Stackable molded microelectronic packages

Information

  • Patent Grant
  • 10128216
  • Patent Number
    10,128,216
  • Date Filed
    Friday, December 9, 2016
    7 years ago
  • Date Issued
    Tuesday, November 13, 2018
    6 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Tobergte; Nicholas
    Agents
    • Lerner, David, Littenberg, Krumholz & Mentlik, LLP
Abstract
A microelectronic package has a microelectronic element overlying or mounted to a first surface of a substrate and substantially rigid conductive posts projecting above the first surface or projecting above a second surface of the substrate remote therefrom. Conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project are electrically interconnected with the microelectronic element. An encapsulant overlies at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a recess or a plurality of openings each permitting at least one electrical connection to be made to at least one conductive post. At least some conductive posts are electrically insulated from one another and adapted to simultaneously carry different electric potentials. In particular embodiments, the openings in the encapsulant at least partially expose conductive masses joined to posts, fully expose top surfaces of posts and partially expose edge surfaces of posts, or may only partially expose top surfaces of posts.
Description
FIELD OF THE INVENTION

The present invention relates to microelectronic packages and to methods of making or testing microelectronic packages.


BACKGROUND OF THE INVENTION

Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.


Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.


Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.


Assemblies including packages can suffer from stresses imposed by differential thermal expansion and contraction of the device and the substrate. During operation, as well as during manufacture, a semiconductor chip tends to expand and contract by an amount different from the amount of expansion and contraction of a circuit board. Where the terminals of the package are fixed relative to the chip or other device, such as by using solder, these effects tend to cause the terminals to move relative to the contact pads on the circuit board. This can impose stresses in the solder that connects the terminals to the contact pads on the circuit board. As disclosed in certain preferred embodiments of U.S. Pat. Nos. 5,679,977; 5,148,266; 5,148,265; 5,455,390; and 5,518,964, the disclosures of which are incorporated by reference herein, semiconductor chip packages can have terminals that are movable with respect to the chip or other device incorporated in the package. Such movement can compensate to an appreciable degree for differential expansion and contraction.


Testing of packaged devices poses another formidable problem. In some manufacturing processes, it is necessary to make temporary connections between the terminals of the packaged device and a test fixture, and operate the device through these connections to assure that the device is fully functional. Ordinarily, these temporary connections must be made without bonding the terminals of the package to the test fixture. It is important to assure that all of the terminals are reliably connected to the conductive elements of the test fixture. However, it is difficult to make connections by pressing the package against a simple test fixture such as an ordinary circuit board having planar contact pads. If the terminals of the package are not coplanar, or if the conductive elements of the test fixture are not coplanar, some of the terminals will not contact their respective contact pads on the test fixture. For example, in a BGA package, differences in the diameter of the solder balls attached to the terminals, and non-planarity of the chip carrier, may cause some of the solder balls to lie at different heights.


These problems can be alleviated through the use of specially constructed test fixtures having features arranged to compensate for non-planarity. However, such features add to the cost of the test fixture and, in some cases, introduce some unreliability into the test fixture itself. This is particularly undesirable because the test fixture, and the engagement of the device with the test fixture, should be more reliable than the packaged devices themselves in order to provide a meaningful test. Moreover, devices used for high-frequency operation are typically tested by applying high frequency signals. This requirement imposes constraints on the electrical characteristics of the signal paths in the test fixture, which further complicates construction of the test fixture.


Additionally, when testing packaged devices having solder balls connected with terminals, solder tends to accumulate on those parts of the test fixture that engage the solder balls. This accumulation of solder residue can shorten the life of the test fixture and impair its reliability.


A variety of solutions have been put forth to deal with the aforementioned problems. Certain packages disclosed in the aforementioned patents have terminals that can move with respect to the microelectronic device. Such movement can compensate to some degree for non-planarity of the terminals during testing.


U.S. Pat. Nos. 5,196,726 and 5,214,308, both issued to Nishiguchi et al., disclose a BGA-type approach in which bump leads on the face of the chip are received in cup-like sockets on the substrate and bonded therein by a low-melting point material. U.S. Pat. No. 4,975,079 issued to Beaman et al. discloses a test socket for chips in which dome-shaped contacts on the test substrate are disposed within conical guides. The chip is forced against the substrate so that the solder balls enter the conical guides and engage the dome-shaped pins on the substrate. Sufficient force is applied so that the dome-shaped pins actually deform the solder balls of the chip.


A further example of a BGA socket may be found in commonly assigned U.S. Pat. No. 5,802,699, issued Sep. 8, 1998, the disclosure of which is hereby incorporated by reference herein. The '699 patent discloses a sheet-like connector having a plurality of holes. Each hole is provided with at least one resilient laminar contact extending inwardly over a hole. The bump leads of a BGA device can be advanced into the holes so that the bump leads are engaged with the contacts. The assembly can be tested, and if found acceptable, the bump leads can be permanently bonded to the contacts.


Commonly assigned U.S. Pat. No. 6,202,297, issued Mar. 20, 2001, the disclosure of which is hereby incorporated by reference herein, discloses a connector for microelectronic devices having bump leads and methods for fabricating and using the connector. In one embodiment of the '297 patent, a dielectric substrate has a plurality of posts extending upwardly from a front surface. The posts may be arranged in an array of post groups, with each post group defining a gap therebetween. A generally laminar contact extends from the top of each post. In order to test a device, the bump leads of the device are each inserted within a respective gap thereby engaging the contacts which wipe against the bump lead as it continues to be inserted. Typically, distal portions of the contacts deflect downwardly toward the substrate and outwardly away from the center of the gap as the bump lead is inserted into a gap.


Commonly assigned U.S. Pat. No. 6,177,636, the disclosure of which is hereby incorporated by reference herein, discloses a method and apparatus for providing interconnections between a microelectronic device and a supporting substrate. In one preferred embodiment of the '636 patent, a method of fabricating an interconnection component for a microelectronic device includes providing a flexible chip carrier having first and second surfaces and coupling a conductive sheet to the first surface of the chip carrier. The conductive sheet is then selectively etched to produce a plurality of substantially rigid posts. A compliant layer can be provided on the second surface of the support structure and a microelectronic device such as a semiconductor chip is engaged with the compliant layer so that the compliant layer lies between the microelectronic device and the chip carrier, and leaving the posts projecting from the exposed surface of the chip carrier. The posts are electrically connected to the microelectronic device. The posts form projecting package terminals that can be engaged in a socket or solder-bonded to features of a substrate as, for example, a circuit panel. Because the posts can be movable with respect to the microelectronic device, such a package can substantially accommodate thermal coefficient of expansion mismatches between the device and a supporting substrate when the device is in use. Moreover, the tips of the posts can be coplanar or nearly coplanar.


Despite all of the above-described advances in the art, still further improvements in making or testing microelectronic packages would be desirable.


SUMMARY OF THE INVENTION

A microelectronic package has a microelectronic element overlying or mounted to a first surface of a substrate and substantially rigid conductive posts projecting above the first surface or projecting above a second surface of the substrate remote therefrom. Conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project are electrically interconnected with the microelectronic element. An encapsulant overlies at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a recess or a plurality of openings each permitting at least one electrical connection to be made to at least one conductive post. At least some conductive posts are electrically insulated from one another and adapted to simultaneously carry different electric potentials. In particular embodiments, the openings in the encapsulant at least partially expose conductive masses joined to posts, fully expose top surfaces of posts and partially expose edge surfaces of posts, or may only partially expose top surfaces of posts.


In one embodiment, the conductive posts project to a first height above at least one of the first or second surfaces, the encapsulant contacts the conductive posts and has a major surface at a second height above the same surface of the substrate above which the conductive posts project, the second height being greater than the first height, and the openings in the encapsulant being openings in the major surface.


In a particular embodiment, the conductive posts can project above the first surface and the conductive elements can be exposed at the second surface.


In one embodiment, the first surface can have a first region and a second region extending from the first region. The microelectronic element may overlie the first region, and the posts can be aligned with the second region.


In a particular embodiment, the conductive posts can project above the second surface and the conductive elements can be exposed at the first surface.


The major surface of the encapsulant can be a substantially planar surface. The encapsulant can further have a second surface overlying the microelectronic element at a third height above the first surface, the third height being different from the second height, for example, being greater than the second height.


In one embodiment, the major surface of the encapsulant can be a substantially planar surface which overlies the first and second regions of the first surface at an at least substantially uniform second height therefrom and overlying the microelectronic element.


In one variation, at least one conductive post can include a tip region remote from the microelectronic element and a second region disposed below the tip region and closer to the substrate. The second region and tip region can have respective concave circumferential surfaces. The at least one post can consist essentially of metal and have a horizontal dimension which is a first function of vertical location in the tip region and which is a second function of vertical location in the second region.


In one embodiment, the conductive elements include at least one of conductive posts or masses of conductive bonding material, and a portion of the encapsulant overlies the second surface. Such portion can have a major surface at a height above the second surface and at least one of a recess or one or more openings in the major surface. The recess or the one or more openings can at least partially expose at least one of the conductive elements for electrical connection thereto. At least some of the conductive elements can be electrically insulated from one another and adapted to simultaneously carry different electric potentials.


In one or more embodiments, surfaces of at least two of the conductive posts or surfaces of at least two conductive masses are at least partially exposed within a single one of the openings.


A method of making a microelectronic package is provided in accordance with one embodiment. Such method can include providing a microelectronic assembly including a substrate, a microelectronic element mounted to the substrate and substantially rigid conductive posts having top surfaces remote from the substrate. First and second ones of the conductive posts can be electrically connected by conductive features of the substrate to the microelectronic element for carrying a first signal electric potential on the first conductive post and for simultaneously carrying a second electric potential on the second conductive post, the second electric potential being different from the first signal electric potential. An encapsulant layer can then be formed overlying at least a portion of the microelectronic element and covering the top surfaces of the conductive posts. At least one of a recess or one or more openings can then be formed in the encapsulant layer. Each recess or opening can be aligned with at least one of the conductive posts and each recess or opening permitting an electrical connection to be made with at least one of the conductive posts.


In one embodiment, the encapsulant layer can contact the conductive posts and each recess or opening can at least partially expose at least one of the conductive posts.


In one embodiment, at least one individual opening can at least partially expose two or more of the conductive posts.


The microelectronic assembly may further include conductive masses joined with respective ones of the conductive posts. Each recess or opening formed in the encapsulant layer can at least partially expose at least one of the conductive masses. In a particular embodiment, at least one individual opening may at least partially expose two or more of the conductive masses.


The encapsulant layer may be formed to have a substantially planar surface, and the recess or opening can extend from or be formed in the substantially planar surface.


In one embodiment, the conductive posts can have edge surfaces extending away from the top surfaces, and the edge surface of at least one conductive post can be at least partially exposed within at least one of the openings.


In a particular embodiment, at least first and second microelectronic packages can be made, and then the second microelectronic package can be stacked atop the first microelectronic package and the first and second microelectronic packages be electrically interconnected together using the conductive posts of at least one of the first and second microelectronic packages.


In a further example, the step of forming the encapsulant layer can include forming first and second substantially planar surfaces of the encapsulant layer above a surface of the substrate. The first surface can overlie at least a portion of the substrate aligned with the microelectronic element and the second surface can overlie another portion of the substrate beyond an edge of the microelectronic element. The first and second surfaces can have different heights from the surface of the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a sectional view illustrating a microelectronic assembly through lines 1A-1A of FIG. 1B.



FIG. 1B is a top plan view illustrating the microelectronic assembly shown in FIG. 1A.



FIG. 1C is a partial sectional view illustrating a conductive post formed in accordance with an embodiment of the invention.



FIG. 1D is a partial sectional view illustrating a post according to a variation of the post shown in FIG. 1C.



FIG. 1E is a partial sectional view illustrating a method of forming a post as shown in FIG. 1D.



FIGS. 1F, 1G, 1H, and 1I are partial sectional views illustrating stages in a fabrication method relating to the forming of posts.



FIG. 2 is a partial fragmentary sectional view further illustrating a post as shown in FIG. 1I.



FIG. 3 is a sectional view illustrating a molding stage in a method of fabricating a microelectronic package in accordance with an embodiment of the invention.



FIG. 4 is a sectional view illustrating a stage of a fabrication method subsequent to the stage shown in FIG. 3.



FIG. 5 is a sectional view illustrating a microelectronic package in accordance with an embodiment of the invention.



FIG. 5A is a sectional view illustrating a microelectronic package in accordance with a variation of the embodiment of the invention shown in FIG. 5.



FIG. 5B is a sectional view illustrating a microelectronic package in accordance with a further variation of the embodiment of the invention shown in FIG. 5.



FIG. 6 is a sectional view illustrating a microelectronic package in accordance with a variation of the embodiment illustrated in FIG. 5.



FIG. 7 is a sectional view illustrating a microelectronic package in accordance with a variation of the embodiment illustrated in FIG. 5.



FIG. 8 is a sectional view illustrating a microelectronic package in accordance with a variation of the embodiment illustrated in FIG. 5.



FIG. 9 is a sectional view illustrating a molding stage in a method of fabricating a microelectronic package in accordance with a variation of the embodiment shown in FIG. 3.



FIG. 10 is a sectional view illustrating a microelectronic package in accordance with a variation of the embodiment illustrated in FIG. 6.



FIG. 11 is a sectional view illustrating a microelectronic package in accordance with a variation of the embodiment illustrated in FIG. 7.



FIG. 12 is a sectional view illustrating a stacked microelectronic assembly in accordance with an embodiment of the invention.



FIG. 13 is a sectional view illustrating a microelectronic package in accordance with a variation of the embodiment illustrated in FIG. 8.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to FIG. 1A, in accordance with an embodiment of the present invention, a microelectronic package includes a substrate 100 having a first or top surface 102 adjacent a face 114 of a microelectronic element 110 and a second or bottom surface 104 opposite therefrom. The microelectronic element 110 can be a first semiconductor chip having a front face 113 facing in an upward direction toward the top of the drawing in FIG. 1A and a rear face 114 facing in the opposite, rearward direction. Rear face 114 is generally parallel to front face 113. The directions parallel to front face 113 are referred to herein as “horizontal” or “lateral” directions; whereas the directions perpendicular to the front face are referred to herein as upward or downward directions and are also referred to herein as the “vertical” directions. The directions referred to herein are in the frame of reference of the structures referred to. Thus, these directions may lie at any orientation to the normal or gravitational frame of reference. A statement that one feature is disposed at a greater height “above a surface” than another feature means that the one feature is at a greater distance in the same orthogonal direction away from the surface than the other feature. Conversely, a statement that one feature is disposed at a lesser height “above a surface” than another feature means that the one feature is at a smaller distance in the same orthogonal direction away from the surface than the other feature.


The microelectronic element 110 includes active circuit elements which are disposed in a relatively thin layer adjacent the front face 113. The active circuit elements may include devices such as transistors, diodes and other elements, and circuits incorporating the same. Typically, the active circuit elements have dimensions on the order of a few microns or less.


The substrate 100 includes first conductive posts 106 exposed at a top surface 102 and conductive elements 108 exposed at the second surface 104 of the substrate 100. As used in this disclosure, a conductive element “exposed at” a surface of a dielectric element may be flush with such surface; recessed relative to such surface; or protruding from such surface, so long as the conductive element is accessible for contact by a theoretical point moving towards the surface in a direction perpendicular to the surface.


In the example shown in FIG. 1A, the conductive elements 108 are conductive pads. The substrate 100 may be flexible, and in one embodiment may be made of a dielectric material such as polyimide. The substrate typically has conductive may also have conductive traces (not shown) that extend over the top surface 102, the bottom surface 104 and/or between the top and bottom surfaces. A microelectronic element 110 such as a semiconductor chip is attached to the first surface 102 of a substrate 100. As seen in FIGS. 1A-B, contacts 117 of the microelectronic element can be electrically interconnected with one or more conductive pads 105 using conductive elements 112 such as wire bonds. In turn, the conductive pads 105 can be connected with conductive posts 106. At least some of the conductive posts are electrically insulated from one another and are adapted to carry different electric potentials, for example, different signals, or different voltages, e.g., power, ground, or a combination thereof. An adhesive 115 can be used for attaching to the substrate 100 a rear face 114 of the microelectronic element 110 opposite the front, i.e., contact-bearing face to the substrate 100.


When viewed from above the top surface 102 of the substrate, the base 107 of each conductive post can have an area in contact with the bond layer which can be larger than the top surface 126 of the post. The base 107 may have circular, elliptical, oblong or other rectangular or polygonal shape, for example. The top surface 126 may define a tip or apex of the post. The top surface or tip, which is disposed above the top surface 102 of the substrate, can have a smaller area than the base. Typically, the tip has the same shape as the base when viewed from above the top surface 102. The shape of the post is rather arbitrary and may be not only frusto-conical, i.e., a truncated cone which is a part of a cone whose apex is cut off along a face parallel or generally parallel to its bottom face, as shown in the drawings. Alternatively, the conductive posts can have cylindrical, conical, or any other similar shape, such as, for example, a cone with round top or a plateau shape. Furthermore, in addition to or rather than the three dimensional (3D) shape having a circular cross-section, which is called a “solid of revolution”, such as the truncated cone, the post 130 may have an arbitrary shape such as any three dimensional shape having a polygonal horizontal cross-section. Typically, the shape can be adjusted by changing the resist pattern, etching conditions or the thickness of the original layer or metal foil from which the post is formed. Although the dimensions of the post 106 are also arbitrary and are not limited to any particular ranges, often, it may be formed to project from an exposed surface of the substrate 100 by 50 to 300 micrometers, and if the post has the circular cross-section, the diameter may be set in a range of a few tens of microns and greater. In a particular embodiment the diameter of the post can range between 0.1 mm and 10 mm. In a particular embodiment, the material of the post 106 can be copper or copper alloy. The copper alloy can include an alloy of copper with any other metal or metals. The structure and details of fabricating posts and substrates having posts can be as described in United States Patent Publication 2007-0148822.


Typically, the posts can be formed by etching a layer of metal, e.g., a foil laminated to a substrate, isotropically, with a mask 14 (FIG. 1C) disposed on or above the metal foil such that etching proceeds downwardly from the surface of the metal foil in contact with the mask 14 in a direction of a thickness 10 of the metal foil, i.e., towards the top surface 102 of the substrate below. Etching can proceed until top surface 102 of the substrate 100 is fully exposed between posts such that the top surface 126 (FIG. 1A) of each post has the same height from the top surface 102 of the substrate and the top surfaces 126 are co-planar. The width 12 of the mask 14 typically is greater than a width of the conductive post 106 at the surface in contact with the mask.


The width 135 (FIG. 2) of the tip can be the same or different in the lateral directions 111, 113 in which the substrate extends. When the width is the same in the two directions, the width can represent a diameter of the tip. Likewise, the width 137 of the base can be the same or different in lateral directions 111, 113 of the metal foil, and when it is the same, the width 137 can represent a diameter of the base. In one embodiment, the tip can have a first diameter, and the base can have a second diameter, wherein a difference between the first and second diameters can be greater than 25% of the height of the post extending between the tip and base of the post.



FIG. 1C illustrates a substrate after forming a conductive post 106 by etching completely through a metal foil to expose the underlying substrate 100. In a particular example, the conductive posts can have a height from a few tens of microns and lateral dimensions, e.g., diameter from a few tens of microns. In a particular example, the height and diameter can each be less than 100 microns. The diameter of the posts is less than the lateral dimensions of the conductive pads. The height of each post can be less than or greater than the post's diameter.



FIG. 1D illustrates an alternative embodiment in which the post 40 is formed with a base having a width 47 which can be narrower in relation to a height 46 of the post than the width 137 (FIG. 1B) of the base when the post is formed as discussed with reference to FIG. 1C. Thus, a post 40 having a greater height to width aspect ratio may be obtained than the post formed as discussed above. In a particular embodiment, the post 40 can be formed by etching portions of a layered structure (FIG. 1E) using a masking layer 48, where the layered structure including a first metal foil 50, a second metal foil 52 and an etch barrier layer 54 disposed between, e.g., sandwiched between the first metal foil and the second metal foil. The resulting post 40 can have an upper post portion 42 and a lower post portion 44 and can have an etch barrier layer 45 disposed between the upper and lower post portions. In one example, the metal foil consists essentially of copper and the etch barrier 45 consists essentially of a metal such as nickel that is not attacked by an etchant that attacks copper. Alternatively, the etch barrier 45 can consist essentially of a metal or metal alloy that can be etched by the etchant used to pattern the metal foil, except that the etch barrier 45 is etched more slowly than the metal foil. In such manner, the etch barrier protects the second metal foil 52 from attack when the first metal foil is being etched in accordance with masking layer 48 to define an upper post portion 42. Then, portions of the etch barrier 45 exposed beyond an edge 43 of the upper post portion 42 are removed, after which the second metal foil 52 is etched, using the upper post portion as a mask.


The resulting post 40 can include a first etched portion having a first edge, wherein the first edge has a first radius of curvature R1. The post 40 also has at least one second etched portion between the first etched portion and the top surface of the substrate, wherein the second etched portion has a second edge having a second radius of curvature R2 that is different from the first radius of curvature. Another way that the post 40 can be described is that each conductive post includes a tip region, remote from the substrate and a second region disposed below the tip region closer to the substrate, the second region and tip region having respective concave circumferential surfaces, and each solid metal post has a horizontal dimension which is a first function of vertical location in the tip region and which is a second function of vertical location in the second region.


In one embodiment, the upper post portion 42 may be partially or fully protected from further attack when etching the second metal foil to form the lower post portion. For example, to protect the upper post portion, an etch-resistant material can be applied to an edge or edges 43 of the upper post portion prior to etching the second metal foil. Further description and methods of forming etched metal posts similar to the posts 40 shown in FIG. 1D are described in commonly owned U.S. application Ser. No. 11/717,587 filed Mar. 13, 2007 (Tessera 3.0-358 CIP CIP), the disclosure of which is incorporated herein by reference.


In one example, the starting structure need not include an etch barrier layer sandwiched between first and second metal foils. Instead, the upper post portion can be formed by incompletely etching, e.g., “half-etching” a metal foil, such that projecting portions 32 (FIG. 1F) of the metal foil are defined as well as recesses 33 between the projecting portions where the metal foil has been exposed to the etchant. After exposure and development of a photoresist as a masking layer 56, the foil 58 can be etched as shown in FIG. 1F. Once a certain depth of etching is reached, the etching process is interrupted. For example, the etching process can be terminated after a predetermined time. The etching process leaves first post portions 32 projecting upwardly away from the substrate 100 with recesses 33 defined between the first portions. As the etchant attacks the foil 58, it removes material beneath the edges of masking layer 56, allowing the masking layer to project laterally from the top of the first post portions 32, denoted as overhang 30. The first masking layer 56 remains at particular locations as shown.


Once the foil 58 has been etched to a desired depth, a second layer of photoresist 34 (FIG. 1G) is deposited onto an exposed surface of the foil 58. In this instance, the second photoresist 34 can be deposited onto the recesses 33 within the foil 58, i.e., at locations where the foil has been previously etched. Thus, the second photoresist 34 also covers the first post portions 32. In one example, an electrophoretic deposition process can be used to selectively form the second layer of photoresist on the exposed surface of the foil 58. In such case, the second photoresist 34 can be deposited onto the foil without covering the first photoresist masking layer 56.


At the next step, the substrate with the first and second photoresists 56 and 34 is exposed to radiation and then the second photoresist is developed. As shown in FIG. 1H, the first photoresist 56 can project laterally over portions of the foil 58, denoted by overhang 30. This overhang 30 prevents the second photoresist 34 from being exposed to radiation and thus prevents it from being developed and removed, causing portions of the second photoresist 34 to adhere to the first post portions 32. Thus, the first photoresist 56 acts as a mask to the second photoresist 34. The second photoresist 34 is developed by washing so as to remove the radiation exposed second photoresist 34. This leaves the unexposed portions of second photoresist 34 on the first post portions 32.


Once portions of the second photoresist 34 have been exposed and developed, a second etching process is performed, removing additional portions of the foil 56, thereby forming second post portions 36 below the first post portions 32 as shown in FIG. 1I. During this step, the second photoresist 34, still adhered to first post portions 32, protects the first post portions 32 from being etched again. Thereafter, the first and second photoresist masks 56, 34 can be removed, leaving posts 60 projecting from a major surface of the substrate 100.


These steps may be repeated as many times as desired to create the preferred aspect ratio and pitch forming third, fourth or nth post portions. The process may be stopped when the substrate 100 is reached, such layer which can act as an etch-stop or etch-resistance layer. As a final step, the first and second photoresists 58 and 34, respectively, may be stripped entirely.


In such manner, posts 60 (FIG. 1I) having a shape similar to the shape of posts 40 (FIG. 1D) can be formed, but without requiring an internal etch barrier 45 to be provided between upper and lower post portions as seen in FIG. 1D. Using such method, posts having a variety of shapes can be fabricated, in which the upper post portions and lower post portions can have similar diameters, or the diameter of the upper post portion can be larger or smaller than that of a lower post portion. In a particular embodiment, the diameter of the post can become progressively smaller from tip to base or can become progressively larger from tip to base, by successively forming portions of the posts from the tips to the bases thereof using the above-described techniques.


The posts 60 formed by the above-described process (FIGS. 1F-1I) can be as shown in FIG. 2. Each post 60 can have a first portion 32 at or adjacent to a tip region and a second portion 36 underlying the first portion and closer to the substrate surface. A circumferential surface 22 of the first portion 32 and the circumferential surface 24 of the second portion 36 are concave surfaces, and each has a slope or dX/dZ which changes at most gradually with position in the Z direction (direction of height above the substrate surface). With respect to each of the circumferential surfaces of the posts described herein (e.g., surface 22, or surface 24, “concave” means that at every height between the boundaries of the circumferential surfaces (e.g., at every height 29 between an upper boundary 19 of the circumferential surface 22 and a lower boundary 21 of that circumferential surface 22, the circumferential surface encloses a smaller diameter 25 than the diameter, at the same height 29, enclosed by a theoretical conical surface defined by a series of straight lines extending between the boundaries. For example, every point on circumferential surface 22 between boundaries 19, 21 lies inward from the theoretical conical surface 26 defined by a series of straight lines extending through the boundaries 19, 21.


Instead of forming posts by etching, as in the above-described processes, it is also possible to form posts by a plating process in which a sacrificial layer such as a photoresist layer is deposited on the top surface of the substrate, after which openings are formed therein by photolithography. The openings define the locations at which a metal can be plated to form the posts. Typically the posts formed by this method have uniform cross-section from base to tip, and can be cylindrical in shape, for example.


Referring to FIG. 3, once the posts are formed, the substrate 100 may be placed between top and bottom plates 116, 120 of a mold. The top plate 120 is positioned over the bottom plate 116 for capturing the substrate 100 therebetween. Specifically, the top plate 120 of the mold can be placed in contact with the first surface 102 of the substrate and the bottom plate 116 of the mold can be in contact with the second surface 104 of the substrate 100. The mold top plate 120 can include an inlet 122 that enables a flowable material to be introduced into a cavity 124 defined by the mold bottom plate 116 and the mold top plate 120.


The top plate 120 of the mold can be pressed against a top surface 102 of the substrate to define an interior cavity 124 having a volume. An interior surface 128 of the top plate 120 can be juxtaposed with and spaced apart from top surfaces 126 of the conductive posts 106. The bottom plate 116 can provide counter-force against the substrate 110 during the molding process. Then, a curable, flowable material such as a curable encapsulant can be introduced into the cavity 124 of the mold through the inlet 122. The curable encapsulant may be clear, opaque or have optical properties anywhere along the scale between clear and opaque. For example, the encapsulant may be clear when the microelectronic element 110 includes active devices which emit or receive visible wavelength spectra. The curable material is preferably cured to form a cured encapsulant layer, which preferably provides stability to the package and protects the microelectronic element 110, the conductive wire bonds 112 and the conductive posts 106.


Referring to FIG. 4, the top surfaces 126 of the conductive posts 106 extend to a first height H1 from the top surface 102 of the substrate 100. After molding, the encapsulant 130 can have a major surface 134 at a height H2 that is sufficient to cover the semiconductor chip 110, the wire bonds 112 and the conductive posts 106. In the particular embodiment shown in FIG. 4, the major surface 134 can be at a uniform height from a first region of the surface 102 to which the microelectronic element is mounted as well as a second region of the surface 102 above which the conductive posts 126 project. The height H1 of the conductive posts 106 above the top surface 102 of the substrate 100 is less than the height H2 of the encapsulant major surface, such that top surfaces 126 of the conductive posts are buried below the major surface 134.



FIG. 5 illustrates a subsequent step of fabrication in which openings 136 are formed in the encapsulant major surface 134 which at least partially expose conductive posts 106. In one embodiment, the openings 136 can be formed after the encapsulant has been cured. Alternatively, in a variation the openings 136 can be formed after the package is removed from the mold at which time the encapsulant may only be partially cured. In such variation, full curing of the encapsulant can occur after the openings 136 are made therein. As particularly shown in FIG. 5, the openings 136 can be formed so as to at least partially expose the top surface 126 but also at least partially expose edge surfaces 138 of individual conductive posts. For this purpose, a laser can be used to ablate the encapsulant material above top surfaces of conductive posts 106 so as to form openings 136. Mechanical drilling or etching are other possible ways of forming openings in the encapsulant.


The openings may be formed so as to fully or partially expose one or more of the conductive posts. In a particular example, at least one of the openings can only partially expose a single conductive post. In this way, the opening can provide a conduit in the encapsulant layer insulating an electrical connection between the conductive post and a corresponding conductive element of a circuit panel or other element, e.g., another microelectronic package, to which the conductive post can be connected.


In a particular case, an opening may expose more than one conductive post. In one such example, an entire row of posts or a portion of such row can be exposed or partially exposed in one opening of the encapsulant. In another example, a plurality of rows of posts or portions of a plurality of rows of posts can be exposed or partially exposed in one opening in the major surface of the encapsulant. In a particular example, a plurality of conductive posts which are exposed or partially exposed together in a single opening or in respective openings can be connected to one or more conductive elements at the same electric potential, such as for making ground or power connections. However, in one embodiment, a single opening can at least partially expose a plurality of posts which carry different signals so that, for example, a combination of at least two of power, ground or a signal at can be carried simultaneously by at least two posts which are at least partially exposed together within a single opening in the encapsulant. FIG. 5 further illustrates conductive masses, e.g., solder balls 208 being joined with the conductive pads 108 of the substrate. The solder balls 208 can be aligned with the conductive posts for joining thereto, as will be further described below. The joining of the solder balls with conductive elements, e.g., pads, etc., of a substrate is implicit in the embodiments shown below, unless otherwise noted.


In a particular embodiment (FIG. 5A) in which at least two posts 106 are at least partially exposed within a single opening 236, a saw can be used to form the opening 236 extending in one or more horizontal directions across the substrate surface 102. In such case, top surfaces 126′ of the conductive posts can exposed within the opening. In particular embodiments, the top surfaces 126′ of the conductive posts can be disposed above the surface 238 of the encapsulant layer within the opening, below the surface 238 or can be flush with the surface 238. In the particular embodiment shown in FIG. 5A, opening 236 does not extend horizontally to a peripheral edge of the encapsulant layer, i.e., to peripheral edge 131 of the encapsulant layer as shown in FIG. 5. In one variation as seen in FIG. 5B, a saw or other means can be used to form a recess 336 in the encapsulant layer which does extend to the peripheral edge 131 of the encapsulant layer and which at least partially exposes one or a plurality of the conductive posts 106. In particular embodiments, the top surfaces 126′ of the conductive posts 106 can be disposed above the recessed surface 338 of the encapsulant layer, below the recessed surface 338 or which can be flush with the recessed surface 338.



FIG. 6 shows a variation of the embodiment shown in FIG. 5. In this embodiment, openings 140 are formed in such manner that the top surfaces 126 of the conductive posts 106 are only partially exposed within each opening 140. As seen in FIG. 6, portions 142 of the top surfaces 126 of the posts lie between the openings 140 and the edge surfaces 138. These portions 142 of the top surfaces of the conductive posts remain buried within the cured encapsulant layer 130 after forming the openings. Moreover, the edge surfaces 138 of the conductive posts are buried within the encapsulant in the embodiment illustrated in FIG. 6.



FIG. 7 illustrates yet another variation in which conductive masses 144, e.g., a bonding metal such as tin, solder or other bond material, contacts top and edge surfaces 126, 138 of the conductive posts. Openings 146 formed in the cured encapsulant material 130 at least partially expose the conductive masses 144, and may also expose portions of the posts 106.



FIG. 8 illustrates a variation of the microelectronic package shown in FIG. 5. In this case, the encapsulant 130 is formed to have a plurality of regions which have major surfaces at different heights from the top surface 102 of the substrate 100. As seen in FIG. 8, the encapsulant 130 includes a central region 147 which has a major surface 148 at a height 150 that is sufficient to cover the semiconductor chip 110 and the wire bonds 112. As particularly shown in FIG. 8, the package may include a plurality of microelectronic elements 110, e.g., semiconductor chips which are stacked and electrically connected with conductive elements, e.g., conductive pads of the substrate 100. Alternatively, similar to the embodiment shown in FIG. 5, the microelectronic package may include a single microelectronic element 110.


The encapsulant 130 also includes a peripheral region 151 that extends from the central region 147 towards peripheral edges 156 of the substrate 100. The major surface 152 of the encapsulant in the peripheral region 151 has a height 154 that is less than height 150 of the encapsulant in the central region. Typically, the heights of the major surfaces of the encapsulant in the central and peripheral regions 147, 151 are determined by the shape of the top plate 120A of a mold used to form the encapsulant, in a method similar to that shown in FIG. 3. Referring to FIG. 9, to form the central and peripheral regions of the encapsulant material having different heights, the inner surface 128A of the top plate 120A of the mold lies at a greater height from the substrate top surface 102 at locations above the microelectronic element 110 and the wire bonds 112 than inner surface 128B of the top plate 120A lies from the substrate top surface 102 above the conductive posts 106.


Alternatively, in one variation, the encapsulant layer can be formed with a major surface at a uniform height 150 in both the central and peripheral regions 147, 151, and then a saw or other means can be used to reduce the height of the encapsulant layer in the peripheral region to the lower height 154.



FIG. 10 illustrates a variation of the microelectronic package shown in FIG. 8, in which the top surfaces of the conductive posts 106 are only partially exposed within openings 140 in the encapsulant material, similar to the embodiment described above with respect to FIG. 6.



FIG. 11 illustrates a variation of the microelectronic package shown in FIG. 8, in which surfaces of conductive masses 144 joined to conductive posts 106 are at least partially exposed within openings 140 in the encapsulant material, similar to the embodiment described above with respect to FIG. 7.



FIG. 12 shows the microelectronic package of FIG. 8 stacked on top of other microelectronic packages. Specifically, a first microelectronic package 200A is stacked atop a second microelectronic package 200B, which in turn is stacked atop a third microelectronic package 200C. The third microelectronic package, in turn, is stacked atop a fourth microelectronic package 200D. The four microelectronic packages are preferably electrically interconnected with one another. Conductive masses 208A, e.g., solder balls, of the first microelectronic package 200A are in contact with the conductive posts 106B of the second microelectronic package 200B. During assembly, the conductive masses 208A can be elevated in temperature so as to at least partially transform into a molten state so that the conductive posts 106B can be at least partially inserted therein and are joined to one another thereby. The temperature of the conductive masses 208A then may be lowered so that the conductive masses re-solidify for permanently connecting the substrate 200A with the substrate 200B through the conductive posts 106B and the conductive masses 208A. The electrical connections between the second microelectronic package 200B and the third microelectronic package 200C are made in a similar fashion, as are the electrical interconnections between the third microelectronic package 200C and the fourth microelectronic package 200D. Typically, joining of the microelectronic packages to form the electrical connections in the assembly is done simultaneously as to all packages therein. However, it can be done as to only a subset of the packages, and then further joining processes then applied to join additional packages or one or more subsets of packages thereto. Although FIG. 12 shows an assembly including four microelectronic packages stacked one atop the other, the present invention contemplates that any size assembly of two or more microelectronic packages may be manufactured. For example, in one embodiment, a stack of five or more microelectronic packages may be possible. The uppermost or lowermost package in the stack may be electrically connected to an external element such as a circuit board or a test board, i.e., through solder balls, other conductive masses or posts, etc. Optionally, as seen in FIG. 12, the uppermost microelectronic package 200A in the assembly can be made without conductive elements such as conductive posts, conductive masses, etc. being exposed at a top surface 152A of such package 200A. Before the individual microelectronic packages are assembled together in a stack, each package can be individually tested.



FIG. 13 shows a microelectronic package in accordance with a variation of the embodiment shown in FIG. 8. In this case, conductive masses, e.g., solder balls 218 are exposed at a top surface 102 of the package. An encapsulant layer 130 overlies a face of a microelectronic element or plurality of microelectronic elements 110A, 110B.


An additional encapsulant layer 230 overlies a bottom surface 104 of the substrate 100, having openings 240 which expose top surfaces 226 of conductive posts 108 which project away from the bottom surface 104 of the substrate 100. Similar to the openings 136 in the encapsulant layer 130 of the above-described embodiment (FIG. 5), the openings 240 can expose the top surfaces 226 of the conductive posts and partially expose the edge surfaces 238 of the conductive posts. Optionally, conductive masses e.g., solder masses, tin, conductive paste, among others, can be joined with surfaces of the conductive posts 108. The microelectronic package 300 illustrated in FIG. 13 can be stacked and joined with one or more other microelectronic packages in a manner similar to that described above with respect to FIG. 12.


In a variation of the embodiment illustrated in FIG. 13, the conductive masses 218 can be replaced by conductive posts, such as described above. In another variation, the top surfaces 226 of the conductive posts 108 can be only partially exposed within the openings 240, similar to the arrangement of the conductive posts 106 and openings 140 shown and described above with respect to FIG. 6. In yet another variation, surfaces including top surfaces 226 and edge surfaces 238 of the second conductive posts 108 can be joined with conductive masses prior to placing the assembly into the mold, similar to the arrangement shown and described above with respect to FIG. 7. In such case, the openings 240 at least partially expose the conductive masses joined with the second conductive posts, similar to the arrangement shown in FIG. 8 in which conductive masses 144 are partially exposed within openings 146. Each of these variations can be combined with features shown and described above with respect to any of the foregoing figures. Although the present invention is not limited by any particular theory of operation, it is believed that the planarization of the conductive masses will enable the mass production on a plurality of microelectronic packages, each package having a standard height. The structure shown in any of FIGS. 5, 5A, 5B, 6, 7, 8, 10, 11, and 13 may be stacked atop other microelectronic packages to form a stacked assembly, similar to the stacked assembly shown in FIG. 12.


In another variation of the embodiments described above, a contact-bearing face 113 (FIG. 1A) of the microelectronic element 110 can be placed adjacent the top surface 102 of the substrate 100, and contacts 117 can be juxtaposed in a flip-chip manner with substrate contacts exposed at the top surface 102 of the substrate in alignment therewith, the contacts 117 of the microelectronic element being conductively bonded with contacts exposed at the top surface of the substrate. Such arrangement can be combined with any of the embodiments and variations thereof described in the foregoing. Moreover, in the embodiments shown and described above (FIGS. 5, 5A, 5B, 6, 7, 8, 10, 11, and 12), instead of conductive masses 108 projecting away from the substrate bottom surface, the microelectronic package can instead have conductive posts such as described above, or posts which can be combined with conductive masses thereon, e.g., masses of conductive bonding material such as tin, solder, conductive paste, etc., in their place. Further details of microelectronic packages to which the foregoing described embodiments can be applied include U.S. application Ser. No. 11/318,404 filed Dec. 23, 2005 (Tessera 3.0-484), the disclosure of which is incorporated by reference herein.


The foregoing descriptions of the preferred embodiments are intended to illustrate rather than to limit the present invention. Particular methods of fabricating microelectronic packages and structures therein can be as further described in commonly owned U.S. application Ser. No. 12/839,038 of Belgacem Haba titled “STACKABLE MOLDED MICROELECTRONIC PACKAGES WITH AREA ARRAY UNIT CONNECTORS” filed on Jul. 19, 2010, which issued as U.S. Pat. No. 9,159,708 on Oct. 13, 2015.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A microelectronic package comprising: a substrate having a first surface and a second surface remote from the first surface;a microelectronic element overlying the first surface;a plurality of conductors projecting above at least one of the first or second surfaces, the plurality of conductors having top surfaces remote from the substrate and edge surfaces extending away from the top surfaces;conductive masses joined to at least the top surfaces of the plurality of conductors;conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project, the conductive elements being electrically interconnected with the microelectronic element; andan encapsulant overlying at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a plurality of openings each partially exposing at least one of the conductive masses disposed within the opening, wherein the encapsulant contacts the top surface of the conductive masses.
  • 2. The microelectronic package as claimed in claim 1, wherein the conductive masses project to a first height above at least one of the first or second surfaces, the encapsulant having a major surface at a second height above a same surface of the substrate above which the conductive masses project, the second height being greater than the first height, wherein the openings in the encapsulant are openings in the major surface.
  • 3. The microelectronic package as claimed in claim 1, wherein the first surface has a first region and a second region extending from the first region, the microelectronic element overlies the first region, the plurality of conductors and the conductive masses are aligned with the second region, and wherein the major surface of the encapsulant is a substantially planar surface overlying the first and second regions of the first surface at an at least substantially uniform second height therefrom and overlying the microelectronic element.
  • 4. The microelectronic package as claimed in claim 2, wherein the plurality of conductors are a plurality of conductive posts, and wherein at least one conductive post includes a tip region remote from the microelectronic element and a second region disposed below the tip region and closer to the substrate, the second region and tip region having respective concave circumferential surfaces, and the at least one post consisting essentially of metal and having a horizontal dimension which is a first function of vertical location in the tip region and which is a second function of vertical location in the second region.
  • 5. The microelectronic package as claimed in claim 1, wherein the conductive elements include at least one of conductive posts or masses of conductive bonding material, and a portion of the encapsulant overlies the second surface and further has a plurality of second openings, each partially exposing at least one of the conductive elements, wherein at least some of the conductive elements are electrically insulated from one another and adapted to simultaneously carry different electric potentials.
  • 6. The microelectronic package of claim 1, wherein the conductive masses comprise a solder.
  • 7. The microelectronic package as claimed in claim 1, wherein the conductive masses further comprises a top surface that is substantially planar and wherein at least some of the openings are tapered.
  • 8. The microelectronic package of claim 1, wherein at least one of the first or second surfaces has a first region and a second region extending from the first region, the microelectronic element overlies the first region, and the conductive elements are aligned with the second region and project to a first height above the second region, the encapsulant contacts the conductive masses and has a major surface above the second region at a second height above the second region, the second height being greater than the first height, wherein the openings in the encapsulant are openings in the major surface.
  • 9. The microelectronic package of claim 4, wherein the major surface of the encapsulant is a substantially planar surface.
  • 10. The microelectronic package of claim 9, wherein the substantially planar surface overlies the first and second regions of the second surface at an at least substantially uniform second height therefrom and overlying the microelectronic element.
  • 11. A microelectronic package comprising: a substrate having a first surface and a second surface remote from the first surface;a microelectronic element overlying the first surface;a plurality of conductive masses projecting from at least one of the first or second surfaces and electrically interconnected with the microelectronic element, each of the plurality of conductive masses having an exposed top surface remote from the substrate; andan encapsulant overlying at least a portion of the microelectronic element and a surface of the substrate above which the plurality of conductive metal masses project, the encapsulant having a plurality of openings at least partially exposing the exposed top surfaces of the plurality of conductive masses, the exposed top surfaces of the plurality of conductive masses being spaced apart from an outer surface of the encapsulant.
  • 12. The microelectronic package of claim 11, wherein an interior edge of the encapsulant contacts the plurality of conductive masses, and wherein the conductive masses are comprised of solder.
  • 13. The microelectronic package of claim 11, further comprising conductive elements extending upwards from a same surface from which the plurality of conductive masses project, the conductive masses contacting the conductive elements.
  • 14. The microelectronic package of claim 13, wherein conductive elements exposed at and projecting away from an opposed surface of the substrate opposite the surface above which the plurality of conductive masses project, the conductive elements having top surfaces remote from the opposed surface of the substrate, the conductive elements being electrically interconnected with the microelectronic element and the plurality of conductive masses.
  • 15. The microelectronic package of claim 11, wherein at least some of the plurality of openings are tapered.
  • 16. The microelectronic package of claim 11, wherein at least one of the first or second surfaces has a first region and a second region extending from the first region, the microelectronic element overlies the first region, and the plurality of conductive masses are aligned with the second region and project to a first height above the second region, the encapsulant contacts the plurality of conductive masses and has a major surface above the second region at a second height above the second region, the second height being greater than the first height, wherein each of the openings in the encapsulant is an opening in the major surface.
  • 17. The microelectronic package of claim 16, wherein the major surface of the encapsulant is a substantially planar surface.
  • 18. The microelectronic package of claim 17, wherein the substantially planar surface of the encapsulant overlies the first and second regions of the first surface at an at least substantially uniform second height therefrom and overlying the microelectronic element.
  • 19. The microelectronic package of claim 11, wherein at least some of the plurality of conductive masses are electrically insulated from one another and adapted to simultaneously carry different electric potentials.
  • 20. The microelectronic package as claimed in claim 14, wherein surfaces of at least two of the plurality of conductive masses are at least partially exposed within a single one of the plurality of openings.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 14/834,803, filed Aug. 25, 2015, which is a continuation of U.S. patent application Ser. No. 14/559,412, filed Dec. 3, 2014, issued as U.S. Pat. No. 9,123,664, which is a continuation of U.S. patent application Ser. No. 13/926,165, filed Jun. 25, 2013, issued as U.S. Pat. No. 8,907,466, which is a continuation of U.S. patent application Ser. No. 12/838,974, filed Jul. 19, 2010, issued as U.S. Pat. No. 8,482,111, the disclosures all of which are incorporated herein by reference.

US Referenced Citations (829)
Number Name Date Kind
2230663 Alden Feb 1941 A
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 Difrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5476211 Khandros Dec 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Faraci et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor et al. Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6550666 Chew et al. Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6741085 Khandros et al. May 2004 B1
6746894 Fee et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabrizi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6930256 Huemoeller et al. Aug 2005 B1
6933608 Fujisawa Aug 2005 B2
6946380 Takahashi Sep 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Babinetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276799 Lee et al. Oct 2007 B2
7287322 Mathieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7344917 Gautham Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7517733 Camacho et al. Apr 2009 B2
7528474 Lee May 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7560360 Cheng et al. Jul 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682960 Wen Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7692931 Chong et al. Apr 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7902644 Huang et al. Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Roberts et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8071424 Haba et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8120054 Seo et al. Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8174119 Pendse May 2012 B2
8198716 Periaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8264091 Cho et al. Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau et al. Mar 2013 B1
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8507297 Pan et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558392 Chua et al. Oct 2013 B2
8618659 Sato et al. Dec 2013 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson et al. Jun 2014 B2
8766436 DeLucca et al. Jul 2014 B2
8772152 Co et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8802494 Lee et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8878353 Haba et al. Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8948712 Chen et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8975726 Chen et al. Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9012263 Mathew et al. Apr 2015 B1
9054095 Pagaila Jun 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9209081 Lim et al. Dec 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato et al. Dec 2015 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9330945 Song et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9378982 Lin et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu et al. Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9412661 Lu et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai et al. Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9508622 Higgins, III Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
9653442 Yu et al. May 2017 B2
9659877 Bakalski et al. May 2017 B2
9663353 Ofner et al. May 2017 B2
9735084 Katkar et al. Aug 2017 B2
9788466 Chen Oct 2017 B2
20010002607 Sugiura et al. Jun 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010007370 Distefano Jul 2001 A1
20010021541 Akram et al. Sep 2001 A1
20010028114 Hosomi Oct 2001 A1
20010040280 Funakura et al. Nov 2001 A1
20010042925 Yamamoto et al. Nov 2001 A1
20010045012 Beaman et al. Nov 2001 A1
20010048151 Chun Dec 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020027257 Kinsman et al. Mar 2002 A1
20020066952 Taniguchi et al. Jun 2002 A1
20020096787 Fjelstad Jul 2002 A1
20020113308 Huang et al. Aug 2002 A1
20020117330 Eldridge et al. Aug 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020125571 Corisis et al. Sep 2002 A1
20020153602 Tay et al. Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020171152 Miyazaki Nov 2002 A1
20020185735 Sakurai et al. Dec 2002 A1
20020190738 Beaman et al. Dec 2002 A1
20030002770 Chakravorty et al. Jan 2003 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030068906 Light et al. Apr 2003 A1
20030094666 Clayton et al. May 2003 A1
20030094685 Shiraishi et al. May 2003 A1
20030094700 Aiba et al. May 2003 A1
20030106213 Beaman et al. Jun 2003 A1
20030107118 Pflughaupt et al. Jun 2003 A1
20030124767 Lee et al. Jul 2003 A1
20030162378 Mikami Aug 2003 A1
20030164540 Lee et al. Sep 2003 A1
20030234277 Dias et al. Dec 2003 A1
20040014309 Nakanishi Jan 2004 A1
20040036164 Koike et al. Feb 2004 A1
20040038447 Corisis et al. Feb 2004 A1
20040041757 Yang et al. Mar 2004 A1
20040075164 Pu et al. Apr 2004 A1
20040090756 Ho et al. May 2004 A1
20040110319 Fukutomi et al. Jun 2004 A1
20040119152 Kamezos et al. Jun 2004 A1
20040124518 Kamezos Jul 2004 A1
20040148773 Beaman et al. Aug 2004 A1
20040152292 Babinetz et al. Aug 2004 A1
20040160751 Inagaki et al. Aug 2004 A1
20040164426 Pai et al. Aug 2004 A1
20040188499 Nosaka Sep 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20040262734 Yoo Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050035440 Mohammed Feb 2005 A1
20050062173 Vu et al. Mar 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050116326 Haba et al. Jun 2005 A1
20050121764 Mallik et al. Jun 2005 A1
20050133916 Karnezos Jun 2005 A1
20050133932 Pohl et al. Jun 2005 A1
20050140265 Hirakata Jun 2005 A1
20050146008 Miyamoto et al. Jul 2005 A1
20050151235 Yokoi Jul 2005 A1
20050151238 Yamunan Jul 2005 A1
20050161814 Mizukoshi et al. Jul 2005 A1
20050173805 Damberg et al. Aug 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20050181544 Haba et al. Aug 2005 A1
20050181655 Haba et al. Aug 2005 A1
20050212109 Cherukuri et al. Sep 2005 A1
20050253213 Jiang et al. Nov 2005 A1
20050266672 Jeng et al. Dec 2005 A1
20050285246 Haba et al. Dec 2005 A1
20060087013 Hsieh Apr 2006 A1
20060088957 Saeki Apr 2006 A1
20060118641 Hwang et al. Jun 2006 A1
20060139893 Yoshimura et al. Jun 2006 A1
20060166397 Lau et al. Jul 2006 A1
20060197220 Beer Sep 2006 A1
20060216868 Yang et al. Sep 2006 A1
20060228825 Hembree Oct 2006 A1
20060255449 Lee et al. Nov 2006 A1
20060278682 Lange et al. Dec 2006 A1
20060278970 Yano et al. Dec 2006 A1
20070010086 Hsieh Jan 2007 A1
20070013067 Nishida et al. Jan 2007 A1
20070015353 Craig et al. Jan 2007 A1
20070026662 Kawano et al. Feb 2007 A1
20070035015 Hsu Feb 2007 A1
20070045803 Ye et al. Mar 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070090524 Abbott Apr 2007 A1
20070126091 Wood et al. Jun 2007 A1
20070145563 Punzalan et al. Jun 2007 A1
20070148822 Haba et al. Jun 2007 A1
20070164457 Yamaguchi et al. Jul 2007 A1
20070181989 Corisis et al. Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070235850 Gerber et al. Oct 2007 A1
20070235856 Haba et al. Oct 2007 A1
20070241437 Kagaya et al. Oct 2007 A1
20070246819 Hembree et al. Oct 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080029849 Hedler et al. Feb 2008 A1
20080032519 Murata Feb 2008 A1
20080042265 Menlo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048309 Corisis et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080073771 Seo et al. Mar 2008 A1
20080076208 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080110667 Ahn et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080129319 Beaman et al. Jun 2008 A1
20080129320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169544 Tanaka et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080211084 Chow et al. Sep 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080230887 Sun et al. Sep 2008 A1
20080277772 Groenhuis et al. Nov 2008 A1
20080280393 Lee et al. Nov 2008 A1
20080284001 Mori et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303132 Mohammed et al. Dec 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20080315385 Gerber et al. Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090026609 Masuda Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090039523 Jiang et al. Feb 2009 A1
20090045497 Kagaya et al. Feb 2009 A1
20090050994 Ishihara et al. Feb 2009 A1
20090079094 Lin Mar 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090085205 Sugizaki Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090091022 Meyer et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090104736 Haba et al. Apr 2009 A1
20090115044 Hoshino et al. May 2009 A1
20090115047 Haba et al. May 2009 A1
20090121351 Endo May 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090146301 Shimizu et al. Jun 2009 A1
20090146303 Kwon Jun 2009 A1
20090160065 Haba et al. Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Beaman et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090206461 Yoon Aug 2009 A1
20090212418 Gurrum et al. Aug 2009 A1
20090212442 Chow et al. Aug 2009 A1
20090236700 Moriya Sep 2009 A1
20090236753 Moon et al. Sep 2009 A1
20090239336 Lee et al. Sep 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090260228 Val Oct 2009 A1
20090261466 Pagaila et al. Oct 2009 A1
20090302445 Pagaila et al. Dec 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20090316378 Haba et al. Dec 2009 A1
20100000775 Shen et al. Jan 2010 A1
20100003822 Miyata et al. Jan 2010 A1
20100006963 Brady Jan 2010 A1
20100007009 Chang et al. Jan 2010 A1
20100007026 Shikano Jan 2010 A1
20100025835 Oh et al. Feb 2010 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100052135 Shim et al. Mar 2010 A1
20100052187 Lee et al. Mar 2010 A1
20100072588 Yang Mar 2010 A1
20100078789 Choi et al. Apr 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100087035 Yoo et al. Apr 2010 A1
20100090330 Nakazato Apr 2010 A1
20100109138 Cho May 2010 A1
20100117212 Corisis et al. May 2010 A1
20100133675 Yu et al. Jun 2010 A1
20100148360 Lin et al. Jun 2010 A1
20100148374 Castro Jun 2010 A1
20100171205 Chen et al. Jul 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100213560 Wang et al. Aug 2010 A1
20100216281 Pagaila et al. Aug 2010 A1
20100224975 Shin et al. Sep 2010 A1
20100232119 Schmidt et al. Sep 2010 A1
20100232129 Haba et al. Sep 2010 A1
20100237471 Pagaila et al. Sep 2010 A1
20100246141 Leung et al. Sep 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100320585 Jiang et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110057308 Choi et al. Mar 2011 A1
20110068453 Cho et al. Mar 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110115081 Osumi May 2011 A1
20110140259 Cho et al. Jun 2011 A1
20110147911 Kohl et al. Jun 2011 A1
20110156249 Chang et al. Jun 2011 A1
20110157834 Wang Jun 2011 A1
20110175213 Mori et al. Jul 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20110220395 Cho et al. Sep 2011 A1
20110223721 Cho et al. Sep 2011 A1
20110237027 Kim et al. Sep 2011 A1
20110241192 Ding et al. Oct 2011 A1
20110241193 Ding et al. Oct 2011 A1
20110272449 Pirkle et al. Nov 2011 A1
20110272798 Lee et al. Nov 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120007232 Haba Jan 2012 A1
20120015481 Kim Jan 2012 A1
20120018885 Lee et al. Jan 2012 A1
20120020026 Oganesian et al. Jan 2012 A1
20120025365 Haba Feb 2012 A1
20120034777 Pagaila et al. Feb 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120056312 Pagaila et al. Mar 2012 A1
20120061814 Camacho et al. Mar 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120086130 Sasaki et al. Apr 2012 A1
20120104595 Haba et al. May 2012 A1
20120104624 Choi et al. May 2012 A1
20120119380 Haba May 2012 A1
20120126431 Kim et al. May 2012 A1
20120145442 Gupta et al. Jun 2012 A1
20120146235 Choi et al. Jun 2012 A1
20120153444 Haga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20120280374 Choi et al. Nov 2012 A1
20120280386 Sato et al. Nov 2012 A1
20120326337 Camacho et al. Dec 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130032944 Sato et al. Feb 2013 A1
20130037802 England et al. Feb 2013 A1
20130040423 Tung et al. Feb 2013 A1
20130049218 Gong et al. Feb 2013 A1
20130049221 Han et al. Feb 2013 A1
20130069222 Camacho Mar 2013 A1
20130082399 Kim et al. Apr 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130093087 Chau et al. Apr 2013 A1
20130093088 Chau et al. Apr 2013 A1
20130093091 Ma et al. Apr 2013 A1
20130095610 Chau et al. Apr 2013 A1
20130105979 Yu et al. May 2013 A1
20130134588 Yu et al. May 2013 A1
20130153646 Ho Jun 2013 A1
20130182402 Chen et al. Jul 2013 A1
20130200524 Han et al. Aug 2013 A1
20130200533 Chau et al. Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130241083 Yu et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130313716 Mohammed Nov 2013 A1
20130323409 Read et al. Dec 2013 A1
20140021605 Yu et al. Jan 2014 A1
20140035892 Shenoy et al. Feb 2014 A1
20140036454 Caskey et al. Feb 2014 A1
20140103527 Marimuthu et al. Apr 2014 A1
20140124949 Paek et al. May 2014 A1
20140175657 Oka et al. Jun 2014 A1
20140220744 Damberg et al. Aug 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140264945 Yap et al. Sep 2014 A1
20140312503 Seo Oct 2014 A1
20150017765 Co et al. Jan 2015 A1
20150043190 Mohammed et al. Feb 2015 A1
20150044823 Mohammed Feb 2015 A1
20150076714 Haba et al. Mar 2015 A1
20150130054 Lee et al. May 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20160043813 Chen et al. Feb 2016 A1
20160225692 Kim et al. Aug 2016 A1
20170117231 Awujoola et al. Apr 2017 A1
20170229432 Lin et al. Aug 2017 A1
Foreign Referenced Citations (146)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
102009001461 Sep 2010 DE
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06268101 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10-135221 May 1998 JP
H10135220 May 1998 JP
1118364 Jan 1999 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11-260856 Sep 1999 JP
11317476 Nov 1999 JP
2000323516 Nov 2000 JP
3157134 Apr 2001 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002050871 Feb 2002 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003197668 Jul 2003 JP
2003307897 Oct 2003 JP
2003318327 Nov 2003 JP
2004031754 Jan 2004 JP
200447702 Feb 2004 JP
2004048048 Feb 2004 JP
2004-172157 Jun 2004 JP
2004200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004-319892 Nov 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005093551 Apr 2005 JP
2003377641 Jun 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2003426392 Jul 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2006344917 Dec 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007194436 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
2007335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008235378 Oct 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009-508324 Feb 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010135671 Jun 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
2011166051 Aug 2011 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001-0094894 Nov 2001 KR
10-0393102 Jul 2002 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
20070058680 Jun 2007 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
101215271 Dec 2012 KR
20130048810 May 2013 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200721327 Jun 2007 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
I605558 Nov 2017 TW
9615458 May 1996 WO
0213256 Feb 2002 WO
03045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007083351 Jul 2007 WO
2007101251 Sep 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010014103 Feb 2010 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (70)
Entry
“EE Times Asia” [online]. [Retrieved Aug. 5, 2010]. Retrieved from internet. <http://www.eetasia.com/ART_8800428222_480300_nt_dec52276.HTM>, 4 pages.
“Wafer Level Stack—WDoD”, [online]. [Retrieved Aug. 5, 2010]. Retrieved from the internet. <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
Extended European Search Report for Application No. EP13162975 dated Sep. 5, 2013.
International Search Report and Written Opinion for Application No. PCT/US2011/024143 dated Jan. 17, 2012.
International Search Report and Written Opinion for Application No. PCT/US2011/044346 dated May 11, 2012.
International Search Report and Written Opinion for Application No. PCT/US2012/060402 dated Apr. 2, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/026126 dated Jul. 25, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/041981 dated Nov. 13, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/052883 dated Oct. 21, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/053437 dated Nov. 25, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/075672 dated Apr. 22, 2014.
International Search Report and Written Opinion for Application No. PCT/US2015/011715 dated Apr. 20, 2015.
International Search Report and Written Opinion for PCT/US2011/060551 dated Apr. 18, 2012.
International Search Report and Written Opinion PCT/US2011/044342 dated May 7, 2012.
International Search Report Application No. PCT/US2011/024143, dated Sep. 14, 2011.
International Search Report, PCT/US2005/039716, dated Apr. 5, 2006.
Japanese Office Action for Application No. 2013-509325 dated Oct. 18, 2013.
Japanese Office Action for Application No. 2013-520776 dated Apr. 21, 2015.
Japanese Office Action for Application No. 2013-520777 dated May 22, 2015.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France May 21, 2010.
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 6 pages (2008).
Korean Office Action for Application No. 10-2011-0041843 dated Jun. 20, 2011.
Korean Office Action for Application No. 2014-7025992 dated Feb. 5, 2015.
Korean Search Report KR10-2011-0041843 dated Feb. 24, 2011.
Meiser S, “Klein Und Komplex”, Elektronik, IRL Press Limited, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992), pp. 72-77, XP000277326. (International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013 provides concise statement of relevance.).
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates & 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003.
North Corporation, “Processed Intra-layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil],” NMBITM, Version 2001.6.
Office Action for Taiwan Application No. 100125521 dated Dec. 20. 2013.
Office Action from Taiwan for Application No. 100125522 dated Jan. 27, 2014.
Office Action from U.S. Appl. No. 12/769,930 dated May 5, 2011.
Partial International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013.
Partial International Search Report for Application No. PCT/US2013/026126 dated Jun. 17, 2013.
Partial International Search Report for Application No. PCT/US2013/075672 dated Mar. 12, 2014.
Partial International Search Report for Application No. PCT/US2015/033004 dated Sep. 9, 2015.
Partial International Search Report from Invitation to Pay Additional Fees for Application No. PCT/US2012/028738 dated Jun. 6, 2012.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
Search Report from Korean Patent Applicatin No. 10-2010-0113271 dated Jan. 12, 2011.
Taiwanese Office Action for Application No. 102106326 dated Sep. 18, 2015.
Taiwanese Office Action for Application No. 100140428 dated Jan. 26, 2015.
Taiwanese Office Action for Application No. 100141695 dated Mar. 19, 2014.
Taiwanese Office Action for Application No. 101138311 dated Jun. 27, 2014.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D integration,” May 2010, STATS ChipPAC Ltd.
International Preliminary Report on Patentability, Chapter II, for Application No. PCT/US2014/055695 dated Dec. 15, 2015.
International Search Report and Written Opinion for Application No. PCT/US2014/014181 dated Jun. 13, 2014.
International Search Report and Written Opinion for Application No. PCT/US2014/050125 dated Feb. 4, 2015.
International Search Report and Written Opinion for Application No. PCT/US2014/050148 dated Feb. 9, 2015.
International Search Report and Written Opinion for Application No. PCT/US2014/055695 dated Mar. 20, 2015.
Partial International Search Report for Application No. PCT/US2014/014181 dated May 8, 2014.
Taiwanese Office Action for Application No. 103103350 dated Mar. 21, 2016.
U.S. Appl. No. 13/477,532, filed May 22, 2012.
Written Opinion for Application No. PCT/US2014/050125 dated Jul. 15, 2015.
Taiwanese Search Report for Application No. TW105128420 dated Sep. 26, 2017.
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Chinese Office Action Search Report for Application No. 2014800551784 dated Jan. 23, 2018, 3 pages.
European Search Results under Rule 164(2)(b) EPC for Application No. 12712792 dated Feb. 27, 2018, 2 pages.
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
International Search Report for Application No. PCT/US2015/032679, dated Nov. 11, 2015, 2 pages.
International Search Report for Application No. PCT/US2016/056402, dated Jan. 31, 2017, 3 pages.
International Search Report for Application No. PCT/US2016/056526, dated Jan. 20, 2017, 3 pages.
International Search Report for Application No. PCT/US2016/068297, dated Apr. 17, 2017, 3 pages.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Partial International Search Report for Application No. PCT/US2015/032679, dated Sep. 4, 2015, 2 pages.
Related Publications (1)
Number Date Country
20170154874 A1 Jun 2017 US
Continuations (4)
Number Date Country
Parent 14834803 Aug 2015 US
Child 15374282 US
Parent 14559412 Dec 2014 US
Child 14834803 US
Parent 13926165 Jun 2013 US
Child 14559412 US
Parent 12838974 Jul 2010 US
Child 13926165 US