The present disclosure relates to a mold module and a process for making the same, and more particularly to a mold module with enhanced thermal and electrical performance, and a wafer-level packaging process to provide the mold module with enhanced performance.
The wide utilization of cellular and wireless devices drives the rapid development of radio frequency (RF) technologies. The substrates on which RF devices are fabricated play an important role in achieving high level performance in the RF technologies. Fabrications of the RF devices on conventional silicon substrates may benefit from low cost of silicon materials, a large scale capacity of wafer production, well-established semiconductor design tools, and well-established semiconductor manufacturing techniques.
Despite the benefits of using conventional silicon substrates for the RF device fabrications, it is well known in the industry that the conventional silicon substrates may have two undesirable properties for the RF devices: harmonic distortion and low resistivity values. The harmonic distortion is a critical impediment to achieve high level linearity in the RF devices built over silicon substrates. In addition, the low resistivity encountered in the silicon substrates may degrade quality factors (Q) at high frequencies of microelectromechanical systems (MEMS) or other passive components.
In addition, high speed and high performance transistors are more densely integrated in RF devices. Consequently, the amount of heat generated by the RF devices will increase significantly due to the large number of transistors integrated in the RF devices, the large amount of power passing through the transistors, and the high operation speed of the transistors. Accordingly, it is desirable to package the RF devices in a configuration for better heat dissipation.
To accommodate the increased heat generation of the RF devices and to reduce deleterious harmonic distortion of the RF devices, it is therefore an object of the present disclosure to provide an improved packaging process for enhanced thermal and electrical performance. Further, there is also a need to enhance the performance of the RF devices without increasing the package size.
The present disclosure relates to a wafer-level packaging process to provide mold modules with enhanced performance. According to an exemplary wafer-level packaging process, a precursor wafer that includes a device layer, a number of first bump structures, a stop layer, and a silicon handle layer is provided. Herein, the device layer has a number of input/output (I/O) contacts at a top surface of the device layer. Each first bump structure is over the top surface of the device layer and electronically coupled to a corresponding I/O contact. The stop layer resides underneath the device layer, and a silicon handle layer resides underneath the stop layer, such that the stop layer separates the device layer from the silicon handle layer. A first mold compound is then applied over the device layer to encapsulate each first bump structure. Next, the silicon handle layer is removed substantially. A second mold compound is applied to an exposed surface from which the silicon handle layer was removed. Finally, the first mold compound is thinned down to provide a mold wafer. A portion of each first bump structure is exposed through the first mold compound.
In one embodiment of the wafer-level packaging process, removing substantially the silicon handle layer is provided by one of chemical mechanical grinding, wet etching, and dry etching.
In one embodiment of the wafer-level packaging process, applying the first mold compound is provided by one of compression molding, sheet molding, overmolding, transfer molding, dam fill encapsulation, and screen print encapsulation.
In one embodiment of the wafer-level packaging process, applying the second mold compound is provided by one of compression molding, sheet molding, overmolding, transfer molding, dam fill encapsulation, and screen print encapsulation.
In one embodiment of the wafer-level packaging process, thinning down the first mold compound is provided by mechanical grinding.
According to another embodiment, the wafer-level packaging process further includes forming a number of second bump structures over the first mold compound after the first mold compound is thinned down. Herein, each second bump structure is in contact with a corresponding first bump structure.
According to another embodiment, the wafer-level packaging process further includes singulating the mold wafer into individual mold modules.
In one embodiment of the wafer-level packaging process, the silicon handle layer, the stop layer, and the device layer are formed from a silicon-on-insulator (SOI) structure. Herein, the silicon handle layer is a silicon substrate of the SOI structure, the stop layer is a buried oxide (BOX) layer of the SOI structure, and the device layer is formed from a silicon epitaxy layer of the SOI structure.
In one embodiment of the wafer-level packaging process, the device layer provides one of a microelectromechanical systems (MEMS) device, an integrated passive device, and an active device.
In one embodiment of the wafer-level packaging process, the precursor wafer further includes a passivation layer formed over the device layer. Herein, a portion of each I/O contact is exposed through the passivation layer and each first bump structure protrudes from a top surface of the passivation layer and is coupled to the exposed portion of a corresponding I/O contact through the passivation layer.
According to another embodiment, the wafer-level packaging process further includes patterning the passivation layer to form a number of discrete passivation pads before applying the first mold compound over the device layer. Herein, each discrete passivation pad is aligned over a corresponding I/O contact. A portion of each I/O contact is exposed through a corresponding discrete passivation pad. Each first bump structure protrudes from a top surface of the corresponding discrete passivation pad and is coupled to the exposed portion of a corresponding I/O contact through the corresponding discrete passivation pad. Each discrete passivation pad is encapsulated by the first mold compound.
In one embodiment of the wafer-level packaging process, patterning the passivation layer is provided by photo masking or stencil screening.
In one embodiment of the wafer-level packaging process, the passivation layer is formed of benzocyclobutene (BCB) or polyimide.
According to another embodiment, the wafer-level packaging process further includes forming at least one window component over the device layer before applying the first mold compound over the device layer. The at least one window component is not in contact with the first bump structures. The at least one window component has a height greater than each first bump structure. The window component is encapsulated by the first mold compound.
In one embodiment of the wafer-level packaging process, a portion of the at least one window component is exposed after thinning down the first mold compound.
In one embodiment of the wafer-level packaging process, the at least one window component is transparent.
According to another embodiment, the wafer-level packaging process further includes removing the at least one window component to expose a portion of the top surface of the device layer after the first mold compound is thinned down.
In one embodiment of the wafer-level packaging process, the precursor wafer further includes a redistribution structure formed over the device layer. Herein, each first bump structure protrudes from a top surface of the redistribution structure. The redistribution structure includes redistribution interconnects that connect the I/O contacts to certain ones of the first bump structures. The first mold compound resides over the redistribution structure.
In one embodiment of the wafer-level packaging process, the first mold compound is formed from a same material as the second mold compound.
In one embodiment of the wafer-level packaging process, the first mold compound and the second mold compound have a thermal conductivity greater than 1 W/m·K. The first mold compound and the second mold compound have a dielectric constant between 3 and 5.
In one embodiment of the wafer-level packaging process, the first mold compound and the second mold compound have a thermal conductivity greater than 1 W/m·K. The first mold compound and the second mold compound have a dielectric constant less than 7.
In one embodiment of the wafer-level packaging process, the first mold compound and the second mold compound are formed from different materials.
In one embodiment of the wafer-level packaging process, the first mold compound is transparent.
In one embodiment of the wafer-level packaging process, the stop layer is formed of at least one of silicon oxide or silicon nitride.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
It will be understood that for clear illustrations,
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The present disclosure relates to a mold module with enhanced thermal and electrical performance, and a wafer-level packaging process to provide the mold module with enhanced performance.
In detail, the I/O contacts 14 are located at a top surface of the device layer 12. The device layer 12 may include at least one of a microelectromechanical systems (MEMS) device, an integrated passive device, and an active device (not shown), which may generate heat in the device layer 12. Each first bump structure 16 is formed over the device layer 12 and in contact with a corresponding I/O contact 14. The first mold compound 18 resides over the device layer 12 and partially encapsulates each first bump structure 16, such that a portion of each first bump structure 16 is exposed through the first mold compound 18. The stop layer 20 is formed underneath the device layer 12 and the second mold compound 22 resides underneath the stop layer 20, such that the stop layer 20 separates the device layer 12 from the second mold compound 22.
The I/O contacts 14 at the top surface of the device layer 12 may be formed of copper, silver, gold or other conductive metals, and the first bump structures 16 are solder balls. As such, each first bump structure 16 and the corresponding I/O contact 14 are electronically coupled. The stop layer 20 may be formed of at least one of silicon oxide or silicon nitride. The heat generated in the device layer 12 may travel through path A and/or path B. For the path A, the heat will travel downward to a top portion of the second mold compound 22, then will pass upward through the stop layer 20, the device layer 12, and the first bump structures 16, which will dissipate the heat. For the path B, the heat will travel directly through the first mold compound 18 to be conducted. It is therefore highly desirable to have high thermal conductivities of both the first and second mold compounds 18 and 22. The first mold compound 18 and the second mold compound 22 may have a thermal conductivity greater than 1 W/m·K, or greater than 10 W/m·K. In addition, the first mold compound 18 and the second mold compound 22 may have a low dielectric constant less than 7, or between 3 and 5 to yield low radio frequency (RF) coupling between devices (not shown) within the device layer 12. The first mold compound 18 may be formed of a same or different material as the second mold compound 22. The first mold compound 18 may be transparent. In one embodiment, both the first mold compound 18 and the second mold compound 22 may be formed of thermoplastics or thermoset polymer materials, such as PPS (poly phenyl sulfide), overmold epoxies doped with boron nitride or alumina thermal additives, or the like. The device layer has a thickness between 0.1 μm and 50 μm, the stop layer has a thickness between 10 nm and 1000 nm, the first mold compound has a thickness between 10 μm and 1000 μm, and the second mold compound has a thickness between 200 μm and 500 μm.
Herein, the mold module 10 has a planar top surface, where the first bump structures 16 do not protrude from the top surface of the first mold compound 18. In some applications, it would be desirable to have protruding structures at the top surface of the mold module 10 to facilitate and improve the reliability of die attaching (to the printed circuit board) operations. As shown in
In another embodiment, the mold module 10 may further include a passivation layer 26 as illustrated in
It is clear to those skilled in the art, this passivation layer 26 may help to mitigate the stresses associated with the module attaching process. However, the passivation layer 26 may have poor thermal conductivity, so as to obstruct the heat generated in the device layer 12 conducting through the first mold compound 18 (no path B). Alternatively, the mold module 10 may include a number of discrete passivation pads 26A instead of the continuous passivation layer 26 formed between the device layer 12 and the first mold compound 18, as illustrated in
Herein, the discrete passivation pads 26A do not separate the device layer 12 from the first mold compound 18. As such, the heat generated in the device layer 12 may travel through path A (from the device layer 12 downward to the top portion of the second mold compound 22, then upward through the stop layer 20, the device layer 12, and the first bump structures 16) and/or path B (from the device layer 12 directly through the first mold compound 18).
In some applications, the mold module 10 may further include a redistribution structure 28 formed between the device layer 12 and the first mold compound 18, as illustrated in
Initially, a precursor wafer 36 is provided as illustrated in
The passivation layer 26 is then patterned to form the discrete passivation pads 26A as illustrated in
Next, at least one window component 40 may be formed over the device layer 12 at where the wafer mark(s) (not shown) is/are located as illustrated in
The first mold compound 18 is applied over the device layer 12 to encapsulate each first bump structure 16 and the at least one window component 40, as illustrated in
After the first mold compound 18 is formed, the silicon handle layer 38 is removed substantially as illustrated in
The second mold compound 22 is then applied to an exposed surface from which the silicon handle layer 38 was removed, as illustrated in
Next, the first mold compound 18 is thinned down to provide a mold wafer 42 as illustrated in
Finally, the mold wafer 42 is singulated into individual mold modules 10, as illustrated in
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of provisional patent application Ser. No. 62/529,016, filed Jul. 6, 2017, the disclosure of which is hereby incorporated herein by reference in its entirety. This application is related to U.S. patent application Ser. No. 15/992,613, filed May 30, 2019, entitled “WAFER-LEVEL PACKAGING FOR ENHANCED PERFORMANCE;” the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4093562 | Kishimoto | Jun 1978 | A |
4366202 | Borovsky | Dec 1982 | A |
5013681 | Godbey et al. | May 1991 | A |
5061663 | Bolt et al. | Oct 1991 | A |
5069626 | Patterson et al. | Dec 1991 | A |
5391257 | Sullivan et al. | Feb 1995 | A |
5459368 | Onishi et al. | Oct 1995 | A |
5646432 | Iwaki et al. | Jul 1997 | A |
5648013 | Uchida et al. | Jul 1997 | A |
5699027 | Tsuji et al. | Dec 1997 | A |
5709960 | Mays et al. | Jan 1998 | A |
5729075 | Strain | Mar 1998 | A |
5831369 | Fürbacher et al. | Nov 1998 | A |
5920142 | Onishi et al. | Jul 1999 | A |
6072557 | Kishimoto | Jun 2000 | A |
6084284 | Adamic, Jr. | Jul 2000 | A |
6154366 | Ma et al. | Nov 2000 | A |
6154372 | Kalivas et al. | Nov 2000 | A |
6235554 | Akram et al. | May 2001 | B1 |
6236061 | Walpita | May 2001 | B1 |
6268654 | Glenn et al. | Jul 2001 | B1 |
6271469 | Ma et al. | Aug 2001 | B1 |
6423570 | Ma et al. | Jul 2002 | B1 |
6426559 | Bryan et al. | Jul 2002 | B1 |
6446316 | Fürbacher et al. | Sep 2002 | B1 |
6578458 | Akram et al. | Jun 2003 | B1 |
6649012 | Masayuki et al. | Nov 2003 | B2 |
6713859 | Ma | Mar 2004 | B1 |
6841413 | Liu et al. | Jan 2005 | B2 |
6864156 | Conn | Mar 2005 | B1 |
6902950 | Ma et al. | Jun 2005 | B2 |
6943429 | Glenn et al. | Sep 2005 | B1 |
6964889 | Ma et al. | Nov 2005 | B2 |
6992400 | Tikka et al. | Jan 2006 | B2 |
7042072 | Kim et al. | May 2006 | B1 |
7049692 | Nishimura et al. | May 2006 | B2 |
7109635 | McClure et al. | Sep 2006 | B1 |
7183172 | Lee et al. | Feb 2007 | B2 |
7238560 | Sheppard et al. | Jul 2007 | B2 |
7279750 | Jobetto | Oct 2007 | B2 |
7288435 | Aigner et al. | Oct 2007 | B2 |
7307003 | Reif et al. | Dec 2007 | B2 |
7393770 | Wood et al. | Jul 2008 | B2 |
7427824 | Iwamoto et al. | Sep 2008 | B2 |
7489032 | Jobetto | Feb 2009 | B2 |
7596849 | Carpenter et al. | Oct 2009 | B1 |
7619347 | Bhattacharjee | Nov 2009 | B1 |
7635636 | McClure et al. | Dec 2009 | B2 |
7714535 | Yamazaki et al. | May 2010 | B2 |
7749882 | Kweon et al. | Jul 2010 | B2 |
7790543 | Abadeer et al. | Sep 2010 | B2 |
7843072 | Park et al. | Nov 2010 | B1 |
7855101 | Furman et al. | Dec 2010 | B2 |
7868419 | Kerr et al. | Jan 2011 | B1 |
7910405 | Okada et al. | Mar 2011 | B2 |
7960218 | Ma et al. | Jun 2011 | B2 |
8004089 | Jobetto | Aug 2011 | B2 |
8183151 | Lake | May 2012 | B2 |
8420447 | Tay et al. | Apr 2013 | B2 |
8503186 | Lin et al. | Aug 2013 | B2 |
8643148 | Lin et al. | Feb 2014 | B2 |
8658475 | Kerr | Feb 2014 | B1 |
8664044 | Jin et al. | Mar 2014 | B2 |
8772853 | Hong et al. | Jul 2014 | B2 |
8791532 | Graf et al. | Jul 2014 | B2 |
8802495 | Kim et al. | Aug 2014 | B2 |
8816407 | Kim et al. | Aug 2014 | B2 |
8835978 | Mauder et al. | Sep 2014 | B2 |
8906755 | Hekmatshoartabari et al. | Dec 2014 | B1 |
8921990 | Park et al. | Dec 2014 | B2 |
8927968 | Cohen et al. | Jan 2015 | B2 |
8941248 | Lin et al. | Jan 2015 | B2 |
8963321 | Lenniger et al. | Feb 2015 | B2 |
8983399 | Kawamura et al. | Mar 2015 | B2 |
9165793 | Wang et al. | Oct 2015 | B1 |
9214337 | Carroll et al. | Dec 2015 | B2 |
9349700 | Hsieh et al. | May 2016 | B2 |
9368429 | Ma et al. | Jun 2016 | B2 |
9461001 | Tsai et al. | Oct 2016 | B1 |
9520428 | Fujimori | Dec 2016 | B2 |
9530709 | Leipold et al. | Dec 2016 | B2 |
9613831 | Morris et al. | Apr 2017 | B2 |
9646856 | Meyer et al. | May 2017 | B2 |
9786586 | Shih | Oct 2017 | B1 |
9812350 | Costa | Nov 2017 | B2 |
9824951 | Leipold et al. | Nov 2017 | B2 |
9824974 | Gao et al. | Nov 2017 | B2 |
9859254 | Yu et al. | Jan 2018 | B1 |
9875971 | Bhushan et al. | Jan 2018 | B2 |
9941245 | Skeete et al. | Apr 2018 | B2 |
20010004131 | Masayuki et al. | Jun 2001 | A1 |
20020070443 | Mu et al. | Jun 2002 | A1 |
20020074641 | Towle et al. | Jun 2002 | A1 |
20020127769 | Ma et al. | Sep 2002 | A1 |
20020127780 | Ma et al. | Sep 2002 | A1 |
20020137263 | Towle et al. | Sep 2002 | A1 |
20020185675 | Furukawa | Dec 2002 | A1 |
20030207515 | Tan et al. | Nov 2003 | A1 |
20040164367 | Park | Aug 2004 | A1 |
20040166642 | Chen et al. | Aug 2004 | A1 |
20040219765 | Reif et al. | Nov 2004 | A1 |
20050037595 | Nakahata | Feb 2005 | A1 |
20050079686 | Aigner et al. | Apr 2005 | A1 |
20050212419 | Vazan et al. | Sep 2005 | A1 |
20060057782 | Gardes et al. | Mar 2006 | A1 |
20060105496 | Chen et al. | May 2006 | A1 |
20060108585 | Gan et al. | May 2006 | A1 |
20060228074 | Lipson et al. | Oct 2006 | A1 |
20060261446 | Wood et al. | Nov 2006 | A1 |
20070020807 | Geefay et al. | Jan 2007 | A1 |
20070069393 | Asahi et al. | Mar 2007 | A1 |
20070075317 | Kato et al. | Apr 2007 | A1 |
20070121326 | Nall et al. | May 2007 | A1 |
20070158746 | Ohguro | Jul 2007 | A1 |
20070181992 | Lake | Aug 2007 | A1 |
20070190747 | Humpston et al. | Aug 2007 | A1 |
20070194342 | Kinzer | Aug 2007 | A1 |
20070252481 | Iwamoto et al. | Nov 2007 | A1 |
20070276092 | Kanae et al. | Nov 2007 | A1 |
20080050852 | Hwang et al. | Feb 2008 | A1 |
20080050901 | Kweon et al. | Feb 2008 | A1 |
20080164528 | Cohen et al. | Jul 2008 | A1 |
20080272497 | Lake | Nov 2008 | A1 |
20080315372 | Kuan et al. | Dec 2008 | A1 |
20090008714 | Chae | Jan 2009 | A1 |
20090010056 | Kuo et al. | Jan 2009 | A1 |
20090014856 | Knickerbocker | Jan 2009 | A1 |
20090179266 | Abadeer et al. | Jul 2009 | A1 |
20090261460 | Kuan et al. | Oct 2009 | A1 |
20100012354 | Hedin et al. | Jan 2010 | A1 |
20100029045 | Ramanathan et al. | Feb 2010 | A1 |
20100045145 | Tsuda | Feb 2010 | A1 |
20100081232 | Furman et al. | Apr 2010 | A1 |
20100081237 | Wong et al. | Apr 2010 | A1 |
20100109122 | Ding et al. | May 2010 | A1 |
20100127340 | Sugizaki | May 2010 | A1 |
20100173436 | Ouellet et al. | Jul 2010 | A1 |
20100200919 | Kikuchi | Aug 2010 | A1 |
20100314637 | Kim et al. | Dec 2010 | A1 |
20110003433 | Harayama et al. | Jan 2011 | A1 |
20110026232 | Lin et al. | Feb 2011 | A1 |
20110036400 | Murphy et al. | Feb 2011 | A1 |
20110062549 | Lin | Mar 2011 | A1 |
20110068433 | Kim et al. | Mar 2011 | A1 |
20110102002 | Riehl et al. | May 2011 | A1 |
20110171792 | Chang et al. | Jul 2011 | A1 |
20110272800 | Chino | Nov 2011 | A1 |
20110272824 | Pagaila | Nov 2011 | A1 |
20110294244 | Hattori et al. | Dec 2011 | A1 |
20120003813 | Chuang et al. | Jan 2012 | A1 |
20120045871 | Lee et al. | Feb 2012 | A1 |
20120068276 | Lin et al. | Mar 2012 | A1 |
20120094418 | Grama et al. | Apr 2012 | A1 |
20120098074 | Lin et al. | Apr 2012 | A1 |
20120104495 | Zhu et al. | May 2012 | A1 |
20120119346 | Im et al. | May 2012 | A1 |
20120153393 | Liang et al. | Jun 2012 | A1 |
20120168863 | Zhu et al. | Jul 2012 | A1 |
20120256260 | Cheng et al. | Oct 2012 | A1 |
20120292700 | Khakifirooz et al. | Nov 2012 | A1 |
20120299105 | Cai et al. | Nov 2012 | A1 |
20130001665 | Zhu et al. | Jan 2013 | A1 |
20130015429 | Hong et al. | Jan 2013 | A1 |
20130049205 | Meyer et al. | Feb 2013 | A1 |
20130099315 | Zhu et al. | Apr 2013 | A1 |
20130105966 | Kelkar et al. | May 2013 | A1 |
20130147009 | Kim | Jun 2013 | A1 |
20130155681 | Nall et al. | Jun 2013 | A1 |
20130196483 | Dennard et al. | Aug 2013 | A1 |
20130200456 | Zhu et al. | Aug 2013 | A1 |
20130280826 | Scanlan et al. | Oct 2013 | A1 |
20130299871 | Mauder et al. | Nov 2013 | A1 |
20140035129 | Stuber et al. | Feb 2014 | A1 |
20140134803 | Kelly et al. | May 2014 | A1 |
20140168014 | Chih et al. | Jun 2014 | A1 |
20140197530 | Meyer et al. | Jul 2014 | A1 |
20140210314 | Bhattacharjee et al. | Jul 2014 | A1 |
20140219604 | Hackler, Sr. et al. | Aug 2014 | A1 |
20140252566 | Kerr et al. | Sep 2014 | A1 |
20140252567 | Carroll et al. | Sep 2014 | A1 |
20140264813 | Lin et al. | Sep 2014 | A1 |
20140264818 | Lowe, Jr. et al. | Sep 2014 | A1 |
20140306324 | Costa et al. | Oct 2014 | A1 |
20140327003 | Fuergut et al. | Nov 2014 | A1 |
20140327150 | Jung et al. | Nov 2014 | A1 |
20140346573 | Adam et al. | Nov 2014 | A1 |
20150115416 | Costa et al. | Apr 2015 | A1 |
20150130045 | Tseng et al. | May 2015 | A1 |
20150136858 | Finn et al. | May 2015 | A1 |
20150197419 | Cheng et al. | Jul 2015 | A1 |
20150235990 | Cheng et al. | Aug 2015 | A1 |
20150235993 | Cheng et al. | Aug 2015 | A1 |
20150243881 | Sankman et al. | Aug 2015 | A1 |
20150255368 | Costa | Sep 2015 | A1 |
20150262844 | Meyer et al. | Sep 2015 | A1 |
20150279789 | Mahajan et al. | Oct 2015 | A1 |
20150311132 | Kuo et al. | Oct 2015 | A1 |
20150364344 | Yu et al. | Dec 2015 | A1 |
20150380394 | Jang et al. | Dec 2015 | A1 |
20150380523 | Klekmatshoartabari et al. | Dec 2015 | A1 |
20160002510 | Champagne et al. | Jan 2016 | A1 |
20160079137 | Leipold et al. | Mar 2016 | A1 |
20160093580 | Scanlan et al. | Mar 2016 | A1 |
20160100489 | Costa et al. | Apr 2016 | A1 |
20160126111 | Leipold et al. | May 2016 | A1 |
20160126196 | Leipold et al. | May 2016 | A1 |
20160133591 | Hong et al. | May 2016 | A1 |
20160155706 | Yoneyama et al. | Jun 2016 | A1 |
20160284568 | Morris et al. | Sep 2016 | A1 |
20160284570 | Morris et al. | Sep 2016 | A1 |
20160343592 | Costa et al. | Nov 2016 | A1 |
20160343604 | Costa et al. | Nov 2016 | A1 |
20160347609 | Yu et al. | Dec 2016 | A1 |
20160362292 | Chang et al. | Dec 2016 | A1 |
20170032957 | Costa et al. | Feb 2017 | A1 |
20170077028 | Maxim et al. | Mar 2017 | A1 |
20170098587 | Leipold et al. | Apr 2017 | A1 |
20170190572 | Pan et al. | Jul 2017 | A1 |
20170207350 | Leipold et al. | Jul 2017 | A1 |
20170271200 | Costa | Sep 2017 | A1 |
20170323804 | Costa et al. | Nov 2017 | A1 |
20170323860 | Costa et al. | Nov 2017 | A1 |
20170334710 | Costa et al. | Nov 2017 | A1 |
20170358511 | Costa et al. | Dec 2017 | A1 |
20180019184 | Costa et al. | Jan 2018 | A1 |
20180019185 | Costa et al. | Jan 2018 | A1 |
20180044169 | Hatcher, Jr. et al. | Feb 2018 | A1 |
20180044177 | Vandemeer et al. | Feb 2018 | A1 |
20180047653 | Costa et al. | Feb 2018 | A1 |
20180138082 | Costa et al. | May 2018 | A1 |
20180145678 | Maxim et al. | May 2018 | A1 |
20180166358 | Costa et al. | Jun 2018 | A1 |
20190074263 | Costa et al. | Mar 2019 | A1 |
20190074271 | Costa et al. | Mar 2019 | A1 |
20190189599 | Baloglu et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
103811474 | May 2014 | CN |
103872012 | Jun 2014 | CN |
2996143 | Mar 2016 | EP |
S505733 | Feb 1975 | JP |
2006005025 | Jan 2006 | JP |
2007227439 | Sep 2007 | JP |
2008235490 | Oct 2008 | JP |
2008279567 | Nov 2008 | JP |
2009026880 | Feb 2009 | JP |
2009530823 | Aug 2009 | JP |
2007074651 | Jul 2007 | WO |
Entry |
---|
Non-Final Office Action for U.S. Appl. No. 15/695,579, dated Jan. 28, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/695,579, dated Mar. 20, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/992,613, dated Feb. 27, 2019, 15 pages. |
International Preliminary Report on Patentability for PCT/US2017/046744, dated Feb. 21, 2019, 11 pages. |
International Preliminary Report on Patentability for PCT/US2017/046758, dated Feb. 21, 2019, 11 pages. |
International Preliminary Report on Patentability for PCT/US2017/046779, dated Feb. 21, 2019, 11 pages. |
First Office Action for Chinese Patent Application No. 201510746323.X, dated Nov. 2, 2018, 12 pages. |
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Jan. 9, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/945,418, dated Nov. 1, 2018, 13 pages. |
Final Office Action for U.S. Appl. No. 15/601,858, dated Nov. 26, 2018, 16 pages. |
Advisory Action for U.S. Appl. No. 15/601,858, dated Jan. 22, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Jan. 11, 2019, 8 pages. |
Raskin, Jean-Pierre et al., “Substrate Crosstalk Reduction Using SOI Technology,” IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, pp. 2252-2261. |
Rong, B., et al., “Surface-Passivated High-Resistivity Silicon Substrates for RFICs,” IEEE Electron Device Letters, vol. 25, No. 4, Apr. 2004, pp. 176-178. |
Sherman, Lilli M., “Plastics that Conduct Heat,” Plastics Technology Online, Jun. 2001, Retrieved May 17, 2016, http://www.ptonline.com/articles/plastics-that-conduct-heat, Gardner Business Media, Inc., 5 pages. |
Tombak, A., et al., “High-Efficiency Cellular Power Amplifiers Based on a Modified LDMOS Process on Bulk Silicon and Silicon-On-Insulator Substrates with Integrated Power Management Circuitry,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 1862-1869. |
Yamanaka, A., et al., “Thermal Conductivity of High-Strength Polyetheylene Fiber and Applications for Cryogenic Use,” International Scholarly Research Network, ISRN Materials Science, vol. 2011, Article ID 718761, May 25, 2011, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 18, 2013, 20 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Nov. 26, 2013, 21 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/852,648, dated Jan. 27, 2014, 4 pages. |
Advisory Action for U.S. Appl. No. 13/852,648, dated Mar. 7, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jun. 16, 2014, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Sep. 26, 2014, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jan. 22, 2015, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jun. 24, 2015, 20 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Oct. 22, 2015, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Feb. 19, 2016, 12 pages. |
Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 20, 2016, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 14/315,765, dated Jan. 2, 2015, 6 pages. |
Final Office Action for U.S. Appl. No. 14/315,765, dated May 11, 2015, 17 pages. |
Advisory Action for U.S. Appl. No. 14/315,765, dated Jul. 22, 2015, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 14/260,909, dated Mar. 20, 2015, 20 pages. |
Final Office Action for U.S. Appl. No. 14/260,909, dated Aug. 12, 2015, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 14/261,029, dated Dec. 5, 2014, 15 pages. |
Notice of Allowance for U.S. Appl. No. 14/261,029, dated Apr. 27, 2015, 10 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 14/261,029, dated Nov. 17, 2015, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 14/529,870, dated Feb. 12, 2016, 14 pages. |
Notice of Allowance for U.S. Appl. No. 14/529,870, dated Jul. 15, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/293,947, dated Apr. 7, 2017, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/293,947, dated Aug. 14, 2017, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/715,830, dated Apr. 13, 2016, 16 pages. |
Final Office Action for U.S. Appl. No. 14/715,830, dated Sep. 6, 2016, 13 pages. |
Advisory Action for U.S. Appl. No. 14/715,830, dated Oct. 31, 2016, 6 pages. |
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Feb. 10, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Mar. 2, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/851,652, dated Oct. 7, 2016, 10 pages. |
Notice of Allowance for U.S. Appl. No. 14/851,652, dated Apr. 11, 2017, 9 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Jul. 24, 2017, 6 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Sep. 6, 2017, 5 pages. |
Notice of Allowance for U.S. Appl. No. 14/959,129, dated Oct. 11, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/173,037, dated Jan. 10, 2017, 8 pages. |
Final Office Action for U.S. Appl. No. 15/173,037, dated May 2, 2017, 13 pages. |
Advisory Action for U.S. Appl. No. 15/173,037, dated Jul. 20, 2017, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/173,037, dated Aug. 9, 2017, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Feb. 15, 2017, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Jun. 6, 2017, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/229,780, dated Jun. 30, 2017, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Aug. 7, 2017, 10 pages. |
Notice of Allowance for U.S. Appl. No. 15/408,560, dated Sep. 25, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/287,202, dated Aug. 25, 2017, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/353,346, dated May 23, 2017, 15 pages. |
Notice of Allowance for U.S. Appl. No. 15/353,346, dated Sep. 25, 2017, 9 pages. |
Ali, K. Ben et al., “RF SOI CMOS Technology on Commercial Trap-Rich High Resistivity SOI Wafer,” 2012 IEEE International SOI Conference (SOI), Oct. 1-4, 2012, Napa, California, IEEE, 2 pages. |
Anderson, D.R., “Thermal Conductivity of Polymers,” Sandia Corporation, Mar. 8, 1966, pp. 677-690. |
Author Unknown, “96% Alumina, thick-film, as fired,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/DataSheet.aspx?MatGUID=3996a734395a4870a9739076918c4297&ckck=1. |
Author Unknown, “CoolPoly D5108 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 2 pages. |
Author Unknown, “CoolPoly D5506 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Dec. 12, 2013, 2 pages. |
Author Unknown, “CoolPoly D-Series—Thermally Conductive Dielectric Plastics,” Cool Polymers, Retrieved Jun. 24, 2013, http://coolpolymers.com/dseries.asp, 1 page. |
Author Unknown, “CoolPoly E2 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Aug. 8, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e2.pdf, 1 page. |
Author Unknown, “CoolPoly E3605 Thermally Conductive Polyamide 4,6 (PA 4,6),” Cool Polymers, Inc., Aug. 1, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e3605.pdf. |
Author Unknown, “CoolPoly E5101 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 27, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e5101.pdf. |
Author Unknown, “CoolPoly E5107 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 1 page, http://coolpolymers.com/Files/DS/Datasheet_e5107.pdf. |
Author Unknown, “CoolPoly Selection Tool,” Cool Polymers, Inc., 2006, 1 page, http://www.coolpolymers.com/select.asp?Application=Substrates+%26+Electcronic_Packaging. |
Author Unknown, “CoolPoly Thermally Conductive Plastics for Dielectric Heat Plates,” Cool Polymers, Inc., 2006, 2 pages, http://www.coolpolymers.com/heatplate.asp. |
Author Unknown, “CoolPoly Thermally Conductive Plastics for Substrates and Electronic Packaging,” Cool Polymers, Inc., 2005, 1 page. |
Author Unknown, “Electrical Properties of Plastic Materials,” Professional Plastics, Oct. 28, 2011, http://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf, accessed Dec. 18, 2014, 4 pages. |
Author Unknown, “Fully Sintered Ferrite Powders,” Powder Processing and Technology, LLC, Date Unknown, 1 page. |
Author Unknown, “Heat Transfer,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heattrans.html, 2 pages. |
Author Unknown, “Hysol UF3808,” Henkel Corporation, Technical Data Sheet, May 2013, 2 pages. |
Author Unknown, “PolyOne Therma-Tech™ LC-5000C TC LCP,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/datasheettext.aspx?matguid=89754e8bb26148d083c5ebb05a0cbff1. |
Author Unknown, “Sapphire Substrate,” from CRC Handbook of Chemistry and Physics, Date Unknown, 1 page. |
Author Unknown, “Thermal Properties of Plastic Materials,” Professional Plastics, Aug. 21, 2010, http://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf, accessed Dec. 18, 2014, 4 pages. |
Author Unknown, “Thermal Properties of Solids,” PowerPoint Presentation, No Date, 28 slides, http://www.phys.huji.ac.il/Phys_Hug/Lectures/77602/PHONONS_2_thermal.pdf. |
Author Unknown, “Thermal Resistance & Thermal Conductance,” C-Therm Technologies Ltd., accessed Sep. 19, 2013, 4 pages, http://www.ctherm.com/products/tci_thermal_conductivity/helpful_links_tools/thermal_resistance_thermal_conductance/. |
Author Unknown, “The Technology: AKHAN's Approach and Solution: The Miraj Diamond™ Platform,” 2015, accessed Oct. 9, 2016, http://www.akhansemi.com/technology.html#the-miraj-diamond-platform, 5 pages. |
Beck, D., et al., “CMOS on FZ-High Resistivity Substrate for Monolithic Integration of SiGe-RF-Circuitry and Readout Electronics,” IEEE Transactions on Electron Devices, vol. 44, No. 7, Jul. 1997, pp. 1091-1101. |
Botula, A., et al., “A Thin-Film SOI 180nm CMOS RF Switch Technology,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF '09), Jan. 2009, pp. 1-4. |
Carroll, M., et al., “High-Resistivity SOI CMOS Cellular Antenna Switches,” Annual IEEE Compound Semiconductor Integrated Circuit Symposium, (CISC 2009), Oct. 2009, pp. 1-4. |
Colinge, J.P., et al., “A Low-Voltage, Low-Power Microwave SOI MOSFET,” Proceedings of 1996 IEEE International SOI Conference, Oct. 1996, pp. 128-129. |
Costa, J. et al., “Integrated MEMS Switch Technology on SOI-CMOS,” Proceedings of Hilton Head Workshop: A Solid-State Sensors, Actuators and Microsystems Workshop, Jun. 1-5, 2008, Hilton Head Island, SC, IEEE, pp. 900-903. |
Costa, J. et al., “Silicon RFCMOS SOI Technology with Above-IC MEMS Integration for Front End Wireless Applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2008, BCTM 2008, IEEE, pp. 204-207. |
Costa, J., “RFCMOS SOI Technology for 4G Reconfigurable RF Solutions,” Session WEC1-2, Proceedings of the 2013 IEEE International Microwave Symposium, 4 pages. |
Esfeh, Babak Kazemi et al., “RF Non-Linearities from Si-Based Substrates,” 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Apr. 2-4, 2014, IEEE, 3 pages. |
Finne, R. M. et al., “A Water-Amine-Complexing Agent System for Etching Silicon,” Journal of the Electrochemical Society, vol. 114, No. 9, Sep. 1967, pp. 965-970. |
Gamble, H. S. et al., “Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 10, Oct. 1999, pp. 395-397. |
Huang, Xingyi, et al., “A Review of Dielectric Polymer Composites with High Thermal Conductivity,” IEEE Electrical Insulation Magazine, vol. 27, No. 4, Jul./Aug. 2011, pp. 8-16. |
Joshi, V. et al., “MEMS Solutions in RF Applications,” 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Oct. 2013, IEEE, 2 pages. |
Jung, Boo Yang, et al., “Study of FCMBGA with Low CTE Core Substrate,” 2009 Electronic Components and Technology Conference, May 2009, pp. 301-304. |
Kerr, D.C., et al., “Identification of RF Harmonic Distortion on Si Substrates and Its Reduction Using a Trap-Rich Layer,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF 2008), Jan. 2008, pp. 151-154. |
Lederer, D., et al., “New Substrate Passivation Method Dedicated to HR SOI Wafer Fabrication with Increased Substrate Resistivity,” IEEE Electron Device Letters, vol. 26, No. 11, Nov. 2005, pp. 805-807. |
Lederer, Dimitri et al., “Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers,” Solid-State Electronics, vol. 47, No. 11, Nov. 2003, pp. 1927-1936. |
Lee, Kwang Hong et al., “Integration of III-V materials and Si-CMOS through double layer transfer process,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015, pp. 030209-1 to 030209-5. |
Lee, Tzung-Yin, et al., “Modeling of SOI FET for RF Switch Applications,” IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, Anaheim, CA, IEEE, pp. 479-482. |
Lu, J.Q., et al., “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,” Proceedings of the IEEE 2003 International Interconnect Technology Conference, Jun. 2-4, 2003, pp. 74-76. |
Mamunya, YE.P., et al., “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, vol. 38, 2002, pp. 1887-1897. |
Mansour, Raafat R., “RF MEMS-CMOS Device Integration,” IEEE Microwave Magazine, vol. 14, No. 1, Jan. 2013, pp. 39-56. |
Mazuré, C. et al., “Advanced SOI Substrate Manufacturing,” 2004 IEEE International Conference on Integrated Circuit Design and Technology, 2004, IEEE, pp. 105-111. |
Micak, R. et al., “Photo-Assisted Electrochemical Machining of Micromechanical Structures,” Proceedings of Micro Electro Mechanical Systems, Feb. 7-10, 1993, Fort Lauderdale, FL, IEEE, pp. 225-229. |
Morris, Art, “Monolithic Integration of RF-MEMS within CMOS,” 2015 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Apr. 27-29, 2015, IEEE, 2 pages. |
Niklaus, F., et al., “Adhesive Wafer Bonding,” Journal of Applied Physics, vol. 99, No. 3, 031101 (2006), 28 pages. |
Parthasarathy, S., et al., “RF SOI Switch FET Design and Modeling Tradeoffs for GSM Applications,” 2010 23rd International Conference on VLSI Design, (VLSID '10), Jan. 2010, pp. 194-199. |
Raskin, J.P., et al., “Coupling Effects in High-Resistivity SIMOX Substrates for VHF and Microwave Applications,” Proceedings of 1995 IEEE International SOI Conference, Oct. 1995, pp. 62-63. |
Non-Final Office Action for U.S. Appl. No. 15/676,693, dated May 3, 2018, 14 pages. |
Notice of Allowance for U.S. Appl. No. 15/789,107, dated May 18, 2018, 8 pages. |
Final Office Action for U.S. Appl. No. 15/616,109, dated Apr. 19, 2018, 18 pages. |
Notice of Allowance for U.S. Appl. No. 15/676,693, dated Jul. 20, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/695,629, dated Jul. 11, 2018, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/387,855, dated Aug. 10, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/914,538, dated Aug. 1, 2018, 9 pages. |
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Sep. 28, 2018, 16 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 15/676,693, dated Aug. 29, 2018, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/287,273, dated Jun. 30, 2017, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jul. 21, 2017, 5 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Sep. 7, 2017, 5 pages. |
Extended European Search Report for European Patent Application No. 15184861.1, dated Jan. 25, 2016, 6 pages. |
Office Action of the Intellectual Property Office for Taiwanese Patent Application No. 104130224, dated Jun. 15, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/885,202, dated Apr. 14, 2016, 5 pages. |
Final Office Action for U.S. Appl. No. 14/885,202, dated Sep. 27, 2016, 7 pages. |
Advisory Action for U.S. Appl. No. 14/885,202, dated Nov. 29, 2016, 3 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jan. 27, 2017, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jul. 24, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/885,243, dated Aug. 31, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated May 27, 2011, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated Nov. 4, 2011, 20 pages. |
Search Report for Japanese Patent Application No. 2011-229152, created on Feb. 22, 2013, 58 pages. |
Office Action for Japanese Patent Application No. 2011-229152, drafted May 10, 2013, 7 pages. |
Final Rejection for Japanese Patent Application No. 2011-229152, drafted Oct. 25, 2013, 2 pages. |
International Search Report and Written Opinion for PCT/US2016/045809, dated Oct. 7, 2016, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/652,867, dated Oct. 10, 2017, 5 pages. |
Bernheim et al., “Chapter 9: Lamination,” Tools and Manufacturing Engineers Handbook (book), Apr. 1, 1996, Society of Manufacturing Engineers, p. 9-1. |
Fillion R. et al., “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” Electronic Components and Technology Conference, vol. 1, May 1994, IEEE, 5 pages. |
Henawy, Mahmoud Al et al., “New Thermoplastic Polymer Substrate for Microstrip Antennas at 60 GHz,” German Microwave Conference, Mar. 15-17, 2010, Berlin, Germany, IEEE, pp. 5-8. |
International Search Report and Written Opinion for PCT/US2017/046744, dated Nov. 27, 2017, 17 pages. |
International Search Report and Written Opinion for PCT/US2017/046758, dated Nov. 16, 2017, 19 pages. |
International Search Report and Written Opinion for PCT/US2017/046779, dated Nov. 29, 2017, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 15/616,109, dated Oct. 23, 2017, 16 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 14/851,652, dated Oct. 20, 2017, 5 pages. |
Final Office Action for U.S. Appl. No. 15/262,457, dated Dec. 19, 2017, 12 pages. |
Supplemental Notice of Allowability and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/287,273, dated Oct. 18, 2017, 6 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Nov. 2, 2017, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/491,064, dated Jan. 2, 2018, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/872,910, dated Nov. 17, 2017, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/648,082, dated Nov. 29, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/652,826, dated Nov. 3, 2017, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/229,780, dated Oct. 3, 2017, 7 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jan. 17, 2018, 5 pages. |
Notice of Allowance for U.S. Appl. No. 15/498,040, dated Feb. 20, 2018, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/387,855, dated Jan. 16, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/795,915, dated Feb. 23, 2018, 6 pages. |
International Preliminary Report on Patentability for PCT/US2016/045809, dated Feb. 22, 2018, 8 pages. |
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Feb. 28, 2018, 5 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Feb. 23, 2018, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 15/676,415, dated Mar. 27, 2018, 14 page. |
Non-Final Office Action for U.S. Appl. No. 15/676,621, dated Mar. 26, 2018, 16 pages. |
Notice of Allowance for U.S. Appl. No. 15/795,915, dated Jun. 15, 2018, 7 pages. |
Final Office Action for U.S. Appl. No. 15/387,855, dated May 24, 2018, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Apr. 19, 2018, 10 pages. |
Notice of Allowance for U.S. Appl. No. 15/491,064, dated Apr. 30, 2018, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Jun. 26, 2018, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/616,109, dated Jul. 2, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/676,621, dated Jun. 5, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated May 13, 2019, 8 pages. |
Final Office Action for U.S. Appl. No. 15/992,613, dated May 24, 2019, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Apr. 17, 2019, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/873,152, dated May 24, 2019, 11 pages. |
Notice of Allowance for U.S. Appl. No. 16/168,327, dated Jun. 28, 2019, 7 pages. |
Notice of Reasons for Refusal for Japanese Patent Application No. 2015-180657, dated Jul. 9, 2019, 4 pages. |
Notice of Allowance for U.S. Appl. No. 15/975,230, dated Jul. 22, 2019, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/601,858, dated Aug. 16, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Aug. 28, 2019, 8 pages. |
Advisory Action for U.S. Appl. No. 15/992,613, dated Jul. 29, 2019, 3 pages. |
Final Office Action for U.S. Appl. No. 15/873,152, dated Aug. 8, 2019, 13 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US19/25591, dated Jun. 21, 2019, 7 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034645, dated Sep. 19, 2019, 14 pages. |
Notice of Alloawance for U.S. Appl. No. 15/992,613, dated Sep. 23, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated Oct. 9, 2019, 15 pages. |
Advisory Action for U.S. Appl. No. 15/873,152, dated Oct. 11, 2019, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190013255 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62529016 | Jul 2017 | US |