The chips are connected via copper pillar bumps, thus eliminating bonding wires. An exposed die on top of the package not only helps minimize the package profile, but also helps dissipate more heat easily, resulting in excellent junction-to-case thermal resistance.
The standard QFN is a leadframe-type package where a chip (or a die) is mounted to the die paddle via a die attach glue. The electrical flow is via bonding wires which are connected from the die bonding pads to the package leads. The package is finally encapsulated by an Epoxy Mould Compound (EMC) for mechanical protection and mechanical integrity.
The extremely thin QFN package of the present disclosure will be described in detail with reference to the drawing figures.
An essential feature of the present disclosure is the half-etching on the top surface of the leadframe to accommodate one or more additional dies.
The cavities 16 can be etched to any depth appropriate for the dies to be embedded into the cavities. Chemical etching parameters can be adjusted to form cavities to the desired depth.
Referring now to
For example, the dies could be integrated passive devices (IPD). However, any kind of integrated circuit devices could be embedded into the cavities.
Now, as shown in
An underfill 26 is dispensed and flows via capillary action onto the die paddle area 12 as shown in
Now, a mother die 30 is attached to the embedded dies 20 in a flip chip process, as shown in
The completed package is shown in cross section in
Embedding the integrated passive or other dies in the recesses in the leadframe allows an increase in die thickness without increasing the overall package thickness. The package design of the present disclosure will save space on application boards and also reduce the number of devices that need to be soldered to such boards. This facilitates routing on the boards, reduces board size, and makes the boards less expensive. This package design enhances package performance for complex applications and allows multiple chips without compromising the total package height.
The thinner package profile will be ideal for mobile applications where space is limited. The package of the present disclosure is an ideal alternative for packages with high complexity and application features without hampering the external package outline. The package of the present disclosure allows for higher levels of integration without requiring more space.
Although the preferred embodiment of the present disclosure has been illustrated, and that form has been described in detail, it will be readily understood by those skilled in the art that various modifications may be made therein without departing from the spirit of the disclosure or from the scope of the appended claims.