The present invention is related to the field of semiconductor package manufacturing. More specifically, the present invention relates to a semiconductor package with an internal routing circuit formed from multiple molding routing layers in the package.
There is a growing demand for high-performance semiconductor packages. However, increases in semiconductor circuit density pose interconnect challenges for a packaged chip's thermal, mechanical and electrical integrity. Thus, there is a need for a method of manufacturing a semiconductor package with improved routing capabilities.
Embodiments of the present invention are directed to a method of manufacturing a semiconductor package with an internal routing circuit. The internal routing circuit is formed from multiple molding routing layers in a plated and etched copper terminal semiconductor package by using a laser to activate areas of each molding compound layer of the semiconductor package. Each compound filler in the molding compound layer has a metal interior and an insulating outermost shell. The activated molding compound areas in the molding compound layer become metallized in an electroless plating solution to build conductive paths on the molding compound surface, while properties of non-activated molding compound areas are not changed.
In one aspect, a semiconductor package is provided. The semiconductor package includes package terminals, and a copper leadframe routing layer that includes copper routing circuits. The copper routing circuits are formed on a first side of a copper leadframe and the package terminals are formed on a second side of the copper leadframe.
The semiconductor package also includes at least one metal plated routing layer. Each of the at least one metal plated routing layer includes a plurality of interconnections coupled with routing circuits associated with a previous routing layer that is directly beneath the current metal plated routing layer, and an intermediary insulation layer formed on top of the previous routing layer. The plurality of interconnections protrudes from a top surface of the intermediary insulation layer that has cavities and exposed metal fillers at boundaries of the cavities. Molding compound of the intermediary insulation layer is on top of the routing circuits associated with the previous routing layer. Each of the at least one metal plated routing layer also includes metal routing circuits adhered in the cavities of the intermediary insulation layer. The metal routing circuits includes a plurality of metal plated layers.
In some embodiments, the routing circuits associated with each routing layer is structured differently from the routing circuits associated with other routing layers. In some embodiments, the metal routing circuits associated with each of the at least one metal plated routing layer is structured differently from the metal routing circuits associated with other metal plated routing layers.
In some embodiments, the exposed metal fillers are fillers in the intermediary insulation layer that have sides of insulation outermost shells of the fillers that are removed. Metal at the nuclei of the fillers are exposed.
The semiconductor package includes an internal routing circuit from die terminals on the die to the package terminals. The internal routing circuit is formed by all the routing layers in the semiconductor package. The semiconductor package also includes a die coupled with a topmost metal plated routing layer, a topmost insulation layer encapsulating the die and the topmost metal routing layer, and a bottommost insulation layer encapsulating the copper routing circuits.
In another aspect, a method of manufacturing semiconductor devices that includes a plurality of conductive routing layers is provided. The method includes obtaining an etched and plated leadframe that includes a plurality of copper routing circuits and a plurality of package terminals, wherein the plurality of copper routing circuits forms a copper leadframe routing layer. In some embodiments, obtaining an etched and plated leadframe includes etching a copper substrate to form the plurality of copper routing circuits at a top surface of the copper substrate, and plating a plurality of areas on surfaces of the copper substrate, thereby resulting in the etched and plated leadframe. The plurality of areas includes bottom plated areas that eventually form the plurality of package terminals and includes top plated areas that are on the plurality of copper routing circuits.
The method also includes forming at least one metal plated routing layer on top of the copper leadframe routing layer. Each of the at least one metal plated routing layer is formed by coupling a plurality of interconnections with routing circuits associated with a previous routing layer that is directly beneath the current metal plated routing layer being formed, forming an intermediary insulation layer on top of the previous routing layer, wherein the plurality of interconnections protrudes from a top surface of the intermediary insulation layer, removing areas of the intermediary insulation layer, thereby forming cavities in the intermediary insulation layer and exposing metal at the nuclei of fillers that are located at boundaries of the cavities, and adhering a metal layer in the cavities of the intermediary insulation layer to form a plurality of metal routing circuits that is included in the current metal plated routing layer.
In some embodiments, material of the intermediary insulation layer is a laser direct structuring molding compound that has a transforming property when blasted by a laser.
In some embodiments, the exposed metal fillers are fillers in the intermediary insulation layer, wherein the fillers have portions of their insulation outermost shells removed. In some embodiments, metal at the nuclei of the fillers are exposed.
In some embodiments, each of the at least one metal plated routing layer is further formed by, after adhering a metal layer in the cavities of the intermediary insulation layer, obtaining a desired thickness of the metal routing circuits whereby metal is plated on metal. The desired thickness of the metal routing circuits can be obtained via an electroless plating process, wherein the electroless plating process includes repeating the adhering step in one or more loops.
The method also includes coupling a plurality of dies with a topmost metal plated routing layer, encapsulating the plurality of dies and the topmost metal routing layer with a topmost insulation layer, etching away exposed copper at the bottom of the leadframe, thereby isolating the plurality of package terminals and exposing the plurality of copper routing circuits at the bottom of the leadframe, encapsulating the plurality of exposed copper routing circuits at the bottom of the leadframe with a bottommost insulation layer, and performing a cut-through procedure to singulate the semiconductor packages from each other.
The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
In the following description, numerous details are set forth for purposes of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. Thus, the present invention is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features described herein.
Embodiments of the present invention are directed to a method of manufacturing a semiconductor package with an internal routing circuit. The internal routing circuit is formed from multiple molding routing layers in a plated and etched copper terminal semiconductor package by using a laser to activate areas of each molding compound layer of the semiconductor package. Each compound filler in the molding compound layer has a metal interior and an insulating outermost shell. The activated molding compound areas in the molding compound layer become metallized in an electroless plating solution to build conductive paths on the molding compound surface, while properties of non-activated molding compound areas are not changed.
The semiconductor package 100, as shown, includes three conductive routing path layers 150, 160, 170 electrically coupled via interconnections 155, 165 that are disposed between the routing path layers 150, 160, 170. The conductive routing path layers 150, 160, 170 form at least partially the internal routing circuit of the semiconductor package 100. However, it is noted that by the concepts discussed herein, more or less conductive routing layers can be formed within a semiconductor package. Typically, the topmost conductive routing path layer (e.g., conductive routing path layer 170 in
In some embodiments, the bottommost conductive routing path layer is a copper leadframe routing layer and each subsequent conductive routing path layer formed above the bottommost conductive routing path layer is a metal plated routing layer.
At a Step 203, a plurality of interconnections 308 is formed on top of the leadframe 300. In some embodiments, the interconnections 308 are formed on the copper routing circuits 304 and coupled with the top plated areas 306. The material(s) of the interconnections 308 can be Cu, PdCu, AuPdCu wire, Ag wire, Ag allow wire and Au wire from a wire bond process, Ag alloy or the like, such as a soldering allow material. The process to apply this material(s) can be writing dispensing, printing (e.g., 3D inkjet printing), screen printing, electrical discharge coating, or any other suitable process.
At a Step 205, an insulation layer 310 is formed on top of the leadframe 300, resulting in a molded leadframe, to form a base of the second conductive routing path layer 160 in
At a Step 207, a removal process is performed to create a structure of conductive paths 322, which are also referred to as metal routing circuits, in the molding compound 310, resulting in a laser patterned leadframe. A laser is used to blast away areas 312 of the insulation layer 310 to form cavities. The compound resin 310b and the compound fillers 310a in these areas 312 are removed. The cavities form the structure of the metal routing circuits 322. The insulation layer 310 is transformed from non-electrical conductive material to electrical conductive material at the blasted areas 312. At the boundary of the these cavities 312, sides of insulation outermost shells of the fillers 310a, which have been blasted by laser, are also removed, exposing the metal at the nuclei of the fillers 310a. The cavities 312 become metallized in the following electroless plating process to build the conductive paths 322. Properties of non-activated molding compound areas 314 are not changed. The structure of the conductive paths 322 encompasses the interconnections 308 such that the conductive paths 322 eventually formed will be in electrical communication with the interconnections 308 and with all conductive paths in previous conductive routing layers.
At a Step 209, a plating process is performed to plate the laser patterned leadframe with a metal chemical solution 324, resulting in an electroless plated leadframe. The plating process is an electroless plating process. In some embodiments, the laser patterned leadframe is dipped in the metal chemical solution 324. An exemplary metal substance in the metal chemical solution is Cu, Ni or another suitable metal substance. The metal substance in the metal chemical solution reacts with the exposed metal fillers on the surface of the molding compound 310 but does not react with the surface of the molding compound 310 without the exposed metal fillers. Put differently, there is no chemical reaction at non-activated molding compound areas 314. The metal substance anchors on to the laser activated areas on the molding compound surface to form the conductive paths 322.
Multi-metal layers can be plated on top of each other to obtain a desired thickness of the conductive paths 322 in the cavities formed on the molding compound 310, as illustrated in
In the case additional routing path layers are required, returning to the method 200, at the Step 211, a plurality of interconnections 326 is formed on top of the leadframe 300. In some embodiments, the interconnections 326 are formed on the conductive metal routing circuits 322. The interconnections 326 are made of the same or different material as the interconnections 308. The process of applying the interconnections 326 can be the same as or different from the process of applying the interconnections 308.
At the Step 213, an insulation layer 330 is formed on top of the leadframe 300 to form a base of the next (e.g., third) conductive routing path layer 170 in
At the Step 215, conductive paths 332 on the molding compound 330 are formed from the process described above. The conductive paths 332 can have the same or different shape as the conductive paths in any of the previous routing layers (e.g., conductive paths 322) as long as the conductive paths 332 are directly over and in electrical communication with the interconnections 326. These metal routing circuits 332 on the molding compound 330 is included in the third conductive routing path layer 170 in
In the same manner, if the semiconductor package requires additional conductive routing path layers, the Steps 211 to 215 can be repeated until a number of conductive routing path layers are obtained.
At a Step 217, a plurality of semiconductor dies 334 is coupled on the conductive paths on the topmost conductive routing path layer (e.g., the topmost conductive routing path layer 170 in
At a Step 219, at least the plurality of semiconductor dies 334 and the topmost conductive routing path layer are encapsulated with a molding compound 342, resulting in a molded leadframe strip 344.
At a Step 221, a chemical etching process, such as a copper chemical etching dip process or a copper chemical etching spray process, is performed on the molded leadframe strip 344. At the bottom of the molded leadframe strip 344, the copper surface that is covered with the pre-plated metal from the Step 201 is not etched away, while the copper surface that is not covered with the pre-plated metal from the Step 201 is etched away. The chemical etching process reacts with the copper until it reaches the molding compound 310. After the copper is removed, the package terminals are isolated from each other and the copper routing circuits 304 of the first routing path layer is revealed at the bottom of the molded leadframe strip 344.
At a Step 223, an insulation layer 346 is formed on bottom of the are exposed. In some embodiments, the package terminals are flush with the insulation layer 346. Alternatively, the package terminals protrude from the insulation layer 346. The insulation layer 346 protects the copper routing circuits 304 from causing issues with its environment, such as in a printed circuit board.
At a Step 225, a cut through procedure is performed to isolate semiconductor packages 350 from the leadframe 344. A tool 348, such as a saw, is used to fully cut the leadframe along the singulation paths. Each semiconductor package 350 is similarly configured as the semiconductor package 100.
A semiconductor package, such as the singulated semiconductor package 350, includes package terminals, and a copper leadframe routing layer that includes copper routing circuits. The copper routing circuits are formed on a first side of a copper leadframe and the package terminals are formed on a second side of the copper leadframe.
The semiconductor package also includes at least one metal plated routing layer. Each of the at least one metal plated routing layer includes a plurality of interconnections coupled with routing circuits associated with a previous routing layer that is directly beneath the current metal plated routing layer, and an intermediary insulation layer formed on top of the previous routing layer. The plurality of interconnections protrudes from a top surface of the intermediary insulation layer that has cavities and exposed metal fillers at boundaries of the cavities. Molding compound of the intermediary insulation layer is on top of the routing circuits associated with the previous routing layer. Each of the at least one metal plated routing layer also includes metal routing circuits adhered in the cavities of the intermediary insulation layer. The metal routing circuits includes a plurality of metal plated layers.
In some embodiments, the routing circuits associated with each routing layer is structured differently from the routing circuits associated with other routing layers. In some embodiments, the metal routing circuits associated with each of the at least one metal plated routing layer is structured differently from the metal routing circuits associated with other metal plated routing layers.
In some embodiments, the exposed metal fillers are fillers in the intermediary insulation layer that have sides of insulation outermost shells of the fillers that are removed. Metal at the nuclei of the fillers are exposed.
The semiconductor package includes an internal routing circuit from die terminals on the die to the package terminals. The internal routing circuit is formed by all the routing layers in the semiconductor package. The semiconductor package also includes a die coupled with a topmost metal plated routing layer, a topmost insulation layer encapsulating the die and the topmost metal routing layer, and a bottommost insulation layer encapsulating the copper routing circuits.
At a Step 503, at least one metal plated routing layer is formed on top of the copper leadframe routing layer. Each of the at least one metal plated routing layer is formed by the method 550 illustrated in
Referring to
At a Step 517, an intermediary insulation layer is formed on top of the previous routing layer. The plurality of interconnections protrudes from a top surface of the intermediary insulation layer. In some embodiments, material of the intermediary insulation layer is a laser direct structuring molding compound that has a transforming property when blasted by a laser.
At a Step 519, areas of the intermediary insulation layer are removed to form cavities in the intermediary insulation layer and to expose metal at the nuclei of fillers that are located at boundaries of the cavities.
In some embodiments, the exposed metal fillers are fillers in the intermediary insulation layer, wherein these fillers have portions of their insulation outermost shells removed and metal at the nuclei exposed.
At a Step 521, a metal layer is adhered in the cavities of the intermediary insulation layer to form a plurality of metal routing circuits that is included in the current metal plated routing layer.
In some embodiments, a desired thickness of the metal routing circuits is obtained whereby metal is plated on metal. The desired thickness of the metal routing circuits is obtained via an electroless plating process, wherein the electroless plating process includes repeating the adhering step in one or more loops.
Returning to
At a Step 507, the plurality of dies and the topmost metal routing layer are encapsulated with a topmost insulation layer.
At a Step 509, exposed copper at the bottom of the leadframe is etched away, thereby isolating the plurality of package terminals and exposing the plurality of copper routing circuits at the bottom of the leadframe.
At a Step 511, the plurality of exposed copper routing circuits at the bottom of the leadframe is encapsulated with a bottommost insulation layer.
At a Step 513, a cut-through procedure is performed to singulate the semiconductor packages from each other.
It is noted that the demonstration discussed herein is on a semiconductor package with three conductive routing path layers. However, by the concept of this invention, it is possible to create more conductive routing layers to stack on each other such that a final semiconductor package can have more than three conductive routing path layers.
One of ordinary skill in the art will realize other uses and advantages also exist. While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art will understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
This application is a divisional application which claims priority under 35 U.S.C. 121 of the co-pending U.S. patent application Ser. No. 15/347,666, filed Nov. 9, 2016, entitled “A Semiconductor Package with Multiple Molding Routing Layers and a Method of Manufacturing the Same,” which in turn claims benefit of priority under 35 U.S.C. section 119(e) of U.S. Provisional Patent Application Ser. No. 62/253,601, filed Nov. 10, 2015, entitled “Semiconductor Package with Multi Molding Routing Layers,” which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3611061 | Segerson | Oct 1971 | A |
4411719 | Lindberg | Oct 1983 | A |
4501960 | Jouvet et al. | Feb 1985 | A |
4801561 | Sankhagowit | Jan 1989 | A |
4855672 | Shreeve | Aug 1989 | A |
5105259 | McShane et al. | Apr 1992 | A |
5195023 | Manzione et al. | Mar 1993 | A |
5247248 | Fukunaga | Sep 1993 | A |
5248075 | Young et al. | Sep 1993 | A |
5281851 | Mills et al. | Jan 1994 | A |
5292688 | Hsiao | Mar 1994 | A |
5396185 | Honma et al. | Mar 1995 | A |
5397921 | Kamezos | Mar 1995 | A |
5479105 | Kim et al. | Dec 1995 | A |
5535101 | Miles et al. | Jul 1996 | A |
5596231 | Combs | Jan 1997 | A |
5843808 | Kamezos | Dec 1998 | A |
5959363 | Yamada et al. | Sep 1999 | A |
5976912 | Fukutomi et al. | Nov 1999 | A |
5990692 | Jeong et al. | Nov 1999 | A |
6033933 | Hur | Mar 2000 | A |
6072239 | Yoneda et al. | Jun 2000 | A |
6111324 | Sheppard et al. | Aug 2000 | A |
6159770 | Tetaka et al. | Dec 2000 | A |
6177129 | Wagner et al. | Jan 2001 | B1 |
6177729 | Benenati et al. | Jan 2001 | B1 |
6197615 | Song et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6229200 | Mclellan et al. | May 2001 | B1 |
6242281 | Mclellan et al. | Jun 2001 | B1 |
6250841 | Ledingham | Jun 2001 | B1 |
6284569 | Sheppard et al. | Sep 2001 | B1 |
6285075 | Combs et al. | Sep 2001 | B1 |
6294100 | Fan et al. | Sep 2001 | B1 |
6304000 | Isshiki et al. | Oct 2001 | B1 |
6326678 | Kamezos et al. | Dec 2001 | B1 |
6329711 | Kawahara et al. | Dec 2001 | B1 |
6353263 | Dotta et al. | Mar 2002 | B1 |
6372625 | Shigeno et al. | Apr 2002 | B1 |
6376921 | Yoneda et al. | Apr 2002 | B1 |
6384472 | Huang | May 2002 | B1 |
6392427 | Yang | May 2002 | B1 |
6414385 | Huang et al. | Jul 2002 | B1 |
6429048 | McLellan et al. | Aug 2002 | B1 |
6448665 | Nakazawa | Sep 2002 | B1 |
6451709 | Hembree | Sep 2002 | B1 |
6455348 | Yamaguchi | Sep 2002 | B1 |
6476469 | Hung et al. | Nov 2002 | B2 |
6489218 | Kim et al. | Dec 2002 | B1 |
6498099 | McLellan et al. | Dec 2002 | B1 |
6507116 | Caletka et al. | Jan 2003 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545347 | McClellan | Apr 2003 | B2 |
6552417 | Combs | Apr 2003 | B2 |
6552423 | Song et al. | Apr 2003 | B2 |
6566740 | Yasunaga et al. | May 2003 | B2 |
6573121 | Yoneda et al. | Jun 2003 | B2 |
6585905 | Fan et al. | Jul 2003 | B1 |
6586834 | Sze et al. | Jul 2003 | B1 |
6635957 | Kwan et al. | Oct 2003 | B2 |
6661104 | Jiang | Dec 2003 | B2 |
6667191 | McLellan | Dec 2003 | B1 |
6683368 | Mostafazadeh | Jan 2004 | B1 |
6686667 | Chen et al. | Feb 2004 | B2 |
6703696 | Ikenaga et al. | Mar 2004 | B2 |
6723585 | Tu et al. | Apr 2004 | B1 |
6724071 | Combs | Apr 2004 | B2 |
6734044 | Fan et al. | May 2004 | B1 |
6734552 | Combs et al. | May 2004 | B2 |
6737755 | McLellan et al. | May 2004 | B1 |
6750546 | Villanueva et al. | Jun 2004 | B1 |
6764880 | Wu et al. | Jul 2004 | B2 |
6781242 | Fan et al. | Aug 2004 | B1 |
6800948 | Fan et al. | Oct 2004 | B1 |
6812552 | Islam et al. | Nov 2004 | B2 |
6818472 | Fan et al. | Nov 2004 | B1 |
6818978 | Fan | Nov 2004 | B1 |
6818980 | Pedron, Jr. | Nov 2004 | B1 |
6841859 | Thamby et al. | Jan 2005 | B1 |
6876066 | Fee et al. | Apr 2005 | B2 |
6894376 | Mostafazadeh et al. | May 2005 | B1 |
6897428 | Minamio et al. | May 2005 | B2 |
6927483 | Lee et al. | Aug 2005 | B1 |
6933176 | Kirloskar et al. | Aug 2005 | B1 |
6933594 | McLellan et al. | Aug 2005 | B2 |
6940154 | Pedron et al. | Sep 2005 | B2 |
6946324 | McLellan et al. | Sep 2005 | B1 |
6964918 | Fan et al. | Nov 2005 | B1 |
6967126 | Lee et al. | Nov 2005 | B2 |
6979594 | Fan et al. | Dec 2005 | B1 |
6982491 | Fan et al. | Jan 2006 | B1 |
6984785 | Diao et al. | Jan 2006 | B1 |
6989294 | McLellan et al. | Jan 2006 | B1 |
6995460 | McLellan et al. | Feb 2006 | B1 |
7008825 | Bancod et al. | Mar 2006 | B1 |
7009286 | Kirloskar et al. | Mar 2006 | B1 |
7041533 | Akram et al. | May 2006 | B1 |
7045883 | McCann et al. | May 2006 | B1 |
7049177 | Fan et al. | May 2006 | B1 |
7052935 | Pai et al. | May 2006 | B2 |
7060535 | Sirinorakul et al. | Jun 2006 | B1 |
7071545 | Patel et al. | Jul 2006 | B1 |
7091581 | McLellan et al. | Aug 2006 | B1 |
7101210 | Lin et al. | Sep 2006 | B2 |
7102210 | Ichikawa | Sep 2006 | B2 |
7126218 | Darveaux et al. | Oct 2006 | B1 |
7205178 | Shiu et al. | Apr 2007 | B2 |
7224048 | McLellan et al. | May 2007 | B1 |
7247526 | Fan et al. | Jul 2007 | B1 |
7253503 | Fusaro et al. | Aug 2007 | B1 |
7259678 | Brown et al. | Aug 2007 | B2 |
7268415 | Abbott et al. | Sep 2007 | B2 |
7274088 | Wu et al. | Sep 2007 | B2 |
7314820 | Lin et al. | Jan 2008 | B2 |
7315077 | Choi et al. | Jan 2008 | B2 |
7315080 | Fan et al. | Jan 2008 | B1 |
7342305 | Diao et al. | Mar 2008 | B1 |
7344920 | Kirloskar et al. | Mar 2008 | B1 |
7348663 | Kirloskar et al. | Mar 2008 | B1 |
7358119 | McLellan et al. | Apr 2008 | B2 |
7371610 | Fan et al. | May 2008 | B1 |
7372151 | Fan et al. | May 2008 | B1 |
7381588 | Patel et al. | Jun 2008 | B1 |
7399658 | Shim et al. | Jul 2008 | B2 |
7408251 | Hata et al. | Aug 2008 | B2 |
7411289 | McLellan et al. | Aug 2008 | B1 |
7449771 | Fan et al. | Nov 2008 | B1 |
7459345 | Hwan | Dec 2008 | B2 |
7476975 | Ogata | Jan 2009 | B2 |
7482690 | Fan et al. | Jan 2009 | B1 |
7495319 | Fukuda et al. | Feb 2009 | B2 |
7595225 | Fan et al. | Sep 2009 | B1 |
7608484 | Lange et al. | Oct 2009 | B2 |
7709857 | Kim et al. | May 2010 | B2 |
7714418 | Lim | May 2010 | B2 |
8710651 | Sakata et al. | Apr 2014 | B2 |
9006034 | Sirinorakul | Apr 2015 | B1 |
20010005047 | Jimarez et al. | Jun 2001 | A1 |
20010007285 | Yamada et al. | Jul 2001 | A1 |
20020090162 | Asada et al. | Jul 2002 | A1 |
20020109214 | Minamio et al. | Aug 2002 | A1 |
20020125550 | Estacio | Sep 2002 | A1 |
20030006055 | Chien-Hung et al. | Jan 2003 | A1 |
20030045032 | Abe | Mar 2003 | A1 |
20030071333 | Matsuzawa | Apr 2003 | A1 |
20030102540 | Lee | Jun 2003 | A1 |
20030143776 | Pedron, Jr. et al. | Jul 2003 | A1 |
20030178719 | Combs et al. | Sep 2003 | A1 |
20030201520 | Knapp et al. | Oct 2003 | A1 |
20030207498 | Islam et al. | Nov 2003 | A1 |
20030234454 | Pedron et al. | Dec 2003 | A1 |
20040014257 | Kim et al. | Jan 2004 | A1 |
20040026773 | Koon et al. | Feb 2004 | A1 |
20040046237 | Abe et al. | Mar 2004 | A1 |
20040046241 | Combs et al. | Mar 2004 | A1 |
20040070055 | Punzalan et al. | Apr 2004 | A1 |
20040080025 | Kasahara et al. | Apr 2004 | A1 |
20040110319 | Fukutomi et al. | Jun 2004 | A1 |
20050003586 | Shimanuki et al. | Jan 2005 | A1 |
20050077613 | McLellan et al. | Apr 2005 | A1 |
20050184404 | Huang et al. | Aug 2005 | A1 |
20050236701 | Minamio et al. | Oct 2005 | A1 |
20050263864 | Islam et al. | Dec 2005 | A1 |
20060019481 | Liu et al. | Jan 2006 | A1 |
20060071351 | Lange | Apr 2006 | A1 |
20060097366 | Sirinorakul et al. | May 2006 | A1 |
20060170081 | Gerber et al. | Aug 2006 | A1 |
20060192295 | Lee et al. | Aug 2006 | A1 |
20060223229 | Kirloskar et al. | Oct 2006 | A1 |
20060223237 | Combs et al. | Oct 2006 | A1 |
20060237231 | Hata et al. | Oct 2006 | A1 |
20060273433 | Itou et al. | Dec 2006 | A1 |
20070001278 | Jeon et al. | Jan 2007 | A1 |
20070013038 | Yang | Jan 2007 | A1 |
20070029540 | Kajiwara et al. | Feb 2007 | A1 |
20070093000 | Shim et al. | Apr 2007 | A1 |
20070200210 | Zhao et al. | Aug 2007 | A1 |
20070235217 | Workman | Oct 2007 | A1 |
20080048308 | Lam | Feb 2008 | A1 |
20080150094 | Anderson | Jun 2008 | A1 |
20080251913 | Inomata | Oct 2008 | A1 |
20080293232 | Kang et al. | Nov 2008 | A1 |
20090014848 | Ong Wai Lian et al. | Jan 2009 | A1 |
20090152691 | Nguyen et al. | Jun 2009 | A1 |
20090152694 | Bemmert et al. | Jun 2009 | A1 |
20090160041 | Fan | Jun 2009 | A1 |
20090230525 | Chang Chien et al. | Sep 2009 | A1 |
20090236713 | Xu et al. | Sep 2009 | A1 |
20090321778 | Chen et al. | Dec 2009 | A1 |
20100133565 | Cho et al. | Jun 2010 | A1 |
20100149773 | Said | Jun 2010 | A1 |
20100178734 | Lin | Jul 2010 | A1 |
20100184256 | Chino | Jul 2010 | A1 |
20100224971 | Li | Sep 2010 | A1 |
20100327432 | Sirinorakul | Dec 2010 | A1 |
20110076805 | Nondhasitthichai et al. | Mar 2011 | A1 |
20110115061 | Krishnan et al. | May 2011 | A1 |
20110201159 | Mori et al. | Aug 2011 | A1 |
20120119373 | Hunt | May 2012 | A1 |
20120146199 | McMillan et al. | Jun 2012 | A1 |
20120178214 | Lam | Jul 2012 | A1 |
20120295484 | Sato | Nov 2012 | A1 |
20130069221 | Lee et al. | Mar 2013 | A1 |
20140264839 | Tsai | Sep 2014 | A1 |
20150235873 | Wu et al. | Aug 2015 | A1 |
20150344730 | Lee et al. | Dec 2015 | A1 |
20160163566 | Chen et al. | Jun 2016 | A1 |
20160174374 | Kong | Jun 2016 | A1 |
Entry |
---|
Michael Quirk and Julian Serda, Semiconductor Manufacturing Technology, Pearson Education International, Pearson Prentice Hall, 2001, 4 pages. |
Office Action dated Sep. 16, 2013, U.S. Appl. No. 13/689,531, filed Nov. 29, 2012, Saravuth Sirinorakul et al., 24 pages. |
Office Action dated Dec. 20, 2013, U.S. Appl. No. 13/689,531, filed Nov. 29, 2012, Saravuth Sirinorakul et al., 13 pages. |
Office Action dated Nov. 2, 2015, U.S. Appl. No. 12/834,688, filed Jul. 12, 2010, Saravuth Sirinorakul, 17 pages. |
Notice of Allowance dated Feb. 27, 2015, U.S. Appl. No. 13/689,566, filed Nov. 29, 2012, Saravuth Sirinorakul, 8 pages. |
Office Action from the U.S. Patent Office, U.S. Appl. No. 12/002,054, filed Dec. 14, 2007, First Named Inventor: Somchai Nondhasitthichai, dated Aug. 19, 2015, 17 pages. |
Notice of Allowance from the U.S. Patent Office, U.S. Appl. No. 12/378,119, filed Feb. 10, 2009, First Named Inventor: Somchai Nondhasitthichai, dated Jul. 23, 2015, 7 pages. |
Office Action dated Dec. 19, 2012, U.S. Appl. No. 12/834,688, filed Jul. 12, 2010, Saravuth Sirinorakul, 26 pages. |
Number | Date | Country | |
---|---|---|---|
20170352554 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62253601 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15347666 | Nov 2016 | US |
Child | 15667433 | US |