The semiconductor industry has experienced rapid growth due to improvements in the integration density of a variety of electronic components (e.g., transistors, diodes, resistors, capacitors, etc.). For the most part, this improvement in integration density has come from shrinking the semiconductor process node (e.g., shrink the process node towards the sub-20 nm node). As the demand for miniaturization, higher speed and greater bandwidth, as well as lower power consumption and latency has grown recently, there has grown a need for smaller and more creative packaging techniques of semiconductor dies.
As semiconductor technologies further advance, package-on-package semiconductor devices have emerged as an effective alternative to further reduce the physical size of a semiconductor device. In a package on package semiconductor device, active circuits such as logic, memory, processor circuits and the like are fabricated on different wafers and packages. Two or more packages are installed on top of one another, i.e. stacked, with a standard interface to route signals between them. Much higher density can be achieved by employing package on package semiconductor devices. Furthermore, package on package semiconductor devices can achieve smaller form factors, cost-effectiveness, increased performance and lower power consumption.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the various embodiments and are not necessarily drawn to scale.
The making and using of the presently embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the disclosure, and do not limit the scope of the disclosure.
The present disclosure will be described with respect to embodiments in a specific context, namely a package-on-package semiconductor device with an underfill layer formed between the top package and the bottom package. The embodiments of the disclosure may also be applied, however, to a variety of semiconductor devices. Hereinafter, various embodiments will be explained in detail with reference to the accompanying drawings.
As shown in
A semiconductor die 202 is bonded on a first side of the bottom package 102. There may be a plurality of bumps coupled between the semiconductor die 202 and the bottom package 102. The detailed bonding process as well as the structure of the semiconductor die 202 will be described below with respect to
A plurality of bumps 104 are formed on a second side of the bottom package 102. There may be a plurality of under bump metallization (UBM) structures formed underneath the bumps 104. The detailed formation processes of the bumps 104 and the UBM structures will be described below with respect to
As shown in
It should further be noted that the underfill layer 210 shown in
In some embodiments, the bottom package 102 may be formed of silicon, although it may also be formed of other group III, group IV, and/or group V elements, such as silicon, germanium, gallium, arsenic, and combinations thereof. The bottom package 102 may comprise a bulk substrate or a silicon-on-insulator (SOI) substrate.
According to alternative embodiments, the bottom package 102 may be made of other suitable materials such as ceramic materials, organic materials, any combinations thereof and/or the like.
The bottom package 102 may comprise a plurality of integrated circuits (not shown), each of which may comprise various layers such as active circuit layers, substrate layers, ILD layers and IMD layers (not shown respectively). The bottom package 102 may further comprise a plurality of through vias. In some embodiments, the through vias are through-substrate vias (TSVs) or through-silicon vias (TSVs), such as TSVs 106. The TSV 106 may be filled with a conductive material such as copper, tungsten and/or the like. The active circuit layers (not shown) of the bottom package 102 may be coupled to external circuits (not shown) formed over the bottom package 102 through the plurality of TSVs (e.g., TSV 106).
A dielectric layer 108 is formed over the bottom package 102. The dielectric layer 108 may be alternatively referred to as an ILD layer 108 hereinafter. In some embodiments, the ILD layer 108 is formed of a photo-sensitive material such as polybenzoxazole (PBO), polyimide, benzocyclobutene (BCB), any combinations thereof and/or the like, which may be easily patterned using a lithography mask.
In alternative embodiments, the ILD layer 108 may be formed of a nitride such as silicon nitride, an oxide such as silicon oxide, phosphosilicate glass (PSG), borosilicate glass (BSG), boron-doped phosphosilicate glass (BPSG), any combinations thereof and/or the like. The ILD layer 108 may be formed by suitable fabrication techniques such as such as spinning, chemical vapor deposition (CVD), and plasma enhanced CVD (PECVD) and/or the like.
As shown in
In some embodiments, the bonding process may be a suitable fabrication process such as a bump on trace (BOT) process and/or the like. The detailed processes of bonding semiconductor dies on a bottom package are well known in the art, and hence are not discussed herein. It should be noted that while
In order to give a basic insight of the inventive aspects of various embodiments, the semiconductor dies 202 and 203 are drawn without details. However, it should be noted that the semiconductor dies 202 and 203 may comprise basic semiconductor layers such as active circuit layers, substrate layers, ILD layers and IMD layers (not shown respectively).
The semiconductor dies 202 and 203 may comprise a substrate (not shown). The substrate may be a silicon substrate. Alternatively, the substrate may be a silicon-on-insulator substrate. The substrate may further comprise a variety of electrical circuits (not shown). The electrical circuits formed on the substrate may be any type of circuitry suitable for a variety of applications such as logic circuits.
In some embodiments, the electrical circuits may include various n-type metal-oxide semiconductor (NMOS) and/or p-type metal-oxide semiconductor (PMOS) devices such as transistors, capacitors, resistors, diodes, photo-diodes, fuses and the like. The electrical circuits may be interconnected to perform one or more functions. The functions may include memory structures, processing structures, sensors, amplifiers, power distribution, input/output circuitry or the like. One of ordinary skill in the art will appreciate that the above examples are provided for illustrative purposes only to further explain applications of the present disclosure and are not meant to limit the present disclosure in any manner.
An isolation layer (not shown) is formed on the substrate. The isolation layer may be formed, for example, of a dielectric material, such as silicon oxide. The isolation layer may be formed by any suitable method known in the art, such as spinning, CVD, PECVD and the like. It should also be noted that one skilled in the art will recognize that the isolation layer may further comprise a plurality of dielectric layers.
A redistribution layer (not shown) may be formed on the isolation layer. The active circuit layer (not shown) of the semiconductor dies 202 and 203 may be bridged by the redistribution layer so that the active circuit layer of the semiconductor dies (e.g., semiconductor die 202) can be coupled to the input and output terminals (e.g., bumps 204) of the semiconductor dies (e.g., semiconductor die 202). A plurality of UBM structures (not shown) may be formed on the redistribution layer. The UBM structures may help to prevent diffusion between the bumps (e.g., bumps 204) and the integrated circuits of the semiconductor dies 202 and 203, while providing a low resistance electrical connection.
The bumps (e.g., bumps 204) provide an effective way to connect the semiconductor dies 202 and 203 with the bottom package 102. The bumps are I/O terminals of the semiconductor die 202. In some embodiments, the bumps (e.g., bumps 204) may be a plurality of solder balls, micro bumps, copper pillars and/or the like. Alternatively, the bumps (e.g., bumps 204) may be a plurality of ball grid array (BGA) balls.
In some embodiments, the underfill material layers 306 and 307 may be formed of an epoxy, which is dispensed at the gaps between the bottom package 102 and the semiconductor dies 202 and 203 and to form the underfill layers 306 and 307. The epoxy may be applied in a liquid form, and may harden after a curing process. In alternative embodiments, the underfill layers 306 and 307 may be formed of curable materials such as polymer based materials, resin based materials, polyimide, epoxy and any combinations of thereof. The underfill layers 306 and 307 may be alternatively referred to as the molding compound layers 306 and 307 respectively throughout the description.
The molding compound layers 306 and 307 can be formed by any suitable dispense techniques. For example, the molding compound layers 306 and 307 may be formed by a spin-on coating process, dry film lamination process and/or the like.
An advantageous feature of having the molding compound layers 306 and 307 is that the underfill material helps to prevent the bumps 304 from cracking. In addition, the underfill material may help to reduce the mechanical and thermal stresses on the semiconductor dies 202 and 203 during the subsequent fabrication processes.
The top packages (e.g., top package 302) may comprise a plurality of stacked dies, which may be wire bonded to the input and output terminals of the top package. The stacked dies of the top packages (e.g., top package 302) may comprise memory dies, logic dies, processor dies and/or the like. It should be noted while
The top packages 302 and 303 may be bonded on the bottom package 102 through a reflow process. The bonding process comprises placing the metal balls (e.g., conductive bumps 304) of the top packages 302 and 303 against the respective solder pads on top of the front side of the bottom package 102. A reflow process is then performed to melt solder pads, thereby forming a joint structure between the top packages and the bottom package 102 and electrically connecting the solder pads to the metal balls.
The underfill material layer 210 may fill the gaps between two top packages as well as the gaps between the top packages and the front side of the bottom package 102. In some embodiments, the underfill material layer 210 may be formed of an epoxy, which is dispensed at the gaps between two top packages 302 and 303. The epoxy may be applied in a liquid form, and may harden after a curing process.
In alternative embodiments, the underfill material layer 210 may be formed of curable materials such as polymer based materials, resin based materials, polyimide, epoxy and any combinations of thereof. The underfill material layer 210 can be formed by any suitable dispense techniques.
As shown in
It should be noted that by grinding the wafer 102 to a thickness as low as 20 um, such a thin wafer may enable small via feature size such as via diameter and depth. An advantageous feature of forming small TSVs is that the performance and power consumption of package-to-package semiconductor device 100 can be further improved.
The interconnection pads 104 are input/output (I/O) pads or bumps of the semiconductor device. In accordance with an embodiment, the interconnection pads may be a plurality of metal balls 104. The metal balls 104 may be formed of copper, solder, any combinations thereof and the like. In some embodiments, the metal balls 104 may comprise SAC405. SAC405 comprises 95.5% Sn, 4.0% Ag and 0.5% Cu. Alternatively, the interconnection pads may be a plurality of land grid array (LGA) pads.
A sacrificial layer 1406 is spin-coated on the release layer 1404. The sacrificial layer 1406 may be formed of suitable materials such as polymer and/or the like. The sacrificial layer 1406 may be removed by using chemical solvent, CMP and/or the like.
The interconnect structures may include an ILD layer, an IMD layer, a metal line and a redistribution layer. This interconnect structure shown in
Throughout the description, the dielectric layer in which contact plugs are formed may be referred to as an ILD layer, and the dielectric layers over the ILD are referred to as IMD layers. The metal lines are formed in the IMD layers. The redistribution layer may be formed over the IMD layers.
The ILD layer may be formed, for example, of a low-K dielectric material, such as silicon oxide, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorinated silicate glass (FSG), SiOxCy, Spin-On-Glass, Spin-On-Polymers, silicon carbon material, compounds thereof, composites thereof, combinations thereof or the like, by any suitable method known in the art, such as spinning, CVD, and PECVD.
One or more IMD layers and the associated metallization layers (not shown) are formed over the ILD layer. Generally, the one or more IMD layers and the associated metal lines are used to interconnect the electrical circuitry to each other and to provide an external electrical connection. The IMD layers are preferably formed of a low-K dielectric material, such as fluorosilicate glass (FSG) formed by PECVD techniques or high-density plasma chemical vapor deposition (HDPCVD) or the like
It should be noted the interconnect structure may comprise a plurality of metal lines 1502 as shown in
One skilled in the art will recognize that the interconnect structure may comprise more inter-metal dielectric layers and the associated metal lines and plugs. In particular, the layers between the metallization layers may be formed by alternating layers of dielectric (e.g., extremely low-k dielectric material) and conductive materials (e.g., copper).
The metal lines 1502 may be formed of metal materials such as copper, copper alloys, aluminum, silver, gold, any combinations thereof and/or the like. The metal lines 1502 may be formed by a dual damascene process, although other suitable techniques such as deposition, single damascene may alternatively be used. The dual damascene process is well known in the art, and hence is not discussed herein
The redistribution layer 1504 may be a single material layer, or a multi-layered structure and may be made of metals such as titanium, titanium nitride, aluminum, tantalum, copper and combinations thereof. The redistribution layer 1504 may be made by any suitable method known in the art such as PVD, sputter, CVD, electroplating and/or the like.
In accordance with an embodiment, a method comprises forming a plurality of interconnect structures including a dielectric layer, a metal line and a redistribution line over a carrier, attaching a semiconductor die on a first side of the plurality of interconnect structures, forming an underfill layer between the semiconductor die and the plurality of interconnect structures, mounting a top package on the first side the plurality of interconnect structures, wherein the top package comprises a plurality of conductive bumps, forming an encapsulation layer over the first side of the plurality of interconnect structures, wherein the top package is embedded in the encapsulation layer, detaching the carrier from the plurality of interconnect structures and mounting a plurality of bumps on a second side of the plurality of interconnect structures.
In accordance with another embodiment, a method comprises forming a plurality of interconnect structures over a carrier, attaching a first semiconductor die and a second semiconductor die on a first side of the plurality of interconnect structures, forming a first underfill layer between the first semiconductor die and the plurality of interconnect structures and a second underfill layer between the second semiconductor die and the plurality of interconnect structures, mounting a first top package over the first semiconductor die and a second top package over the second semiconductor die to form a package-on-package device, forming an encapsulation layer over the first side of the plurality of interconnect structures, mounting a plurality of bumps on a second side of the plurality of interconnect structures and sawing the package-on-package device to form a first chip comprising the first top package and a second chip comprising the second top package.
In accordance with yet another embodiment, a method comprises forming a bottom package including a plurality of interconnect structures on a carrier, attaching a first semiconductor die and a second semiconductor die on a first side of the bottom package, mounting a first top package and a second top package over the bottom package, wherein the first semiconductor die is between two bumps of the first top package and the second semiconductor die is between two bumps of the second top package, forming an encapsulation layer over the first top package and the second top package, detaching the carrier from the plurality of interconnect structures and mounting a plurality of bumps on a second side of the bottom package.
Although embodiments of the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a continuation of U.S. application Ser. No. 15/705,977 filed on Sep. 15, 2017, entitled “Package-on-Package Structure,” which is a divisional of U.S. application Ser. No. 13/894,005, now U.S. Pat. No. 9,768,048, filed on May 14, 2013, entitled “Package-on-Package Structure,” which is related to, and claims priority to U.S. Provisional Application No. 61/793,385, entitled “Package-on-Package Structure,” filed Mar. 15, 2013, which are herein incorporated in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
6787917 | Lee et al. | Sep 2004 | B2 |
8900994 | Yu et al. | Dec 2014 | B2 |
9768048 | Lin et al. | Sep 2017 | B2 |
10622240 | Lin | Apr 2020 | B2 |
20040074865 | Ho et al. | Apr 2004 | A1 |
20040124518 | Karnezos | Jul 2004 | A1 |
20060244117 | Karnezos et al. | Nov 2006 | A1 |
20080182363 | Amrine et al. | Jul 2008 | A1 |
20090011539 | Jeng et al. | Jan 2009 | A1 |
20090236752 | Lee | Sep 2009 | A1 |
20100117229 | Datta et al. | May 2010 | A1 |
20100252937 | Uchiyama | Oct 2010 | A1 |
20110159282 | Kim et al. | Jun 2011 | A1 |
20110263076 | Yoshimura et al. | Oct 2011 | A1 |
20110298137 | Pagaila et al. | Dec 2011 | A1 |
20110316140 | Nalla et al. | Dec 2011 | A1 |
20120104623 | Pagaila et al. | May 2012 | A1 |
20120159118 | Wong et al. | Jun 2012 | A1 |
20130105991 | Gan et al. | May 2013 | A1 |
20130127054 | Muthukumar | May 2013 | A1 |
20130180772 | Inoue | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
1499630 | May 2004 | CN |
102820257 | Dec 2012 | CN |
102931164 | Feb 2013 | CN |
Number | Date | Country | |
---|---|---|---|
20200243370 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
61793385 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13894005 | May 2013 | US |
Child | 15705977 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15705977 | Sep 2017 | US |
Child | 16846921 | US |