Providing additional space between an integrated circuit and a circuit board for positioning a component therebetween

Information

  • Patent Grant
  • 8080874
  • Patent Number
    8,080,874
  • Date Filed
    Friday, September 14, 2007
    17 years ago
  • Date Issued
    Tuesday, December 20, 2011
    12 years ago
Abstract
A system, method, and apparatus are included for providing additional space between an integrated circuit package and a circuit board. An integrated circuit package is provided including a plurality of integrated circuit package contacts. Also provided is a circuit board in electrical communication with the integrated circuit package. Further, the integrated circuit package, the integrated circuit contacts, and/or the circuit board is configured for providing additional space between the integrated circuit package and the circuit board to position at least a portion of at least one component between the integrated circuit package and the circuit board.
Description
FIELD OF THE INVENTION

The present invention relates to circuit boards, and more particularly to circuit board design.


BACKGROUND

There is an ever-increasing desire for smaller and more compact electronics with an increasing amount of functionality. One challenge in the design of electronics involves the use of the same amount of electrical components (or more) in a smaller space on a circuit board. In many cases, a designer may have many electronic components to place on very little circuit board surface area.


There is thus a need for addressing these and/or other issues associated with the prior art.


SUMMARY

A system, method, and apparatus are included for providing additional space between an integrated circuit package and a circuit board. An integrated circuit package is provided including a plurality of integrated circuit package contacts. Also provided is a circuit board in electrical communication with the integrated circuit package. Further, the integrated circuit package, the integrated circuit contacts, and/or the circuit board is configured for providing additional space between the integrated circuit package and the circuit board to position at least a portion of at least one component between the integrated circuit package and the circuit board.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an apparatus for electrical communication between integrated circuit package contacts of an integrated circuit package and circuit board contacts of a circuit board, in accordance with one embodiment.



FIG. 2 shows a cross-section of a body of the apparatus of FIG. 1 taken along line 2-2 of FIG. 1, illustrating a plurality of first contacts, in accordance with one embodiment.



FIG. 3 shows another cross-section of the body of the apparatus of FIG. 1 taken along line 3-3 of FIG. 1, illustrating a plurality of second contacts, in accordance with one embodiment.



FIG. 4 shows an apparatus for electrical communication between integrated circuit package contacts of an integrated circuit package and circuit board contacts of a circuit board, in accordance with another embodiment.



FIG. 5 shows an apparatus for electrical communication between integrated circuit package contacts of an integrated circuit package and circuit board contacts of a circuit board, in accordance with another embodiment.



FIG. 6 shows a system comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment.



FIG. 7 shows a system comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with another embodiment.



FIG. 8 is a top view of an apparatus for electrical communication between integrated circuit package contacts of multiple integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment.



FIG. 9 is a bottom view of an apparatus for electrical communication between integrated circuit package contacts of an integrated circuit package and circuit board contacts of a circuit board, in accordance with another embodiment.



FIG. 10 shows a system comprising an apparatus for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment.



FIG. 11 shows a system comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment.



FIG. 12 is a top view of a system comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with another embodiment.



FIG. 13 shows a method for allowing electrical communication between integrated circuit package contacts and circuit board contacts, in accordance with one embodiment.



FIG. 14 shows a system for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with one embodiment.



FIG. 15 shows a system for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment.



FIG. 16 shows a system for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with yet another embodiment.



FIG. 17 shows a system for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with still yet another embodiment.



FIG. 18 shows a system for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment.



FIG. 19 shows a system for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment.



FIG. 20 shows a system for mounting an apparatus to a circuit board, in accordance with one embodiment.



FIG. 21 shows an apparatus for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment.



FIG. 22 shows a system for mounting an apparatus to a circuit board, in accordance with another embodiment.



FIG. 23 shows a possible implementation of the apparatus of FIG. 21, in accordance with one embodiment.



FIG. 24 illustrates a system including a system device coupled to an interface circuit and a plurality of physical memory circuits, in accordance with one embodiment.





DETAILED DESCRIPTION


FIG. 1 shows an apparatus 100 for electrical communication between integrated circuit package contacts of an integrated circuit package and circuit board contacts of a circuit board, in accordance with one embodiment. As shown, a body 102 is provided. In one embodiment, the body 102 may be planar. Additionally, strictly as an option, the body 102 may include a frame. In such case, the frame may define an outer periphery and an inner periphery, for example.


Further, a plurality of first contacts 104 are provided. The first contacts 104 are positioned on a first side of the body 102 and configured for electrical communication with integrated circuit package contacts 106 of an integrated circuit package 108. In the context of the present description, an integrated circuit package refers to any integrated circuit or a package including any integrated circuit.


For example, in various embodiments, the integrated circuit package may include an integrated circuit with integrated circuit contacts, a body encompassing an integrated circuit with contacts for the body, and/or any other package which meets the above definition. In one embodiment, the first contacts 104 may be positioned on the first side of the body 102 and configured for direct electrical communication with integrated circuit contacts of an integrated circuit. In this case, the integrated circuit may or may not include any additional components (e.g. a package body, package body contacts, etc.) as part of the integrated circuit package.


In one embodiment, the integrated circuit package 108 may include memory [e.g. dynamic random access memory (DRAM), etc.]. Of course, however, other types of integrated circuit packages and integrated circuits (e.g. flash memory, controllers, processors, etc.) are also contemplated. Further, in various other embodiments, the integrated circuit package 108 may be used in a computer system, cellular phone, personal digital assistant (PDA), digital camera, digital video recorder, global positioning system (GPS), and any other electrical device which uses integrated circuits.


Additionally, a plurality of second contacts 110 are provided. The second contacts 110 are positioned on a second side of the body 102 and configured for electrical communication with circuit board contacts (not shown) of a circuit board 112. In one embodiment, the second contacts 110 may include ball contacts for engaging the circuit board contacts. In another embodiment, the second contacts 110 may include pin contacts for engaging the circuit board contacts.


In addition, the second contacts 110 are in electrical communication with the first contacts 104 for allowing electrical communication between the integrated circuit package contacts 106 and the circuit board contacts. Strictly as an option, the first contacts 104 may be planar for engaging the integrated circuit package contacts 106.


In one embodiment where the body 102 includes a frame, the inner periphery of the frame may define a space for allowing positioning of components between the integrated circuit package 108 and the circuit board 112, in the manner shown. Further, the outer periphery of the frame may have a size that is substantially the same as a size of the integrated circuit package, as illustrated. Thus, in such embodiment, the body 102 may be configured to allow positioning of components between the integrated circuit package 108 and the circuit board 112 (e.g. components 114).


In various embodiments, the components 114 may include passive components, active components, or a combination of passive and active components. In the context of the present description, passive components refer to any component that consumes electrical energy and/or is incapable of power gain. For example, in various embodiments, passive components may include, but are not limited to, capacitors, inductors, resistors, and/or any other component that meets the above definition. Further, in the context of the present description, active components refer to any component that may be used to provide power gain in an electronic circuit. For example, in various embodiments, active components may include, but are not limited to, transistors, operational amplifiers, various diodes, and/or any other component that meets the above definition.



FIG. 2 shows a cross-section 200 of the body 102 of the apparatus of FIG. 1 taken along line 2-2 of FIG. 1, illustrating the plurality of first contacts 104, in accordance with one embodiment. As noted above, in one embodiment, the first contacts 104 may be planar for engaging the integrated circuit package contacts 106. It should be noted, however, that the first contacts 104 may be any type of contacts which allow engagement of any type of integrated circuit or integrated circuit package. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging integrated circuit contacts or integrated circuit package contacts.


As shown, the first contacts 104 are comprised of two perimeter rows of contacts. However, it should be noted that the number of contacts and/or rows of contacts may vary depending on the integrated circuit package to be engaged. In various embodiments, two or three rows of contacts may comprise the first contacts 104. However, any number of rows may be utilized depending on the integrated circuit package to be engaged.



FIG. 3 shows another cross-section 300 of the body 102 of the apparatus of FIG. 1 taken along line 3-3 of FIG. 1, illustrating the plurality of second contacts 110, in accordance with one embodiment. As noted above, in various embodiments, the second contacts 110 may include ball contacts for engaging the circuit board contacts or pin contacts for engaging the circuit board contacts. It should be noted, however, that any types of contacts may be utilized depending on the circuit board to be engaged. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging circuit board contacts.


As shown, the second contacts 110 are comprised of two perimeter rows of contacts. It should be noted that the number of contacts and/or rows of contacts may vary depending on the circuit board to be engaged. In various embodiments, two or three rows of contacts may comprise the second contacts 110. However, any number of rows may be utilized depending on the circuit board to be engaged.


More illustrative information will now be set forth regarding various optional architectures and features with which the foregoing framework may or may not be implemented, per the desires of the user. It should be strongly noted that the following information is set forth for illustrative purposes and should not be construed as limiting in any manner. Any of the following features may be optionally incorporated with or without the exclusion of other features described.



FIG. 4 shows an apparatus 400 for electrical communication between integrated circuit package contacts of an integrated circuit package and circuit board contacts of a circuit board, in accordance with another embodiment. While FIG. 4 sets forth one embodiment, the aforementioned definitions may equally apply to the description below.


As shown, a body 402 is provided. As an option, the body 402 may be planar. Additionally, an outer periphery of the body 402 may have a size that is less than a size of the integrated circuit package 408. As shown, such outer periphery may thus define a space for reasons that will soon become apparent.


Further, a plurality of first contacts 404 are provided. The first contacts 404 are positioned on a first side of the body 402 and configured for electrical communication with integrated circuit package contacts 406 of the integrated circuit package 408. In one embodiment, the integrated circuit package 408 may include DRAM.


Additionally, a plurality of second contacts 410 are provided. The second contacts 410 are positioned on a second side of the body 402 and configured for electrical communication with circuit board contacts of a circuit board 412. In one embodiment, the second contacts 410 may include ball contacts for engaging the circuit board contacts. In another embodiment, the second contacts 410 may include pin contacts for engaging the circuit board contacts.


In addition, the second contacts 410 are in electrical communication with the first contacts 404 for allowing electrical communication between the integrated circuit package contacts 406 and the circuit board contacts. As an option, the first contacts 404 may be planar for engaging the integrated circuit package contacts 406. As shown, the body 402 may be configured to allow positioning of components between the integrated circuit package 408 and the circuit board 412 (e.g. components 414) about the outer periphery of the body 402. In various embodiments, the components may include passive components, active components, or a combination of passive and active components.


As noted above, in one embodiment, the first contacts 404 may be planar for engaging the integrated circuit package contacts 406. It should be noted, however, that the first contacts 404 may be any type of contacts which allow engagement of any type of integrated circuit package. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging integrated circuit package contacts.


It should also be noted that the number of contacts and/or rows of contacts may vary depending on the integrated circuit package to be engaged. In various embodiments, the first contacts 404 may comprise two or three rows of contacts. However, any number of rows may be utilized depending on the integrated circuit package to be engaged.


As noted above, in various embodiments, the second contacts 410 may include ball contacts for engaging the circuit board contacts or pin contacts for engaging the circuit board contacts. It should be noted that any types of contacts may be utilized depending on the circuit board to be engaged. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging circuit board contacts.


It should also be noted that the number of contacts and/or rows of contacts may vary depending on the circuit board to be engaged. In various embodiments, the second contacts 410 may comprise two or three rows of contacts. However, any number of rows may be utilized depending on the circuit board to be engaged.



FIG. 5 shows an apparatus 500 for electrical communication between integrated circuit package contacts of an integrated circuit and circuit board contacts of a circuit board, in accordance with another embodiment. While FIG. 5 sets forth one embodiment, the aforementioned definitions may equally apply to the description below.


As shown, a body 502 is provided. In one embodiment, the body 502 may be planar. In the illustrated embodiment, the body 502 may have a size similar to a size of an integrated circuit package 508.


Further, a plurality of first contacts 504 are provided. The first contacts 504 are positioned on a first side of the body 502 and configured for electrical communication with integrated circuit package contacts 506 of the integrated circuit package 508. In one embodiment, the integrated circuit package may include DRAM.


Additionally, a plurality of second contacts 510 are provided. The second contacts 510 are positioned on a second side of the body 502 and configured for electrical communication with circuit board contacts of a circuit board 512. In one embodiment, the second contacts 510 may include ball contacts for engaging the circuit board contacts. In another embodiment, the second contacts 510 may include pin contacts for engaging the circuit board contacts. In use, the second contacts 510 are in electrical communication with the first contacts 504 for allowing electrical communication between the integrated circuit package contacts 506 and the circuit board contacts.


As shown, the body 502 may be configured to allow positioning of a component 514 between the integrated circuit package 508 and the body 502. In such case, the first set of contacts 504 may be configured and augmented in number, etc. such that the component 514 or a plurality of the components 514 may be positioned on the first side of the body 502. Such first set of contacts 504 may further allow electrical communication between the contacts of the component 514 and those of the integrated circuit package 508 and/or the circuit board 512. In one embodiment, the component 514 may be a Flip-Chip™ component [e.g. a Ball Grid Array (BGA) controller]. In another embodiment, the component 514 may be wire-bonded component. In the context of the present description, a wire-bonded component may be any component which may be wire-bonded to a circuit board or any other suitable substrate, card, module, or object.


As noted above, in one embodiment, the first contacts 504 may be planar for engaging the integrated circuit package contacts 506. It should be noted, however, that the first contacts 504 may be any type of contacts which allow engagement of any type of integrated circuit or integrated circuit package. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging integrated circuit contacts or integrated circuit package contacts.


It should also be noted that the number of contacts and/or rows of contacts may vary depending on the integrated circuit package to be engaged. In various embodiments, the first contacts 504 may comprise two or three rows of contacts. However, any number of rows may be utilized depending on the integrated circuit package to be engaged.


As noted above, in various embodiments, the second contacts 510 may include ball contacts for engaging the circuit board contacts or pin contacts for engaging the circuit board contacts. It should be noted that any types of contacts may be utilized depending on the circuit board to be engaged. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging circuit board contacts.


It should also be noted that the number of contacts and/or rows of contacts may vary depending on the circuit board to be engaged. In various embodiments, the second contacts 510 may comprise two or three rows of contacts. However, any number of rows may be utilized depending on the circuit board to be engaged.



FIG. 6 shows a system 600 comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment. As an option, the system 600 may be implemented in the context of the details of FIGS. 1-5. Of course, however, the system 600 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a plurality of integrated circuit packages 610 are in electronic communication with a circuit board 606. On a first side of the circuit board 606, multiple apparatuses are used to connect the integrated circuit packages 610 with the circuit board 606. For example, a first apparatus 602 is provided for allowing a first integrated circuit package to communicate with the circuit board 606, while allowing a plurality of components to be positioned between the circuit board 606 and the first integrated circuit package. Such apparatus may be the apparatus as described in the context of the details of FIG. 1, for example.


Further, a second apparatus 604 is provided for allowing a second integrated circuit package to communicate with the circuit board 606, while allowing a component to be positioned between the circuit board 606 and the first integrated circuit package. Such apparatus may be the apparatus as described in FIG. 5, for example. As an option, the integrated circuit package may include DRAM. Additionally, the component may be a Flip-Chip™ component (e.g. a BGA controller).


As shown, additional integrated circuit packages are provided on a second side of the circuit board 606. Such integrated circuit packages may include additional DRAM, for example. It should be noted that the integrated circuit packages on the second side of the circuit board 606 are illustrated as interfacing directly with the circuit board 606. As shown further, additional components (e.g. see component 608) may be positioned on the circuit board 606 utilizing available space of the circuit board 606.


In another embodiment, the integrated circuit packages may interface with apparatuses such that additional components may be placed between the integrated circuit packages and the circuit board 606, similar to the apparatuses 602 and 604. More information regarding such an embodiment will be set forth during reference to FIG. 7.



FIG. 7 shows a system 700 comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with another embodiment. As an option, the system 700 may be implemented in the context of the details of FIGS. 1-5. Of course, however, the system 700 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a plurality of integrated circuit packages 714 are in electronic communication with a circuit board 710. On a first side of the circuit board 710, various apparatuses are used to connect the integrated circuit packages 714 with the circuit board 710. For example, a first apparatus 702 is provided for allowing a first integrated circuit package to communicate with the circuit board 710, while allowing a plurality of components to be positioned between the circuit board 710 and the first integrated circuit package. Such apparatus may be the apparatus as described in the context of the details of FIG. 1, for example.


Further, a second apparatus 704 is provided for allowing a second integrated circuit package to communicate with the circuit board 710, while allowing a component to be positioned between the circuit board 710 and the second integrated circuit package. Such apparatus may be the apparatus as described in the context of the details of FIG. 5, for example. As an option, the integrated circuit packages may include DRAM. Additionally, in one embodiment, the component may be a may be a Flip-Chip™ component (e.g. a BGA controller). In another embodiment, the component may be wire-bonded component.


In addition, on a second side of the circuit board 710, a third apparatus 706 is provided for allowing a third integrated circuit package to communicate with the circuit board 710, while allowing a plurality of components to be positioned between the circuit board 710 and the third integrated circuit package. Such apparatus may be the apparatus as described in the context of the details of FIG. 1, for example.


Further, a fourth apparatus 708 is provided for allowing a fourth integrated circuit package to communicate with the circuit board 710, while allowing a component to be positioned between the circuit board 710 and the fourth integrated circuit package. Such apparatus may be the apparatus as described in the context of the details of FIG. 5, for example. As shown further, additional components (e.g. see components 712) may be positioned on the circuit board 710 utilizing available space of the circuit board 710.



FIG. 8 is a top view of an apparatus 800 for electrical communication between integrated circuit package contacts of multiple integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment. It should be noted that the aforementioned definitions may apply during the present description.


As shown, a body 802 is provided. Further, a plurality of contacts 804 are provided. The contacts 804 are configured for electrical communication with integrated circuit package contacts of integrated circuit packages 806 and 808. Additionally, the contacts 804 and the body 802 are configured such that a plurality of components 810 may be positioned between the integrated circuit packages 806 and 808.


In one embodiment, the contacts 804 are in electrical communication with additional contacts on an opposite side of the body 802, which are in electrical communication with a circuit board. Thus, the apparatus 800 may allow for electrical communication between integrated circuit package contacts of the integrated circuit packages 806 and 808 and circuit board contacts of the circuit board.



FIG. 9 is a bottom view of an apparatus 900 for electrical communication between integrated circuit package contacts of an integrated circuit package and circuit board contacts of a circuit board, in accordance with another embodiment. As shown, a body 902 is provided. Further, a plurality of contacts 904 are provided. The contacts 904 are configured for electrical communication with circuit board contacts of a circuit board. In one embodiment, the contacts 904 may include ball contacts for engaging the circuit board contacts. In another embodiment, the contacts may include pin contacts for engaging the circuit board contacts.


Thus, FIG. 9 illustrates the bottom side of the body 802 shown in FIG. 8. In such case, the contacts 804 of FIG. 8 may be in electrical communication with the contacts 904 of FIG. 9 for allowing electrical communication between the integrated circuit packages 806 and 808 and the circuit board.



FIG. 10 shows a system 1000 comprising an apparatus for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment. As shown, an apparatus 1002 is shown to take the form of a frame which constitute a bottom portion of a body where such body further includes a top portion that confines the space. Specifically, on one side of a circuit board the apparatus 1002 is provided for allowing communication between multiple integrated circuit packages 1004 and a circuit board 1006.


In one embodiment, such apparatus 1002 may be the apparatus illustrated in FIG. 8, for example. As illustrated, the apparatus 1002 is configured such that components may be positioned between the integrated circuit packages 1004 while maintaining electrical communication to the circuit board 1006. Additionally, the apparatus 1002 is configured such that components (e.g. see component 1008) may be placed underneath the integrated circuit packages 1004 and on the circuit board 1006.


As shown further, additional integrated circuit packages are provided on a second side of the circuit board 1006. Such integrated circuit packages may include additional DRAM, for example. It should be noted that, while the integrated circuit packages on the second side of the circuit board 1006 are illustrated as interfacing directly with the circuit board 1006, the integrated circuit packages may interface with an apparatus such that additional components may be placed between the integrated circuit packages and the circuit board 1006, similar to the apparatus 1002. See FIG. 11, for example.



FIG. 11 shows a system 1100 comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with one embodiment. As an option, the system 1100 may be implemented in the context of the details of FIGS. 8 and 9. Of course, however, the system 1100 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, on a first side of a circuit board, an apparatus 1102 is provided for allowing communication between multiple integrated circuit packages 1104 and a circuit board 1106. In one embodiment, such apparatus 1102 may be the apparatus illustrated in FIG. 8, for example. As illustrated, the apparatus 1102 is configured such that components may be positioned between the integrated circuit packages 1104 while maintaining electrical communication to the circuit board 1106. Additionally, the apparatus 1102 is positioned such that components (e.g. see component 1108) may be placed between the integrated circuit packages 1104 and the circuit board 1106.


As further shown, on a second side of a circuit board, an apparatus 1110 is provided for allowing communication between multiple integrated circuit packages 1112 and the circuit board 1106. In one embodiment, such apparatus 1110 may be the apparatus illustrated in FIG. 8, for example. As illustrated, the apparatus 1110 is configured such that components may be positioned between the integrated circuit packages 1112 while maintaining electrical communication to the circuit board 1106. Additionally, the apparatus 1110 is positioned such that components (e.g. see component 1114) may be placed between the integrated circuit packages 1112 and the circuit board 1106.



FIG. 12 is a top view of a system 1200 comprising multiple apparatuses for electrical communication between integrated circuit package contacts of integrated circuit packages and circuit board contacts of a circuit board, in accordance with another embodiment. As an option, the system 1200 may be implemented in the context of the details of FIGS. 8 and 9. Of course, however, the system 1200 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a plurality of integrated circuit packages 1202 are in communication with a circuit board 1204. Such communication may be established utilizing the apparatus illustrated in FIG. 8, for example. Thus, multiple apparatuses may be utilized to provide communication between the plurality of integrated circuit packages and 1202 and the circuit board 1204.



FIG. 13 shows a method 1300 for allowing electrical communication between integrated circuit package contacts and circuit board contacts, in accordance with one embodiment. As an option, the method 1300 may be implemented in the context of the details of FIGS. 1-12. Of course, however, the method 1300 may be carried out in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown in operation 1300, a plurality of first contacts that reside on a first side of a body are positioned in electrical communication with integrated circuit package contacts of an integrated circuit package. In operation 1304, a plurality of second contacts that reside on a second side of the body are positioned in electrical communication with circuit board contacts of a circuit board. In use, the second contacts are in electrical communication with the first contacts for allowing electrical communication between the integrated circuit package contacts and the circuit board contacts.



FIG. 14 shows a system 1400 for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with one embodiment. As an option, the system 1400 may be implemented in the context of the details of FIGS. 1-13. Of course, however, the system 1400 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, an integrated circuit package 1402 is provided, including a plurality of integrated circuit package contacts 1404. Additionally, a circuit board 1406 is provided in electrical communication with the integrated circuit package 1402.


Further, the integrated circuit package 1402, the integrated circuit package contacts 1404, and/or the circuit board 1406 may configured for providing additional space between the integrated circuit package 1402 and the circuit board 1406 for positioning at least a portion of at least one component 1408 between the integrated circuit package 1402 and the circuit board 1406. In one embodiment, the integrated circuit package 1402, the integrated circuit package contacts 1404, and the circuit board 1406 may all be configured for providing such additional space between the integrated circuit package 1402 and the circuit board 1406. In various embodiments, the component 1408 may include a passive component, an active component, or a combination of passive and active components.


It should be noted that any of the integrated circuit package 1402, the integrated circuit package contacts 1404, and/or the circuit board 1406 may be configured to allow for components of various sizes to be positioned between the integrated circuit package 1402 and the circuit board 1406. In such case, the total profile (Z) may vary depending on the component 1408 to be placed between the integrated circuit package 1402 and the circuit board 1406. In one embodiment, the total profile (Z) may be a fixed maximum allowable height. In such case, the integrated circuit package 1402, the integrated circuit package contacts 1404, and/or the circuit board 1406 may be configured to allow for additional space, while, at the same time, staying under the maximum profile (Z).


In one embodiment, the integrated circuit package 1402 may include memory (e.g. DRAM, etc.). Of course, however, other types of integrated circuit packages or integrated circuits (e.g. flash memory, controllers, processors, etc.) are also contemplated. Further, in various other embodiments, the integrated circuit package 1402 may be used in a computer system, cellular phone, personal digital assistant (PDA), digital camera, digital video recorder, global positioning system (GPS), and any other electrical device which uses integrated circuits.


In one embodiment, the integrated circuit package contacts 1404 may include ball contacts for engaging circuit board contacts (not shown) of the circuit board 1406. In another embodiment, the integrated circuit package contacts 1404 may include pin contacts for engaging the circuit board contacts of the circuit board 1406. It should be noted, however, that any types of contacts may be utilized depending on the circuit board to be engaged. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging circuit board contacts.


More illustrative information will now be set forth regarding various optional architectures and features with which the foregoing framework of FIG. 14 may or may not be implemented, per the desires of the user. It should be strongly noted that the following information is set forth for illustrative purposes and should not be construed as limiting in any manner. Any of the following features may be optionally incorporated with or without the exclusion of other features described.



FIG. 15 shows a system 1500 for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment. As an option, the system 1500 may be implemented in the context of the details of FIG. 14. Of course, however, the system 1500 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a plurality of integrated circuit packages 1502 are provided, including a plurality of integrated circuit package contacts 1506. Further provided is a circuit board 1508 in electrical communication with the integrated circuit packages 1502. As shown, a lower portion 1504 of the integrated circuit packages 1502 is configured for providing additional space between the integrated circuit packages 1502 and the circuit board 1508 for positioning at least a portion of at least one component 1510 between at least one of the integrated circuit packages 1502 and the circuit board 1508.


In the current embodiment, the integrated circuit packages 1502 include a bottom face 1514 with a recess 1516 formed therein. In one embodiment, the recess 1516 may be formed about a periphery of the integrated circuit packages 1502. Such configuration may be utilized to provide additional space between the integrated circuit packages 1502 and the circuit board 1508.


In another embodiment, the recess 1516 may be formed around the plurality of integrated circuit package contacts 1506 of the integrated circuit package 1502. In still another embodiment, at least a portion of at least one of the components 1510 may be coupled to the circuit board 1508 underneath, at least in part, the recess 1516 of at least one of the integrated circuit packages 1502. Such components 1510 may include passive components, active components, or a combination of passive and active components. Furthermore, in one embodiment, the integrated circuit packages 1502 may include memory (e.g. DRAM, etc.). Of course, however, other types of integrated circuit packages and/or integrated circuits (e.g. flash memory, controllers, processors, etc.) are also contemplated.


It should be noted that forming the recess 1516 on the bottom face 1514 of the integrated circuit packages 1502 allows at least a portion of at least one of the components 1510 to be positioned under the integrated circuit packages 1502 without the use of additional contacts other than the integrated circuit package contacts 1506. Furthermore, in various embodiments, the recess 1516 may include any number of recess layers. For example, in one embodiment, the recess 1516 may include a tiered configuration.



FIG. 16 shows a system 1600 for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment. As an option, the system 1600 may be implemented in the context of the details of FIGS. 1-15. Of course, however, the system 1600 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a plurality of integrated circuits 1602, including a lower portion 1604 of the integrated circuit packages 1602 and a plurality of integrated circuit package contacts 1606 are provided. Further provided is a circuit board 1608 in electrical communication with the integrated circuit packages 1602. As shown, the circuit board 1608 is configured for providing additional space between at least one of the integrated circuit packages 1602 and the circuit board 1608 for positioning at least a portion of at least one component 1610 between the integrated circuit packages 1602 and the circuit board 1608.


As shown, the circuit board 1608 includes a top face 1612 with a recess 1616 formed therein. In one embodiment, the recess 1616 may be formed around a plurality of circuit board contacts (not shown) of the circuit board 1608. In another embodiment, the recess 1616 may be formed in the circuit board 1608 around the integrated circuit package contacts 1606 of the integrated circuit packages 1602 in a manner that circumnavigates the integrated circuit package contacts 1606. Additionally, in one embodiment, at least a portion of at least one of the components 1610 may be coupled to the circuit board 1608 underneath, in the recess 1616.


In one embodiment, the recess 1616 may be formed by adding material to the circuit board 1608. In another embodiment, the recess 1616 may be formed by removing material from the circuit board 1608. In this case, the circuit board 1608 may include cut-outs or cavities to form the recess 1616.


In one embodiment, the plurality of circuit board contacts may be planar for engaging the integrated circuit package contacts 1606. It should be noted, however, that the circuit board contacts may be any type of contacts which allow engagement of any type of integrated circuit or integrated circuit package. In various embodiments, such contacts may include pads, balls, pins, slots, grooves, and/or any other type of contact for engaging integrated circuit contacts or integrated circuit package contacts.


It should be noted that forming the recess 1616 on the top face 1612 of the circuit board 1608 allows at least a portion of at least one of the components 1610 to be positioned under the integrated circuit packages 1602 without the use of additional contacts other than the integrated circuit package contacts 1606. Furthermore, in various embodiments, the recess 1616 may include any number of recess layers. For example, in one embodiment, the recess 1616 may include a tiered configuration.


In one embodiment, adjacent recesses in the circuit board may allow for positioning of components between the adjacent recesses and beneath at least one integrated circuit package. This technique and other similar techniques are further described in the related application Ser. No. 11/588,739, which has been incorporated by reference in its entirety.



FIG. 17 shows a system 1700 for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment. As an option, the system 1700 may be implemented in the context of the details of FIGS. 14-16. Of course, however, the system 1700 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a plurality of integrated circuit packages 1702 including a lower portion 1704 of the integrated circuit packages 1702 and a plurality of integrated circuit package contacts 1706 are provided. Further provided is a circuit board 1708 in electrical communication with the integrated circuit packages 1702. As further shown, the integrated circuit package contacts 1706 are configured for providing additional space between the plurality of integrated circuit packages 1702 and the circuit board 1708 for positioning at least a portion of at least one component 1710 between the plurality of integrated circuit packages 1702 and the circuit board 1708.


In one embodiment, the integrated circuit package contacts 1706 may be sized for providing the additional space between the integrated circuit packages 1702 and the circuit board 1708. In such case, the sizing may depend on the type and/or size of the component 1710 to be placed between the integrated circuit package 1702 and the circuit board 1708. For example, a height of the integrated circuit package contacts 1706 may be sized to match a full height of the component 1710 with optionally an additional 2%-10% of height for providing a small space between the integrated circuit packages 1702 and the component 1710, as shown.


Further, as shown, the integrated circuit package contacts 1706 may include ball contacts for engaging circuit board contacts (not shown) of the circuit board 1708. In another embodiment, the integrated circuit package contacts 1706 may include pin contacts for engaging the circuit board contacts of the circuit board 1708.



FIG. 18 shows a system 1800 for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment. As an option, the system 1800 may be implemented in the context of the details of FIGS. 1-17. Of course, however, the system 1800 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a first integrated circuit package 1802 is provided. Additionally, an apparatus 1804 is provided which includes a body 1806, a first set of contacts 1808, and a second set of contacts 1810. Furthermore, a second integrated circuit package 1812 is provided.


As shown, the second integrated package 1812 is in electrical communication with a circuit board 1814, via the apparatus 1804. In operation, contacts 1816 of the second integrated package 1812 are in electrical communication with the first set of contacts 1808 of the apparatus 1804. The first set of contacts 1808 are in electrical communication with the second set of contacts 1810, allowing for electrical communication between the second integrated circuit package 1812 and the circuit board 1814.


As shown further, the apparatus 1804 is configured to allow positioning of at least a portion of the first integrated circuit package 1802 between the second integrated circuit package 1812 and the circuit board 1814. In another embodiment, the first integrated circuit package 1802 may represent various other components (e.g. passive components, active components, chip sets, etc.).


In some situations, space on a circuit board may be limited. One way to utilize available space is to place components (or integrated circuit packages), or portions of components, over other components. In other words, the components may form a vertical stack (i.e. in the Z-direction). The apparatus 1804 may be mounted to any substrate or circuit board such that the vertical stack may be formed.


In one embodiment, the placement of the first set of contacts 1808 (e.g. solder balls, BOA contacts, wirebond contacts, contacts formed by tape automatic bonding (TAB), etc.) may be translated to one side of the top of the body 1806. Additionally, the contacts 1816 of the component to be mounted (e.g. the second integrated circuit package 1812) may also be translated laterally, thus permitting at least a portion of the component to be situated over another component (e.g. the first integrated circuit package 1802).



FIG. 19 shows a system 1900 for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment. As an option, the system 1900 may be implemented in the context of the details of FIGS. 1-18. Of course, however, the system 1900 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, an apparatus 1902 is provided for allowing electrical communication between an integrated circuit package 1914 and a circuit board 1916. In operation, electrical connectivity on a top side of the apparatus 1902 is provided by a first set of contacts 1904 (e.g. solder balls, etc.), the first set of contacts 1904 being positioned on a first side of a first rigid material 1906. Additionally, a second side of the first rigid material 1906 is in electrical communication with a first end of a flexible portion 1908.


A second end of the flexible portion 1908 is in electrical communication with a first side of a second rigid material 1912. Additionally, a second set of contacts 1910 (e.g. solder balls, etc.), positioned on a second side of the second rigid material 1912, allows for electrical communication with the circuit board 1916. Furthermore, the apparatus 1902 allows for the positioning of components or integrated circuit packages between the integrated circuit package 1914 and the circuit board 1916. It should be noted that the flexible portion 1908 may be configurable such that different components may be positioned between the integrated circuit package 1914 and the circuit board 1916. As an option, the apparatus 1804 of FIG. 18 may be utilized in conjunction with the apparatus 1902 and the system 1900.



FIG. 20 shows a system 2000 for mounting an apparatus to a circuit board, in accordance with one embodiment. As an option, the system 2000 may be implemented in the context of the details of FIGS. 1-19. Of course, however, the system 2000 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a structure 2002 is provided for providing force on an apparatus 2004 in order to mount the apparatus 2004 on a substrate or a circuit board 2006. In this case, a downward force on the apparatus 2004 may be uniform throughout a solder flow process used to mount the apparatus 2004 to the circuit board 2006. As shown further, the structure 2002 may be configured such that a lower portion of the structure 2002 is flush with all of an upper portion of the apparatus 2004.


In addition, the structure 2002 may be configured such that a flexible portion 2008 of the apparatus 2004 may be restricted from movement. In one embodiment, movement may be restricted by fitting at least a part of the flexible portion 2008 in a slot or recess formed in the structure 2002. As an option, the structure 2002 may be used to mount the apparatus 1902 of FIG. 19 to the circuit board 2006.


In one embodiment, the apparatus 2004 may be pre-assembled package including an integrated circuit package (e.g. DRAM, or a “hat shaped” DRAM package, etc.) that allows the integrated circuit package to overhang another integrated circuit package (e.g. buffer chips, etc.). In this case, if the center of mass of the assembly is not centered on a BGA that may connect the integrated circuit package (e.g. DRAM) to a DIMM, assembly issues may arise due to an uneven collapse of solder balls in the BGA. Thus, a structure may be used to add a counterweight to the apparatus and integrated circuit package (e.g. the apparatus and DRAM) during the assembly process to maintain the center of mass within an acceptable distance to the center of the BGA.


In one embodiment, the structure may include a breakaway portion of the apparatus. As an option, the breakaway portion may include an additional weight. In this case, the breakaway portion may protrude off the edge of the DIMM to avoid interference with other components during assembly. In another embodiment, the structure may include a separate piece of metal or plastic attached by mechanical retention clips or adhesive. It should be noted that the uneven collapse of solder balls in the BGA may be avoided by assembling the apparatus to the DIMM as a separate step, prior to assembling the integrated circuit package to the DIMM.



FIG. 21 shows an apparatus 2100 for providing additional space between an integrated circuit package and a circuit board for positioning at least a portion of at least one component therebetween, in accordance with another embodiment. As an option, the system 2100 may be implemented in the context of the details of FIGS. 1-20. Of course, however, the system 2100 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, an apparatus 2100 is provided, including a first rigid body 2102, a second rigid body 2104, a third rigid body 2106, and a flexible body 2108. In operation, the apparatus 2100 allows for electrical communication between a circuit board (not shown), and at least one component or integrated circuit package (not shown), which may be positioned on a top side of the second rigid body 2104 and the third rigid body 2106.


In one embodiment, the flexible body 2108 may be laminated to the rigid bodies 2102-2106. In another embodiment, the flexible body 2108 may be mechanically connected to the rigid bodies 2102-2106 using standard drilled and plated through-holes. In this case, the drilled and plated through-holes may connect from the flexible body 2108 through the rigid bodies 2102-2106 to a plurality of electrical contacts 2110 (e.g. solder balls, etc.)


In still another embodiment, the flexible body 2108 may be connected to the rigid bodies 2102-2106, or directly to a circuit board, by “stripping” a portion of conductors (e.g. the last 50 mils) and using the exposed conductor ends as leads. As another option, one or two lines of staggered rectangular pads may be created which allow the flexible body 2108 to be soldered to the rigid bodies 2102-2106 or directly to a circuit board. This may be accomplished similar to soldering a BGA but with relaxed planarity requirements.


It should be noted that, although the apparatus 2100 is illustrated with the second rigid body 2104 and the third rigid body 2106 positioned on a top side of the flexible body 2108, the flexible body 2108 may be configured to allow for one rigid body. For example, a first end of the flexible body 2108 may extend past the first rigid body 2102 allowing for positioning of the second rigid body 2104, and a second end of the flexible body 2108 may be limited to the extent of the first rigid body 2102 such that the third rigid body 2106 is not positioned on the flexible body 2108. Furthermore, the flexible body 2108 may be configured from any suitable flexible material (e.g. flexible FR-4). Similarly, the rigid bodies 2102-2106 may be configured from any suitable rigid material (e.g. standard FR-4).



FIG. 22 shows a system 2200 for mounting an apparatus to a circuit board, in accordance with another embodiment. As an option, the system 2200 may be implemented in the context of the details of FIGS. 1-21. Of course, however, the system 2200 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a structure 2202 is provided for providing force on an apparatus 2204 in order to mount the apparatus 2204 on a substrate or a circuit board 2206. In this case, a downward force on the apparatus 2204 may be uniform throughout a solder flow process used to mount the apparatus 2204 to the circuit board 2206. As shown further, the structure 2202 may be configured such that a lower portion of the structure 2202 is flush with all of an upper portion of the apparatus 2204.


In addition, the structure 2202 may be configured such that a flexible portion 2208 of the apparatus 2204 may be restricted from movement. In one embodiment, movement may be restricted by fitting at least a part of the flexible portion 2208 in a slot or recess formed in the structure 2202. As an option, the structure 2202 may be used to mount the apparatus 2100 of FIG. 21 to the circuit board 2206.



FIG. 23 shows a possible implementation 2300 of the apparatus 2100 of FIG. 21, in accordance with one embodiment. It should be noted that the aforementioned definitions may equally apply to the description below.


As shown, the apparatus 2100 is configured such that integrated circuit packages 2112 or components may be efficiently positioned, utilizing available space. The flexible body 2108 may be configured and/or adjusted such that more that one apparatus 2100 may be adjacently positioned. This allows for a plurality of integrated circuit packages 2112 or components to be placed in a tiered, side-by-side manner.



FIG. 24 illustrates a system including a system device coupled to an interface circuit and a plurality of physical memory circuits, in accordance with one embodiment. As an option, the system 2400 may be implemented in the context of the details of FIGS. 1-23. For example, the various components (e.g. memory devices, interface circuit, etc.) of FIG. 24 may be coupled to a circuit board [e.g. dual in-line memory module (DIMM)] using any of the techniques set forth in the previous figures. Of course, however, the system 2400 may be implemented in any desired environment. Further, the aforementioned definitions may equally apply to the description below.


As shown, a system device 2406 is coupled to an interface circuit 2402, which is in turn coupled to a plurality of physical memory circuits 2404A-N. In some embodiments, the memory circuit 2404A-N may be connected to one or more intelligent buffers 2407A-N. The physical memory circuits may be any type of memory circuits. In some embodiments, each physical memory circuit is a separate memory chip. For example, each may be a DDR2 DRAM.


In some embodiments, the memory circuits may be symmetrical, meaning each has the same capacity, type, speed, etc., while in other embodiments they may be asymmetrical. For ease of illustration only, four such memory circuits are shown, but actual embodiments may use any plural number of memory circuits. As will be discussed below, the memory chips may optionally be coupled to a memory module (not shown), such as a DIMM.


The system device may be any type of system capable of requesting and/or initiating a process that results in an access of the memory circuits. The system may include a memory controller (not shown) through which it accesses the memory circuits.


The interface circuit may include any circuit or logic capable of directly or indirectly communicating with the memory circuits, such as a memory controller, a buffer chip, advanced memory buffer (AMB) chip, etc. The interface circuit interfaces a plurality of signals 2408 between the system device and the memory circuits. Such signals may include, for example, data signals, address signals, control signals, clock signals, and so forth. In some embodiments, all of the signals communicated between the system device and the memory circuits are communicated via the interface circuit. In other embodiments, some other signals 2410 are communicated directly between the system device (or some component thereof, such as a memory controller, an AMB, or a register) and the memory circuits, without passing through the interface circuit.


As will be explained in greater detail below, the interface circuit presents to the system device an interface to emulated memory devices which differ in some aspect from the physical memory circuits which are actually present. For example, the interface circuit may tell the system device that the number of emulated memory circuits is different than the actual number of physical memory circuits. The terms “emulating”, “emulated”, “emulation”, and the like will be used in this disclosure to signify emulation, simulation, disguising, transforming, converting, and the like, which results in at least one characteristic of the memory circuits appearing to the system device to be different than the actual, physical characteristic.


In some embodiments, the emulated characteristic may be electrical in nature, physical in nature, logical in nature (e.g. a logical interface, etc.), pertaining to a protocol, etc. An example of an emulated electrical characteristic might be a signal, or a voltage level. An example of an emulated physical characteristic might be a number of pins or wires, a number of signals, or a memory capacity. An example of an emulated protocol characteristic might be a timing, or a specific protocol such as DDR3.


In the case of an emulated signal, such signal may be a control signal such as an address signal, a data signal, or a control signal associated with an activate operation, precharge operation, write operation, mode register read operation, refresh operation, etc. The interface circuit may emulate the number of signals, type of signals, duration of signal assertion, and so forth. It may combine multiple signals to emulate another signal.


The interface circuit may present to the system device an emulated interface to e.g. DDR3 memory, while the physical memory chips are, in fact, DDR2 memory. The interface circuit may emulate an interface to one version of a protocol such as DDR2 with 5-5-5 latency timing, while the physical memory chips are built to another version of the protocol such as DDR2 with 3-3-3 latency timing. The interface circuit may emulate an interface to a memory having a first capacity that is different than the actual combined capacity of the physical memory chips.


An emulated timing may relate to latency of e.g. a column address strobe (CAS) latency, a row address to column address latency (tRCD), a row precharge latency (tRP), an activate to precharge latency (tRAS), and so forth. CAS latency is related to the timing of accessing a column of data. tRCD is the latency required between the row address strobe (RAS) and CAS. tRP is the latency required to terminate an open row and open access to the next row. tRAS is the latency required to access a certain row of data between an activate operation and a precharge operation.


The interface circuit may be operable to receive a signal from the system device and communicate the signal to one or more of the memory circuits after a delay (which may be hidden from the system device). Such delay may be fixed, or in some embodiments it may be variable. If variable, the delay may depend on e.g. a function of the current signal or a previous signal, a combination of signals, or the like.


The delay may include a cumulative delay associated with any one or more of the signals. The delay may result in a time shift of the signal forward or backward in time with respect to other signals. Different delays may be applied to different signals. The interface circuit may similarly be operable to receive a signal from a memory circuit and communicate the signal to the system device after a delay.


The interface circuit may take the form of, or incorporate, or be incorporated into, a register, an AMB, a buffer, or the like, and may comply with Joint Electron Device Engineering Council (JEDEC) standards, and may have forwarding, storing, and/or buffering capabilities.


In some embodiments, the interface circuit may perform operations without the system device's knowledge. One particularly useful such operation is a power-saving operation. The interface circuit may identify one or more of the memory circuits which are not currently being accessed by the system device, and perform the power saving operation on those. In one such embodiment, the identification may involve determining whether any page (or other portion) of memory is being accessed. The power saving operation may be a power down operation, such as a precharge power down operation.


The interface circuit may include one or more devices which together perform the emulation and related operations. The interface circuit may be coupled or packaged with the memory devices, or with the system device or a component thereof, or separately. In one embodiment, the memory circuits and the interface circuit are coupled to a DIM.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims
  • 1. A system, comprising: a first integrated circuit package including a plurality of first integrated circuit package contacts;a circuit board physically coupled to the first integrated circuit package by the plurality of first integrated circuit package contacts;the circuit board having a first recess, the first recess having a first portion covered by the first integrated circuit package and a second portion not covered by the first integrated circuit package;a first electronic component mounted to the circuit board in the first recess, wherein at least a first portion of the first electronic component is covered by the first integrated circuit package, and wherein the circuit board has a second recess at an opposite side of the circuit board relative to the first recess; anda third integrated circuit package including a plurality of third integrated circuit package contacts, wherein the circuit board is physically coupled to the third integrated circuit package by the plurality of third integrated circuit contacts, wherein the second recess in the circuit board has a first portion covered by the third integrated circuit package and a second portion not covered by the third integrated circuit package.
  • 2. The system of claim 1, wherein the first electronic component is a passive component.
  • 3. The system of claim 1, wherein the first electronic component is an active component.
  • 4. The system of claim 1, wherein the first recess is formed around a plurality of circuit board contacts of the circuit board.
  • 5. The system of claim 1, wherein the first integrated circuit package includes dynamic random access memory (DRAM).
  • 6. The system of claim 1, wherein the first integrated circuit package consists of an integrated circuit and integrated circuit contacts.
  • 7. The system of claim 1 wherein the entire first electronic component is covered by the first integrated circuit package.
  • 8. The system of claim 1 further comprising: a second integrated circuit package including a plurality of second integrated circuit package contacts,wherein the circuit board is physically coupled to the second integrated circuit package by the plurality of second integrated circuit contacts, andwherein the first recess in the circuit board has a third portion covered by the second integrated circuit package.
  • 9. The system of claim 8 wherein at least a second portion of the first electronic component is covered by the second integrated circuit package.
  • 10. The system of claim 1 further comprising: a second electronic component mounted to the circuit board in the second recess, wherein at least a first portion of the second electronic component is covered by the first integrated circuit package.
US Referenced Citations (791)
Number Name Date Kind
3800292 Curley et al. Mar 1974 A
4069452 Conway et al. Jan 1978 A
4323965 Johnson et al. Apr 1982 A
4334307 Bourgeois et al. Jun 1982 A
4345319 Bernardini et al. Aug 1982 A
4392212 Miyasaka et al. Jul 1983 A
4525921 Carson et al. Jul 1985 A
4566082 Anderson Jan 1986 A
4592019 Huang et al. May 1986 A
4646128 Carson et al. Feb 1987 A
4698748 Juzswik et al. Oct 1987 A
4706166 Go Nov 1987 A
4710903 Hereth et al. Dec 1987 A
4764846 Go Aug 1988 A
4780843 Tietjen Oct 1988 A
4794597 Ooba et al. Dec 1988 A
4796232 House Jan 1989 A
4841440 Yonezu et al. Jun 1989 A
4862347 Rudy Aug 1989 A
4884237 Mueller et al. Nov 1989 A
4887240 Garverick et al. Dec 1989 A
4888687 Allison et al. Dec 1989 A
4899107 Corbett et al. Feb 1990 A
4912678 Mashiko Mar 1990 A
4922451 Lo et al. May 1990 A
4935734 Austin Jun 1990 A
4937791 Steele et al. Jun 1990 A
4956694 Eide Sep 1990 A
4982265 Watanabe et al. Jan 1991 A
4983533 Go Jan 1991 A
5025364 Zellmer Jun 1991 A
5072424 Brent et al. Dec 1991 A
5083266 Watanabe Jan 1992 A
5104820 Go et al. Apr 1992 A
5193072 Frenkil et al. Mar 1993 A
5220672 Nakao et al. Jun 1993 A
5241266 Ahmad et al. Aug 1993 A
5252807 Chizinsky Oct 1993 A
5257233 Schaefer Oct 1993 A
5278796 Tillinghast et al. Jan 1994 A
5282177 McLaury Jan 1994 A
5332922 Oguchi et al. Jul 1994 A
5347428 Carson et al. Sep 1994 A
5384745 Konishi et al. Jan 1995 A
5388265 Volk Feb 1995 A
5390334 Harrison Feb 1995 A
5408190 Wood et al. Apr 1995 A
5432729 Carson et al. Jul 1995 A
5448511 Paurus et al. Sep 1995 A
5453434 Albaugh et al. Sep 1995 A
5467455 Gay et al. Nov 1995 A
5483497 Mochizuki et al. Jan 1996 A
5498886 Hsu et al. Mar 1996 A
5502333 Bertin et al. Mar 1996 A
5502667 Bertin et al. Mar 1996 A
5513135 Dell et al. Apr 1996 A
5513339 Agrawal et al. Apr 1996 A
5519832 Warchol May 1996 A
5526320 Zagar et al. Jun 1996 A
5530836 Busch et al. Jun 1996 A
5550781 Sugawara et al. Aug 1996 A
5559990 Cheng et al. Sep 1996 A
5561622 Bertin et al. Oct 1996 A
5563086 Bertin et al. Oct 1996 A
5566344 Hall et al. Oct 1996 A
5581498 Ludwig et al. Dec 1996 A
5581779 Hall et al. Dec 1996 A
5590071 Kolor et al. Dec 1996 A
5598376 Merritt et al. Jan 1997 A
5604714 Manning et al. Feb 1997 A
5606710 Hall et al. Feb 1997 A
5608262 Degani et al. Mar 1997 A
5610864 Manning Mar 1997 A
5623686 Hall et al. Apr 1997 A
5627791 Wright et al. May 1997 A
5640337 Huang et al. Jun 1997 A
5640364 Merritt et al. Jun 1997 A
5652724 Manning Jul 1997 A
5654204 Anderson Aug 1997 A
5661677 Rondeau et al. Aug 1997 A
5661695 Zagar et al. Aug 1997 A
5668773 Zagar et al. Sep 1997 A
5675549 Ong et al. Oct 1997 A
5680342 Frankeny Oct 1997 A
5682354 Manning Oct 1997 A
5692121 Bozso et al. Nov 1997 A
5692202 Kardach et al. Nov 1997 A
5696732 Zagar et al. Dec 1997 A
5702984 Bertin et al. Dec 1997 A
5703813 Manning et al. Dec 1997 A
5706247 Merritt et al. Jan 1998 A
RE35733 Hernandez et al. Feb 1998 E
5717654 Manning Feb 1998 A
5721859 Manning Feb 1998 A
5724288 Cloud et al. Mar 1998 A
5729503 Manning Mar 1998 A
5729504 Cowles Mar 1998 A
5742792 Yanai et al. Apr 1998 A
5748914 Barth et al. May 1998 A
5752045 Chen May 1998 A
5757703 Merritt et al. May 1998 A
5760478 Bozso et al. Jun 1998 A
5761703 Bolyn Jun 1998 A
5781766 Davis Jul 1998 A
5787457 Miller et al. Jul 1998 A
5798961 Heyden et al. Aug 1998 A
5802010 Zagar et al. Sep 1998 A
5802395 Connolly et al. Sep 1998 A
5802555 Shigeeda Sep 1998 A
5812488 Zagar et al. Sep 1998 A
5819065 Chilton et al. Oct 1998 A
5831833 Shirakawa et al. Nov 1998 A
5831931 Manning Nov 1998 A
5831932 Merritt et al. Nov 1998 A
5834838 Anderson Nov 1998 A
5835435 Bogin et al. Nov 1998 A
5838165 Chatter Nov 1998 A
5838177 Keeth Nov 1998 A
5841580 Farmwald et al. Nov 1998 A
5843799 Hsu et al. Dec 1998 A
5843807 Burns Dec 1998 A
5845108 Yoo et al. Dec 1998 A
5850368 Ong et al. Dec 1998 A
5859792 Rondeau et al. Jan 1999 A
5860106 Domen et al. Jan 1999 A
5870347 Keeth et al. Feb 1999 A
5870350 Bertin et al. Feb 1999 A
5872907 Griess et al. Feb 1999 A
5875142 Chevallier Feb 1999 A
5878279 Athenes Mar 1999 A
5884088 Kardach et al. Mar 1999 A
5901105 Ong et al. May 1999 A
5903500 Tsang et al. May 1999 A
5905688 Park May 1999 A
5907512 Parkinson et al. May 1999 A
5913072 Wierenga Jun 1999 A
5915105 Farmwald et al. Jun 1999 A
5915167 Leedy Jun 1999 A
5917758 Keeth Jun 1999 A
5923611 Ryan Jul 1999 A
5924111 Huang et al. Jul 1999 A
5926435 Park et al. Jul 1999 A
5929650 Pappert et al. Jul 1999 A
5943254 Bakeman, Jr. et al. Aug 1999 A
5946265 Cowles Aug 1999 A
5949254 Keeth Sep 1999 A
5953215 Karabatsos Sep 1999 A
5953263 Farmwald et al. Sep 1999 A
5954804 Farmwald et al. Sep 1999 A
5956233 Yew et al. Sep 1999 A
5962435 Mao et al. Oct 1999 A
5963429 Chen Oct 1999 A
5963463 Rondeau et al. Oct 1999 A
5963464 Dell et al. Oct 1999 A
5963504 Manning Oct 1999 A
5966724 Ryan Oct 1999 A
5966727 Nishino Oct 1999 A
5969996 Muranaka et al. Oct 1999 A
5973392 Senba et al. Oct 1999 A
5995424 Lawrence et al. Nov 1999 A
5995443 Farmwald et al. Nov 1999 A
6001671 Fjelstad Dec 1999 A
6002613 Cloud et al. Dec 1999 A
6002627 Chevallier Dec 1999 A
6014339 Kobayashi et al. Jan 2000 A
6016282 Keeth Jan 2000 A
6026050 Baker et al. Feb 2000 A
6029250 Keeth Feb 2000 A
6032214 Farmwald et al. Feb 2000 A
6032215 Farmwald et al. Feb 2000 A
6034916 Lee Mar 2000 A
6034918 Farmwald et al. Mar 2000 A
6035365 Farmwald et al. Mar 2000 A
6038195 Farmwald et al. Mar 2000 A
6038673 Benn et al. Mar 2000 A
6044032 Li Mar 2000 A
6047073 Norris et al. Apr 2000 A
6047344 Kawasumi et al. Apr 2000 A
6053948 Vaidyanathan et al. Apr 2000 A
6058451 Bermingham et al. May 2000 A
6069504 Keeth May 2000 A
6070217 Connolly et al. May 2000 A
6073223 McAllister et al. Jun 2000 A
6075730 Barth et al. Jun 2000 A
6075744 Tsern et al. Jun 2000 A
6078546 Lee Jun 2000 A
6079025 Fung Jun 2000 A
6084434 Keeth Jul 2000 A
6088290 Ohtake et al. Jul 2000 A
6091251 Wood et al. Jul 2000 A
RE36839 Simmons et al. Aug 2000 E
6101152 Farmwald et al. Aug 2000 A
6101564 Athenes et al. Aug 2000 A
6101612 Jeddeloh Aug 2000 A
6108795 Jeddeloh Aug 2000 A
6111812 Gans et al. Aug 2000 A
6134638 Olarig et al. Oct 2000 A
6154370 Degani et al. Nov 2000 A
6166991 Phelan Dec 2000 A
6182184 Farmwald et al. Jan 2001 B1
6199151 Williams et al. Mar 2001 B1
6208168 Rhee Mar 2001 B1
6216246 Shau Apr 2001 B1
6222739 Bhakta et al. Apr 2001 B1
6226709 Goodwin et al. May 2001 B1
6233192 Tanaka May 2001 B1
6233650 Johnson et al. May 2001 B1
6240048 Matsubara May 2001 B1
6243282 Rondeau et al. Jun 2001 B1
6252807 Suzuki et al. Jun 2001 B1
6260097 Farmwald et al. Jul 2001 B1
6260154 Jeddeloh Jul 2001 B1
6262938 Lee et al. Jul 2001 B1
6266285 Farmwald et al. Jul 2001 B1
6266292 Tsern et al. Jul 2001 B1
6274395 Weber Aug 2001 B1
6279069 Robinson et al. Aug 2001 B1
6295572 Wu Sep 2001 B1
6298426 Ajanovic Oct 2001 B1
6304511 Gans et al. Oct 2001 B1
6307769 Nuxoll et al. Oct 2001 B1
6314051 Farmwald et al. Nov 2001 B1
6317352 Halbert et al. Nov 2001 B1
6317381 Gans et al. Nov 2001 B1
6324120 Farmwald et al. Nov 2001 B2
6326810 Keeth Dec 2001 B1
6327664 Dell et al. Dec 2001 B1
6336174 Li et al. Jan 2002 B1
6338108 Motomura Jan 2002 B1
6338113 Kubo et al. Jan 2002 B1
6341347 Joy et al. Jan 2002 B1
6343019 Jiang et al. Jan 2002 B1
6343042 Tsern et al. Jan 2002 B1
6353561 Funyu et al. Mar 2002 B1
6356105 Volk Mar 2002 B1
6356500 Cloud et al. Mar 2002 B1
6362656 Rhee Mar 2002 B2
6363031 Phelan Mar 2002 B2
6378020 Farmwald et al. Apr 2002 B2
6381188 Choi et al. Apr 2002 B1
6381668 Lunteren Apr 2002 B1
6389514 Rokicki May 2002 B1
6392304 Butler May 2002 B1
6414868 Wong et al. Jul 2002 B1
6418034 Weber et al. Jul 2002 B1
6421754 Kau et al. Jul 2002 B1
6424532 Kawamura Jul 2002 B2
6426916 Farmwald et al. Jul 2002 B2
6429029 Eldridge et al. Aug 2002 B1
6430103 Nakayama et al. Aug 2002 B2
6437600 Keeth Aug 2002 B1
6438057 Ruckerbauer Aug 2002 B1
6442698 Nizar Aug 2002 B2
6445591 Kwong Sep 2002 B1
6452826 Kim et al. Sep 2002 B1
6452863 Farmwald et al. Sep 2002 B2
6453400 Maesako et al. Sep 2002 B1
6453402 Jeddeloh Sep 2002 B1
6453434 Delp et al. Sep 2002 B2
6455348 Yamaguchi Sep 2002 B1
6457095 Volk Sep 2002 B1
6459651 Lee et al. Oct 2002 B1
6473831 Schade Oct 2002 B1
6476476 Glenn Nov 2002 B1
6480929 Gauthier et al. Nov 2002 B1
6487102 Halbert et al. Nov 2002 B1
6489669 Shimada et al. Dec 2002 B2
6490161 Johnson Dec 2002 B1
6492726 Quek et al. Dec 2002 B1
6493789 Ware et al. Dec 2002 B2
6496440 Manning Dec 2002 B2
6496897 Ware et al. Dec 2002 B2
6498766 Lee et al. Dec 2002 B2
6510097 Fukuyama Jan 2003 B2
6510503 Gillingham et al. Jan 2003 B2
6512392 Fleury et al. Jan 2003 B2
6521984 Matsuura Feb 2003 B2
6526471 Shimomura et al. Feb 2003 B1
6526473 Kim Feb 2003 B1
6526484 Stacovsky et al. Feb 2003 B1
6545895 Li et al. Apr 2003 B1
6546446 Farmwald et al. Apr 2003 B2
6553450 Dodd et al. Apr 2003 B1
6560158 Choi et al. May 2003 B2
6563337 Dour May 2003 B2
6563759 Yahata et al. May 2003 B2
6564281 Farmwald et al. May 2003 B2
6564285 Mills et al. May 2003 B1
6574150 Suyama et al. Jun 2003 B2
6584037 Farmwald et al. Jun 2003 B2
6587912 Leddige et al. Jul 2003 B2
6590822 Hwang et al. Jul 2003 B2
6594770 Sato et al. Jul 2003 B1
6597616 Tsern et al. Jul 2003 B2
6597617 Ooishi et al. Jul 2003 B2
6614700 Dietrich et al. Sep 2003 B2
6618267 Dalal et al. Sep 2003 B1
6618791 Dodd et al. Sep 2003 B1
6621760 Ahmad et al. Sep 2003 B1
6630729 Huang Oct 2003 B2
6631086 Bill et al. Oct 2003 B1
6639820 Khandekar et al. Oct 2003 B1
6646939 Kwak Nov 2003 B2
6650588 Yamagata Nov 2003 B2
6650594 Lee et al. Nov 2003 B1
6657634 Sinclair et al. Dec 2003 B1
6657918 Foss et al. Dec 2003 B2
6657919 Foss et al. Dec 2003 B2
6658016 Dai et al. Dec 2003 B1
6658530 Robertson et al. Dec 2003 B1
6659512 Harper et al. Dec 2003 B1
6664625 Hiruma Dec 2003 B2
6665224 Lehmann et al. Dec 2003 B1
6665227 Fetzer Dec 2003 B2
6668242 Reynov et al. Dec 2003 B1
6674154 Minamio et al. Jan 2004 B2
6683372 Wong et al. Jan 2004 B1
6684292 Piccirillo et al. Jan 2004 B2
6690191 Wu et al. Feb 2004 B2
6697295 Farmwald et al. Feb 2004 B2
6701446 Tsern et al. Mar 2004 B2
6705877 Li et al. Mar 2004 B1
6708144 Merryman et al. Mar 2004 B1
6710430 Minamio et al. Mar 2004 B2
6711043 Friedman et al. Mar 2004 B2
6713856 Tsai et al. Mar 2004 B2
6714891 Dendinger Mar 2004 B2
6724684 Kim Apr 2004 B2
6730540 Siniaguine May 2004 B2
6731009 Jones et al. May 2004 B1
6731527 Brown May 2004 B2
6742098 Halbert et al. May 2004 B1
6744687 Koo et al. Jun 2004 B2
6747887 Halbert et al. Jun 2004 B2
6751113 Bhakta et al. Jun 2004 B2
6751696 Farmwald et al. Jun 2004 B2
6754129 Khateri et al. Jun 2004 B2
6754132 Kyung Jun 2004 B2
6757751 Gene Jun 2004 B1
6762948 Kyun et al. Jul 2004 B2
6765812 Anderson Jul 2004 B2
6766469 Larson et al. Jul 2004 B2
6771526 LaBerge Aug 2004 B2
6772359 Kwak et al. Aug 2004 B2
6779097 Gillingham et al. Aug 2004 B2
6785767 Coulson Aug 2004 B2
6791877 Miura et al. Sep 2004 B2
6795899 Dodd et al. Sep 2004 B2
6799241 Kahn et al. Sep 2004 B2
6801989 Johnson et al. Oct 2004 B2
6807598 Farmwald et al. Oct 2004 B2
6807655 Rehani et al. Oct 2004 B1
6816991 Sanghani Nov 2004 B2
6819602 Seo et al. Nov 2004 B2
6819617 Hwang et al. Nov 2004 B2
6820163 McCall et al. Nov 2004 B1
6820169 Wilcox et al. Nov 2004 B2
6826104 Kawaguchi et al. Nov 2004 B2
6839290 Ahmad et al. Jan 2005 B2
6845027 Mayer et al. Jan 2005 B2
6845055 Koga et al. Jan 2005 B1
6847582 Pan Jan 2005 B2
6850449 Takahashi Feb 2005 B2
6862202 Schaefer Mar 2005 B2
6862249 Kyung Mar 2005 B2
6862653 Dodd et al. Mar 2005 B1
6873534 Bhakta et al. Mar 2005 B2
6878570 Lyu et al. Apr 2005 B2
6894933 Kuzmenka et al. May 2005 B2
6898683 Nakamura May 2005 B2
6908314 Brown Jun 2005 B2
6912778 Ahn et al. Jul 2005 B2
6914786 Paulsen et al. Jul 2005 B1
6917219 New Jul 2005 B2
6922371 Takahashi et al. Jul 2005 B2
6930900 Bhakta et al. Aug 2005 B2
6930903 Bhakta et al. Aug 2005 B2
6938119 Kohn et al. Aug 2005 B2
6943450 Fee et al. Sep 2005 B2
6944748 Sanches et al. Sep 2005 B2
6947341 Stubbs et al. Sep 2005 B2
6951982 Chye et al. Oct 2005 B2
6952794 Lu Oct 2005 B2
6961281 Wong et al. Nov 2005 B2
6968416 Moy Nov 2005 B2
6968419 Holman Nov 2005 B1
6970968 Holman Nov 2005 B1
6980021 Srivastava et al. Dec 2005 B1
6986118 Dickman Jan 2006 B2
6992501 Rapport Jan 2006 B2
6992950 Foss et al. Jan 2006 B2
7000062 Perego et al. Feb 2006 B2
7003618 Perego et al. Feb 2006 B2
7003639 Tsern et al. Feb 2006 B2
7007095 Chen et al. Feb 2006 B2
7007175 Chang et al. Feb 2006 B2
7010642 Perego et al. Mar 2006 B2
7010736 Teh et al. Mar 2006 B1
7024518 Halbert et al. Apr 2006 B2
7026708 Cady et al. Apr 2006 B2
7028215 Depew et al. Apr 2006 B2
7028234 Huckaby et al. Apr 2006 B2
7033861 Partridge et al. Apr 2006 B1
7035150 Streif et al. Apr 2006 B2
7043599 Ware et al. May 2006 B1
7043611 McClannahan et al. May 2006 B2
7045396 Crowley et al. May 2006 B2
7045901 Lin et al. May 2006 B2
7046538 Kinsley et al. May 2006 B2
7053470 Sellers et al. May 2006 B1
7053478 Roper et al. May 2006 B2
7058776 Lee Jun 2006 B2
7058863 Kouchi et al. Jun 2006 B2
7061784 Jakobs et al. Jun 2006 B2
7061823 Faue et al. Jun 2006 B2
7066741 Burns et al. Jun 2006 B2
7075175 Kazi et al. Jul 2006 B2
7079396 Gates et al. Jul 2006 B2
7079441 Partsch et al. Jul 2006 B1
7079446 Murtagh et al. Jul 2006 B2
7085152 Ellis et al. Aug 2006 B2
7085941 Li Aug 2006 B2
7089438 Raad Aug 2006 B2
7093101 Aasheim et al. Aug 2006 B2
7103730 Saxena et al. Sep 2006 B2
7119428 Tanie et al. Oct 2006 B2
7120727 Lee et al. Oct 2006 B2
7126399 Lee Oct 2006 B1
7127567 Ramakrishnan et al. Oct 2006 B2
7133960 Thompson et al. Nov 2006 B1
7136978 Miura et al. Nov 2006 B2
7149145 Kim et al. Dec 2006 B2
7149824 Johnson Dec 2006 B2
7173863 Conley et al. Feb 2007 B2
7200021 Raghuram Apr 2007 B2
7205789 Karabatsos Apr 2007 B1
7210059 Jeddeloh Apr 2007 B2
7215561 Park et al. May 2007 B2
7218566 Totolos, Jr. et al. May 2007 B1
7224595 Dreps et al. May 2007 B2
7228264 Barrenscheen et al. Jun 2007 B2
7231562 Ohlhoff et al. Jun 2007 B2
7233541 Yamamoto et al. Jun 2007 B2
7234081 Nguyen et al. Jun 2007 B2
7243185 See et al. Jul 2007 B2
7245541 Janzen Jul 2007 B2
7254036 Pauley et al. Aug 2007 B2
7266639 Raghuram Sep 2007 B2
7269042 Kinsley et al. Sep 2007 B2
7269708 Ware Sep 2007 B2
7274583 Park et al. Sep 2007 B2
7277333 Schaefer Oct 2007 B2
7286436 Bhakta et al. Oct 2007 B2
7289386 Bhakta et al. Oct 2007 B2
7296754 Nishizawa et al. Nov 2007 B2
7299330 Gillingham et al. Nov 2007 B2
7302598 Suzuki et al. Nov 2007 B2
7307863 Yen et al. Dec 2007 B2
7317250 Koh et al. Jan 2008 B2
7363422 Perego et al. Apr 2008 B2
7366947 Gower et al. Apr 2008 B2
7379316 Rajan May 2008 B2
7386656 Rajan et al. Jun 2008 B2
7392338 Rajan et al. Jun 2008 B2
7408393 Jain et al. Aug 2008 B1
7409492 Tanaka et al. Aug 2008 B2
7414917 Ruckerbauer et al. Aug 2008 B2
7428644 Jeddeloh et al. Sep 2008 B2
7437579 Jeddeloh et al. Oct 2008 B2
7441064 Gaskins Oct 2008 B2
7457122 Lai et al. Nov 2008 B2
7464225 Tsern Dec 2008 B2
7472220 Rajan et al. Dec 2008 B2
7474576 Co et al. Jan 2009 B2
7480147 Hoss et al. Jan 2009 B2
7480774 Ellis et al. Jan 2009 B2
7496777 Kapil Feb 2009 B2
7515453 Rajan Apr 2009 B2
7532537 Solomon et al. May 2009 B2
7539800 Dell et al. May 2009 B2
7573136 Jiang et al. Aug 2009 B2
7580312 Rajan et al. Aug 2009 B2
7581121 Barth et al. Aug 2009 B2
7581127 Rajan et al. Aug 2009 B2
7590796 Rajan et al. Sep 2009 B2
7599205 Rajan Oct 2009 B2
7606245 Ma et al. Oct 2009 B2
7609567 Rajan et al. Oct 2009 B2
7613880 Miura et al. Nov 2009 B2
7619912 Bhakta et al. Nov 2009 B2
7724589 Rajan et al. May 2010 B2
7730338 Rajan et al. Jun 2010 B2
7761724 Rajan et al. Jul 2010 B2
20010000822 Dell et al. May 2001 A1
20010003198 Wu Jun 2001 A1
20010011322 Stolt et al. Aug 2001 A1
20010019509 Aho et al. Sep 2001 A1
20010021106 Weber et al. Sep 2001 A1
20010021137 Kai et al. Sep 2001 A1
20010046129 Broglia et al. Nov 2001 A1
20010046163 Yanagawa Nov 2001 A1
20020002662 Olarig et al. Jan 2002 A1
20020004897 Kao et al. Jan 2002 A1
20020015340 Batinovich Feb 2002 A1
20020019961 Blodgett Feb 2002 A1
20020034068 Weber et al. Mar 2002 A1
20020038405 Leddige et al. Mar 2002 A1
20020041507 Woo et al. Apr 2002 A1
20020051398 Mizugaki May 2002 A1
20020060945 Ikeda May 2002 A1
20020064073 Chien May 2002 A1
20020064083 Ryu et al. May 2002 A1
20020089831 Forthun Jul 2002 A1
20020089970 Asada et al. Jul 2002 A1
20020094671 Distefano et al. Jul 2002 A1
20020121650 Minamio et al. Sep 2002 A1
20020121670 Minamio et al. Sep 2002 A1
20020124195 Nizar Sep 2002 A1
20020129204 Leighnor et al. Sep 2002 A1
20020145900 Schaefer Oct 2002 A1
20020165706 Raynham Nov 2002 A1
20020167092 Fee et al. Nov 2002 A1
20020172024 Hui et al. Nov 2002 A1
20020174274 Wu et al. Nov 2002 A1
20020184438 Usui Dec 2002 A1
20030002262 Benisek et al. Jan 2003 A1
20030011993 Summers et al. Jan 2003 A1
20030016550 Yoo et al. Jan 2003 A1
20030021175 Tae Kwak Jan 2003 A1
20030026155 Yamagata Feb 2003 A1
20030026159 Frankowsky et al. Feb 2003 A1
20030035312 Halbert et al. Feb 2003 A1
20030039158 Horiguchi et al. Feb 2003 A1
20030041295 Hou et al. Feb 2003 A1
20030061458 Wilcox et al. Mar 2003 A1
20030061459 Aboulenein et al. Mar 2003 A1
20030083855 Fukuyama May 2003 A1
20030093614 Kohn et al. May 2003 A1
20030101392 Lee May 2003 A1
20030105932 David et al. Jun 2003 A1
20030117875 Lee et al. Jun 2003 A1
20030123389 Russell et al. Jul 2003 A1
20030126338 Dodd et al. Jul 2003 A1
20030127737 Takahashi Jul 2003 A1
20030131160 Hampel et al. Jul 2003 A1
20030145163 Seo et al. Jul 2003 A1
20030158995 Lee et al. Aug 2003 A1
20030164539 Yau Sep 2003 A1
20030164543 Kheng Lee Sep 2003 A1
20030182513 Dodd et al. Sep 2003 A1
20030183934 Barrett Oct 2003 A1
20030189868 Riesenman et al. Oct 2003 A1
20030189870 Wilcox Oct 2003 A1
20030191888 Klein Oct 2003 A1
20030191915 Saxena et al. Oct 2003 A1
20030200382 Wells et al. Oct 2003 A1
20030200474 Li Oct 2003 A1
20030205802 Segaram Nov 2003 A1
20030206476 Joo Nov 2003 A1
20030217303 Chua-Eoan et al. Nov 2003 A1
20030223290 Park et al. Dec 2003 A1
20030227798 Pax Dec 2003 A1
20030229821 Ma Dec 2003 A1
20030230801 Jiang et al. Dec 2003 A1
20030231540 Lazar et al. Dec 2003 A1
20030231542 Zaharinova-Papazova et al. Dec 2003 A1
20040016994 Huang Jan 2004 A1
20040027902 Ooishi et al. Feb 2004 A1
20040034732 Valin et al. Feb 2004 A1
20040034755 LaBerge et al. Feb 2004 A1
20040037133 Park et al. Feb 2004 A1
20040044808 Salmon et al. Mar 2004 A1
20040047228 Chen Mar 2004 A1
20040057317 Schaefer Mar 2004 A1
20040064647 DeWhitt et al. Apr 2004 A1
20040064767 Huckaby et al. Apr 2004 A1
20040083324 Rabinovitz et al. Apr 2004 A1
20040088475 Streif et al. May 2004 A1
20040100837 Lee May 2004 A1
20040117723 Foss Jun 2004 A1
20040123173 Emberling et al. Jun 2004 A1
20040125635 Kuzmenka Jul 2004 A1
20040133736 Kyung Jul 2004 A1
20040139359 Samson et al. Jul 2004 A1
20040145963 Byon Jul 2004 A1
20040151038 Ruckerbauer et al. Aug 2004 A1
20040174765 Seo et al. Sep 2004 A1
20040177079 Gluhovsky et al. Sep 2004 A1
20040178824 Pan Sep 2004 A1
20040184324 Pax Sep 2004 A1
20040186956 Perego et al. Sep 2004 A1
20040188704 Halbert et al. Sep 2004 A1
20040195682 Kimura Oct 2004 A1
20040196732 Lee Oct 2004 A1
20040205433 Gower et al. Oct 2004 A1
20040208173 Di Gregorio Oct 2004 A1
20040225858 Brueggen Nov 2004 A1
20040228166 Braun et al. Nov 2004 A1
20040228196 Kwak et al. Nov 2004 A1
20040228203 Koo Nov 2004 A1
20040230932 Dickmann Nov 2004 A1
20040236877 Burton Nov 2004 A1
20040250989 Im et al. Dec 2004 A1
20040256638 Perego et al. Dec 2004 A1
20040257847 Matsui et al. Dec 2004 A1
20040260957 Jeddeloh et al. Dec 2004 A1
20040264255 Royer Dec 2004 A1
20040268161 Ross Dec 2004 A1
20050018495 Bhakta et al. Jan 2005 A1
20050021874 Georgiou et al. Jan 2005 A1
20050024963 Jakobs et al. Feb 2005 A1
20050027928 Avraham et al. Feb 2005 A1
20050028038 Pomaranski et al. Feb 2005 A1
20050034004 Bunker et al. Feb 2005 A1
20050036350 So et al. Feb 2005 A1
20050041504 Perego et al. Feb 2005 A1
20050044303 Perego et al. Feb 2005 A1
20050044305 Jakobs et al. Feb 2005 A1
20050047192 Matsui et al. Mar 2005 A1
20050071543 Ellis et al. Mar 2005 A1
20050078532 Ruckerbauer et al. Apr 2005 A1
20050081085 Ellis et al. Apr 2005 A1
20050099834 Funaba et al. May 2005 A1
20050102590 Norris et al. May 2005 A1
20050105318 Funaba et al. May 2005 A1
20050108460 David May 2005 A1
20050127531 Tay et al. Jun 2005 A1
20050132158 Hampel et al. Jun 2005 A1
20050135176 Ramakrishnan et al. Jun 2005 A1
20050138267 Bains et al. Jun 2005 A1
20050138304 Ramakrishnan et al. Jun 2005 A1
20050139977 Nishio et al. Jun 2005 A1
20050141199 Chiou et al. Jun 2005 A1
20050149662 Perego et al. Jul 2005 A1
20050152212 Yang et al. Jul 2005 A1
20050156934 Perego et al. Jul 2005 A1
20050166026 Ware et al. Jul 2005 A1
20050193163 Perego et al. Sep 2005 A1
20050193183 Barth et al. Sep 2005 A1
20050194676 Fukuda et al. Sep 2005 A1
20050194991 Dour et al. Sep 2005 A1
20050195629 Leddige et al. Sep 2005 A1
20050201063 Lee et al. Sep 2005 A1
20050204111 Natarajan Sep 2005 A1
20050207255 Perego et al. Sep 2005 A1
20050210196 Perego et al. Sep 2005 A1
20050223179 Perego et al. Oct 2005 A1
20050224948 Lee et al. Oct 2005 A1
20050232049 Park Oct 2005 A1
20050235119 Sechrest et al. Oct 2005 A1
20050235131 Ware Oct 2005 A1
20050237838 Kwak et al. Oct 2005 A1
20050243635 Schaefer Nov 2005 A1
20050246558 Ku Nov 2005 A1
20050249011 Maeda Nov 2005 A1
20050259504 Murtugh et al. Nov 2005 A1
20050263312 Bolken et al. Dec 2005 A1
20050265506 Foss et al. Dec 2005 A1
20050269715 Yoo Dec 2005 A1
20050278474 Perersen et al. Dec 2005 A1
20050281096 Bhakta et al. Dec 2005 A1
20050281123 Bell et al. Dec 2005 A1
20050283572 Ishihara Dec 2005 A1
20050285174 Saito et al. Dec 2005 A1
20050289292 Morrow et al. Dec 2005 A1
20050289317 Liou et al. Dec 2005 A1
20060002201 Janzen Jan 2006 A1
20060010339 Klein Jan 2006 A1
20060026484 Hollums Feb 2006 A1
20060038597 Becker et al. Feb 2006 A1
20060039204 Cornelius Feb 2006 A1
20060039205 Cornelius Feb 2006 A1
20060041711 Miura et al. Feb 2006 A1
20060041730 Larson Feb 2006 A1
20060044909 Kinsley et al. Mar 2006 A1
20060044913 Klein et al. Mar 2006 A1
20060049502 Goodwin et al. Mar 2006 A1
20060050574 Streif et al. Mar 2006 A1
20060056244 Ware Mar 2006 A1
20060062047 Bhakta et al. Mar 2006 A1
20060067141 Perego et al. Mar 2006 A1
20060085616 Zeighami et al. Apr 2006 A1
20060087900 Bucksch et al. Apr 2006 A1
20060090031 Kirshenbaum et al. Apr 2006 A1
20060090054 Choi et al. Apr 2006 A1
20060106951 Bains May 2006 A1
20060112214 Yeh May 2006 A1
20060112219 Chawla et al. May 2006 A1
20060117152 Amidi et al. Jun 2006 A1
20060117160 Jackson et al. Jun 2006 A1
20060118933 Haba Jun 2006 A1
20060120193 Casper Jun 2006 A1
20060123265 Ruckerbauer et al. Jun 2006 A1
20060126369 Raghuram Jun 2006 A1
20060129712 Raghuram Jun 2006 A1
20060129740 Ruckerbauer et al. Jun 2006 A1
20060129755 Raghuram Jun 2006 A1
20060133173 Jain et al. Jun 2006 A1
20060136791 Nierle Jun 2006 A1
20060149982 Vogt Jul 2006 A1
20060174082 Bellows et al. Aug 2006 A1
20060176744 Stave Aug 2006 A1
20060179333 Brittain et al. Aug 2006 A1
20060179334 Brittain et al. Aug 2006 A1
20060180926 Mullen et al. Aug 2006 A1
20060181953 Rotenberg et al. Aug 2006 A1
20060195631 Rajamani Aug 2006 A1
20060198178 Kinsley et al. Sep 2006 A1
20060203590 Mori et al. Sep 2006 A1
20060206738 Jeddeloh et al. Sep 2006 A1
20060233012 Sekiguchi et al. Oct 2006 A1
20060236165 Cepulis et al. Oct 2006 A1
20060236201 Gower et al. Oct 2006 A1
20060248261 Jacob et al. Nov 2006 A1
20060248387 Nicholson et al. Nov 2006 A1
20060262586 Solomon et al. Nov 2006 A1
20060294295 Fukuzo Dec 2006 A1
20070005998 Jain et al. Jan 2007 A1
20070050530 Rajan Mar 2007 A1
20070058471 Rajan et al. Mar 2007 A1
20070070669 Tsern Mar 2007 A1
20070088995 Tsern et al. Apr 2007 A1
20070091696 Niggemeier et al. Apr 2007 A1
20070106860 Foster et al. May 2007 A1
20070136537 Doblar et al. Jun 2007 A1
20070162700 Fortin et al. Jul 2007 A1
20070188997 Hockanson et al. Aug 2007 A1
20070192563 Rajan et al. Aug 2007 A1
20070195613 Rajan et al. Aug 2007 A1
20070204075 Rajan et al. Aug 2007 A1
20070216445 Raghavan et al. Sep 2007 A1
20070247194 Jain Oct 2007 A1
20070279084 Oh et al. Dec 2007 A1
20070288683 Panabaker et al. Dec 2007 A1
20070288686 Arcedera et al. Dec 2007 A1
20070288687 Panabaker et al. Dec 2007 A1
20080002447 Gulachenski et al. Jan 2008 A1
20080010435 Smith et al. Jan 2008 A1
20080025108 Rajan et al. Jan 2008 A1
20080025122 Schakel et al. Jan 2008 A1
20080025136 Rajan et al. Jan 2008 A1
20080025137 Rajan et al. Jan 2008 A1
20080027697 Rajan et al. Jan 2008 A1
20080027702 Rajan et al. Jan 2008 A1
20080027703 Rajan et al. Jan 2008 A1
20080028135 Rajan et al. Jan 2008 A1
20080028136 Schakel et al. Jan 2008 A1
20080028137 Schakel et al. Jan 2008 A1
20080031030 Rajan et al. Feb 2008 A1
20080031072 Rajan et al. Feb 2008 A1
20080037353 Rajan et al. Feb 2008 A1
20080056014 Rajan et al. Mar 2008 A1
20080062773 Rajan et al. Mar 2008 A1
20080065820 Gillingham et al. Mar 2008 A1
20080082763 Rajan et al. Apr 2008 A1
20080086588 Danilak et al. Apr 2008 A1
20080089034 Hoss et al. Apr 2008 A1
20080098277 Hazelzet Apr 2008 A1
20080103753 Rajan et al. May 2008 A1
20080104314 Rajan et al. May 2008 A1
20080109206 Rajan et al. May 2008 A1
20080109595 Rajan et al. May 2008 A1
20080109597 Schakel et al. May 2008 A1
20080109598 Schakel et al. May 2008 A1
20080115006 Smith et al. May 2008 A1
20080120443 Rajan et al. May 2008 A1
20080120458 Gillingham et al. May 2008 A1
20080123459 Rajan et al. May 2008 A1
20080126687 Rajan et al. May 2008 A1
20080126688 Rajan et al. May 2008 A1
20080126689 Rajan et al. May 2008 A1
20080126690 Rajan et al. May 2008 A1
20080126692 Rajan et al. May 2008 A1
20080133825 Rajan et al. Jun 2008 A1
20080155136 Hishino Jun 2008 A1
20080159027 Kim Jul 2008 A1
20080170425 Rajan Jul 2008 A1
20080195894 Schreck et al. Aug 2008 A1
20080239857 Rajan et al. Oct 2008 A1
20080239858 Rajan et al. Oct 2008 A1
20090024789 Rajan et al. Jan 2009 A1
20090024790 Rajan et al. Jan 2009 A1
20090109613 Legen et al. Apr 2009 A1
20090216939 Smith et al. Aug 2009 A1
20090285031 Rajan et al. Nov 2009 A1
20090290442 Rajan Nov 2009 A1
20100005218 Gower et al. Jan 2010 A1
20100020585 Rajan Jan 2010 A1
20100257304 Rajan et al. Oct 2010 A1
20100271888 Rajan et al. Oct 2010 A1
20100281280 Rajan et al. Nov 2010 A1
Foreign Referenced Citations (27)
Number Date Country
102004051345 May 2006 DE
102004053316 May 2006 DE
102005036528 Feb 2007 DE
0644547 Mar 1995 EP
62121978 Jun 1987 JP
01171047 Jul 1989 JP
03-029357 Feb 1991 JP
03029357 Feb 1991 JP
03276487 Dec 1991 JP
03286234 Dec 1991 JP
07-141870 Jun 1995 JP
08077097 Mar 1996 JP
08077097 Mar 1996 JP
11-149775 Jun 1999 JP
2002025255 Jan 2002 JP
3304893 May 2002 JP
2006236388 Sep 2006 JP
1020040062717 Jul 2004 KR
WO 9505676 Feb 1995 WO
WO9900734 Jan 1999 WO
WO0190900 Nov 2001 WO
WO0197160 Dec 2001 WO
WO2007002324 Jan 2007 WO
WO2007028109 Mar 2007 WO
WO 2007038225 Apr 2007 WO
WO2007095080 Aug 2007 WO
WO2008063251 May 2008 WO