The field generally relates to bonded structures, and in particular, to bonded structures that provide improved sealing between two elements (e.g., two semiconductor elements).
In semiconductor device fabrication and packaging, some integrated devices are sealed from the outside environs in order to, e.g., reduce contamination or prevent damage to the integrated device. For example, some microelectromechanical systems (MEMS) devices include a cavity defined by a cap attached to a substrate with an adhesive such as solder. However, some adhesives may be permeable to gases, such that the gases can, over time, pass through the adhesive and into the cavity. Moisture or some gases, such as hydrogen or oxygen gas, can damage sensitive integrated devices. Other adhesives, such as solder, create their own long term reliability issues. Accordingly, there remains a continued need for improved seals for integrated devices.
Various embodiments disclosed herein relate to interface structures that connect two elements (which may comprise semiconductor elements) in a manner that effectively seals integrated devices of the semiconductor elements from the outside environs. For example, in some embodiments, a bonded structure can comprise a plurality of semiconductor elements bonded to one another along an interface structure. An integrated device can be coupled to or formed with a semiconductor element. For example, in some embodiments, the bonded structure can comprise a microelectromechanical systems (MEMS) device in which a cap (a first semiconductor element) is bonded to a carrier (a second semiconductor element). A MEMS element (the integrated device) can be disposed in a cavity defined at least in part by the cap and the carrier.
In some arrangements, the interface structure can comprise one or more conductive interface features disposed about the integrated device, and one or more non-conductive interface features to connect the first and semiconductor elements and to define an effectively annular or effectively closed profile. In some embodiments, the interface structure can comprise a first conductive interface feature, a second conductive interface feature, and a solid state non-conductive interface feature disposed between the first and second conductive interface features. In some embodiments, each semiconductor element can comprise an associated conductive interface feature, and the conductive interface features can be directly bonded to one another to connect the two semiconductor elements.
The second semiconductor element 2 can comprise a carrier having an exterior surface 9 to which the first semiconductor element 3 is bonded. In some embodiments, the carrier can comprise a substrate, such as a semiconductor substrate (e.g., a silicon interposer with conductive interconnects), a printed circuit board (PCB), a ceramic substrate, a glass substrate, or any other suitable carrier. In such embodiments, the carrier can transfer signals between the integrated device 4 and a larger packaging structure or electronic system (not shown). In some embodiments, the carrier can comprise an integrated device die, such as a processor die configured to process signals transduced by the integrated device 4. In the illustrated embodiment, the integrated device 4 comprises a MEMS element, such as a MEMS switch, an accelerometer, a gyroscope, etc. The integrated device 4 can be coupled to or formed with the first semiconductor element 3 or the second semiconductor element 2.
In some configurations, it can be important to isolate or separate the integrated device die 4 from the outside environs, e.g., from exposure to gases and/or contaminants. For example, for some integrated devices, exposure to moisture or gases (such as hydrogen or oxygen gas) can damage the integrated device 4 or other components. Accordingly, it can be important to provide an interface structure 10 that effectively or substantially seals (e.g., hermetically or near-hermetically seals) the cavity 5 and the integrated device 4 from gases. As shown in
The disclosed embodiments can utilize materials that have low gas permeation rates and can arrange the materials so as to reduce or eliminate the entry of gases into the cavity 5. For example, the permeation rate of some gases (such as hydrogen gas) through metals may be significantly less that the permeation rate of gases through other materials (such as dielectric materials or polymers). Hydrogen gas, for example, may dissociate into its component atoms at or near the outer surface 8. The dissociated atoms may diffuse through the wall 6 or interface structure 10 and recombine at or near the inner surface 7. The diffusion rate of hydrogen gas through metal can be approximately proportional to the square root of the pressure. Other gases, such as rare gases, may not permeate metals at all. By way of comparison, gases may pass through polymer or glass (silicon oxide) materials faster (e.g., proportional to the pressure) since the gas molecules may pass through without dissociating into atoms at the outer wall 8.
Accordingly, the embodiments disclosed herein can beneficially employ metal that defines an effectively annular or closed pattern (see
However, in some embodiments, it may be undesirable to utilize an interface structure 10 that includes only metal or a significant width of metal lines. If the interface structure 10 includes wide metal lines or patterns, then the metal may experience significant dishing during chemical mechanical polishing (CMP) or other processing steps. Dishing of the metal lines can adversely affect ability to bond the metal lines of first semiconductor element 3 to the second semiconductor element 2, particularly when employing direct metal-to-metal bonding techniques. Accordingly, in various embodiments, the interface structure 10 can include one or more conductive interface features 12 embedded with or otherwise adjacent to one or more non-conductive interface features 14. The conductive interface features can provide an effective barrier so as to prevent or reduce the permeation of gases into the cavity 5 and/or to the integrated device 4. Moreover, the conductive interface features can be made sufficiently thin and can be interspersed or embedded with the non-conductive interface features so as to reduce or eliminate the deleterious effects of dishing.
In some embodiments disclosed herein, the interface structure 10 can be defined by first interface features on the first semiconductor element and second interface features on the second semiconductor element. The first interface features (including conductive and non-conductive features) can be bonded to the corresponding second interface features to define the interface structure 10. In some embodiments, the interface structure 10 can comprise a separate structure that is separately bonded to the first semiconductor element 3 and the second semiconductor element 2. For example, in some embodiments, the wall 6 may be provided as a separate open frame with a generally planar semiconductor element 3 provided facing the frame. A second interface structure (not shown) can comprise an intervening structure that is directly bonded without an intervening adhesive between the open frame and semiconductor element 3 thereby forming a similar enclosed cavity 5 to that shown in
It should be appreciated that, although the illustrated embodiment is directed to a MEMS bonded structure, any suitable type of integrated device or structure can be used in conjunction with the disclosed embodiments. For example, in some embodiments, the first and second semiconductor elements can comprise integrated device dies, e.g., processor dies and/or memory dies. In addition, although the disclosed embodiment includes the cavity 5, in other arrangements, there may not be a cavity. For example, the embodiments disclosed herein can be utilized with any suitable integrated device or integrated device die in which it may be desirable to seal active components from the outside environs and gases. Moreover, the disclosed embodiments can be used to accomplish other objectives. For example, in some arrangements, the disclosed interface structure 10 can be used to provide an electromagnetic shield to reduce or prevent unwanted electromagnetic radiation from entering the structure 1, and/or to prevent various types of signal leakage. Of course, the cavity may be filled with any suitable fluid, such as a liquid, gas, or other suitable substance which may improve the thermal, electrical or mechanical characteristics of the structure 1.
The conductive interface feature 12 can comprise any suitable conductor, such as a metal. For example, the conductive interface feature 12 can comprise copper, aluminum, or any other suitable metal that is sufficiently impermeable to fluids/gases, such as air, hydrogen, nitrogen, water, moisture, etc. The non-conductive interface feature 14 can comprise any suitable non-conductive material, such as a dielectric or semiconductor material. For example, the non-conducive interface feature 14 can comprise silicon oxide in some embodiments. Beneficially, the use of both a conductive interface feature 12 and a non-conductive interface feature 14 can provide improved sealing to prevent gases from passing from the outside environs into the cavity 5 and/or to the device 4. As explained above, conductors such as metals may generally provide improved sealing for many gases. However, some non-conductive materials (e.g., dielectrics) may be less permeable to certain gases than conductors, metals, or semiconductors. Structurally mixing the conductive features 12 with the non-conductive features 14 may provide a robust seal to prevent many different types of gases and other fluids from entering the cavity and/or affecting the device 4.
In the embodiment of
The structure of
The interface structure 10 can have an interface width t0 in a range of 1 micron to 1 mm. The conductive interface feature 12 can have a conductor width tc in a range of 0.1 microns to 50 microns. The non-conductive interface feature 14 can have non-conductor widths ti in a range of 0.1 micron to 1 mm. As explained above, the interface structure 10 disclosed in
Turning to
Moving to
The kinked annular profile of the conductive interface features 12 can facilitate direct bonding with increased tolerance for misalignment, as compared with features 12 that are straight or non-kinked, while maintaining the benefits of narrow lines with respect to the effects of dishing after polishing. The kinked profile can include any number of conductive interface features 12. For example,
The electrical interconnects 20 can provide electrical communication between the semiconductor elements 3, 2 through the interface structure 10. Providing the interconnects 20 in a direction non-parallel or transverse to the interface structure 10 can therefore enable the interface structure 10 to act as both a mechanical and electrical connection between the two semiconductor elements 3, 2. The interconnects 20 can comprise any suitable conductor, such as copper, gold, etc. The interconnects 20 can comprise conductive traces or through-silicon vias in various arrangements. Moreover, as noted above, the interface features 12 may also serve as annular or mostly annular electrical interconnects, with or without the conventional interconnects 20.
The embodiments of
Moreover, as illustrated in
As with the bonded structures 1 of
In embodiments that utilize direct bonding for the interface structure 10, bonding surfaces of the first and second interface features can be prepared. For example, a bonding surface of the first conductive interface feature 12 and the first non-conductive interface feature 14 can be directly bonded to a corresponding bonding surface of the second conductive interface feature 12′ and the second non-conductive interface feature 14′, without an intervening adhesive and without the application of pressure or a voltage. The bonding surfaces can be polished or planarized, activated, and terminated with a suitable species. The bonding surfaces can be brought into contact to form a direct bond without application of pressure. In some embodiments, the semiconductor elements 3, 2 can be heated to strengthen the bond, for example, a bond between the conductive features. Additional details of the direct bonding processes used in conjunction with each of the disclosed embodiments may be found throughout U.S. Pat. Nos. 7,126,212; 8,153,505; 7,622,324; 7,602,070; 8,163,373; 8,389,378; and 8,735,219, and throughout U.S. patent application Ser. Nos. 14/835,379; 62/278,354; 62/303,930; and 15/137,930, the contents of each of which are hereby incorporated by reference herein in their entirety and for all purposes.
In the structure 10 of
Accordingly, as shown in
In the embodiment of
To increase tolerance for misalignments, the conductive interface features 12, 12′ can comprise a plurality of wide sections 16 alternately arranged and connected with a plurality of narrow sections 15. For example, as shown in
Advantageously, the wide segments 16 can be provided to improve the gas sealing capabilities of the bonded structure 1, as explained above. The narrow segments 14 can be provided to reduce the effects of dishing that may occur due to polishing, thereby facilitating direct conductor to conductor bonding.
In some embodiments, a first width t1 of the blocks 17 can be greater than a second width t2 of the inner regions 114a and/or the outer regions 114b. For example, in some embodiments, the first width t1 of the blocks 17 can be in a range of 0.2 microns to 25 microns. The second width t2 of the inner regions 114a and/or the outer regions 114b can be in a range of 0.1 microns to 20 microns. Dimensioning the blocks 17 to be larger than the regions 114a, 114b can enable the conductive features 12, 12′ to have significant overlapping conductive bond 35, as shown in the bonded interface structure 10 of
In
Although the lattice shown in
Thus, in the embodiments of
In one embodiment, a bonded structure comprising is disclosed. The bonded structure can include a first element having a first interface feature, and a second element having a second interface feature. The bonded structure can include an integrated device coupled to or formed with the first element or the second element. The first interface feature can be directly bonded to the second conductive interface feature to define an interface structure. The interface structure can be disposed around the integrated device to define an effectively closed profile to connect the first and second elements. The effectively closed profile can substantially seal an interior region of the bonded structure from gases diffusing into the interior region from the outside environs.
In another embodiment, a bonded structure comprises a first element and a second element. The bonded structure can include an integrated device coupled to or formed within the first element or the second element. An interface structure can be disposed between the first element and the second element. The interface structure can comprise a first conductive interface feature extending in a direction from the first element to the second element, a second conductive interface feature extending in a direction from the first element to the second element, and a solid state non-conductive interface feature disposed laterally between the first and second conductive interface features. The interface structure can be disposed about the integrated device to define an effectively closed profile to connect the first element and the second element.
In another embodiment, a bonded structure comprises a first element and a second element. An integrated device can be coupled to or formed with the first element or the second element. An interface structure can be disposed between the first element and the second element, the interface structure extending in a direction from the first element to the second element. The interface structure can include a first elongate conductive interface feature extending in a direction from the first element to the second element and a second elongate conductive interface feature extending in a direction from the first element to the second element. The first and second elongate conductive interface features can be spaced apart by an intervening non-conductive interface feature extending in a direction from the first element to the second element. Each of the first and second elongate conductive interface features can have a length greater than a width. An electrical interconnect can be in electrical communication with the integrated device, the electrical interconnect extending from the first element to the second element. The electrical interconnect can extend through the intervening non-conductive interface feature between the first and second conductive interface features.
In another embodiment, a bonded structure comprises a first element having a first pattern of repeating shapes formed from conductive lines on an exterior surface of the first element. The first pattern can comprise a first conductive interface feature spaced apart by a first spacing from a second conductive interface feature, a first non-conductive interface feature being disposed between the first and second conductive interface features. The first conductive interface feature can have a first width that is greater than the first spacing. The bonded structure can comprise a second element having a second pattern of repeating shapes formed from conductive lines on an exterior surface of the second element. The second pattern can comprise a third conductive interface feature spaced apart by a second spacing from a fourth conductive interface feature. A second non-conductive interface feature can be disposed between the third and fourth conductive interface features, the third conductive interface feature having a second width that is greater than the second spacing. The first and second conductive interface features can be bonded to the third and fourth conductive interface features to define an interface structure. The first and second patterns can be laterally offset relative to one another but delimiting a continuous conductive bond region along the interface structure.
In another embodiment, a bonded structure is disclosed. The bonded structure can include a first element and a second element. An integrated device can be coupled to or formed with the first element or the second element. An interface structure can be disposed between the first element and the second element. The interface structure can comprise a first conductive interface feature laterally enclosing the integrated device. The conductive interface feature can continuously extend between the first and second elements to form at least one of an electrical, mechanical, or thermal connection between the two elements. A non-conductive interface feature can continuously extend between the first and second elements.
For purposes of summarizing the disclosed embodiments and the advantages achieved over the prior art, certain objects and advantages have been described herein. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosed implementations may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of this disclosure. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description of the embodiments having reference to the attached figures, the claims not being limited to any particular embodiment(s) disclosed. Although this certain embodiments and examples have been disclosed herein, it will be understood by those skilled in the art that the disclosed implementations extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations have been shown and described in detail, other modifications will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed implementations. Thus, it is intended that the scope of the subject matter herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application is a continuation of application Ser. No. 17/131,588, filed on Dec. 22, 2020, now U.S. Pat. No. 11,670,615, which is a continuation of application Ser. No. 16/724,017, filed Dec. 20, 2019, titled “BONDED STRUCTURES,” now U.S. Pat. No. 10,879,207, which is a continuation of application Ser. No. 15/979,312, filed May 14, 2018, titled “BONDED STRUCTURES,” now U.S. Pat. No. 10,546,832, which is a continuation of application Ser. No. 15/387,385, filed Dec. 21, 2016, titled “BONDED STRUCTURES,” now U.S. Pat. No. 10,002,844, issued Jun. 19, 2018, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4998665 | Hayashi | Mar 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5322593 | Hasegawa et al. | Jun 1994 | A |
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
5985739 | Plettner et al. | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6265775 | Seyyedy | Jul 2001 | B1 |
6374770 | Lee | Apr 2002 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6872984 | Leung | Mar 2005 | B1 |
6876062 | Lee et al. | Apr 2005 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6998712 | Okada et al. | Feb 2006 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7057274 | Heschel | Jun 2006 | B2 |
7078811 | Suga | Jul 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7354798 | Pogge et al. | Apr 2008 | B2 |
7359591 | Vandentop et al. | Apr 2008 | B2 |
7388281 | Krueger et al. | Jun 2008 | B2 |
7467897 | Hauffe et al. | Dec 2008 | B2 |
7622324 | Enquist et al. | Nov 2009 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7768133 | Matsui et al. | Aug 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
7972683 | Gudeman et al. | Jul 2011 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8191756 | Coppeta et al. | Jun 2012 | B2 |
8241961 | Kim et al. | Aug 2012 | B2 |
8269671 | Chen et al. | Sep 2012 | B2 |
8314007 | Vaufredaz | Nov 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8357931 | Schieck et al. | Jan 2013 | B2 |
8377798 | Peng et al. | Feb 2013 | B2 |
8395229 | Garcia-Blanco et al. | Mar 2013 | B2 |
8411444 | Gaynes et al. | Apr 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476146 | Chen et al. | Jul 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8530997 | Yang et al. | Sep 2013 | B1 |
8546928 | Merz et al. | Oct 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8669602 | Hayashi | Mar 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
8916448 | Cheng et al. | Dec 2014 | B2 |
8988299 | Kam et al. | Mar 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9119313 | Zhang et al. | Aug 2015 | B2 |
9142517 | Liu et al. | Sep 2015 | B2 |
9142532 | Suga et al. | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9318471 | Kabe et al. | Apr 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9368866 | Yu | Jun 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9386688 | MacDonald et al. | Jul 2016 | B2 |
9391143 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9601454 | Zhao et al. | Mar 2017 | B2 |
9620464 | Baks et al. | Apr 2017 | B2 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9768307 | Yamazaki et al. | Sep 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9834435 | Liu et al. | Dec 2017 | B1 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9881882 | Hsu et al. | Jan 2018 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katkar | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10002844 | Wang | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10418277 | Cheng et al. | Sep 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10508030 | Katkar et al. | Dec 2019 | B2 |
10522499 | Enquist | Dec 2019 | B2 |
10546832 | Wang | Jan 2020 | B2 |
10615133 | Kamgaing et al. | Apr 2020 | B2 |
10658312 | Kamgaing et al. | May 2020 | B2 |
10707087 | Uzoh et al. | Jul 2020 | B2 |
10727219 | Uzoh et al. | Jul 2020 | B2 |
10784191 | Huang et al. | Sep 2020 | B2 |
10790262 | Uzoh et al. | Sep 2020 | B2 |
10840135 | Uzoh | Nov 2020 | B2 |
10840205 | Fountain, Jr. et al. | Nov 2020 | B2 |
10854578 | Morein | Dec 2020 | B2 |
10879207 | Wang | Dec 2020 | B2 |
10879210 | Enquist | Dec 2020 | B2 |
10879212 | Uzoh et al. | Dec 2020 | B2 |
10886177 | DeLaCruz et al. | Jan 2021 | B2 |
10892246 | Uzoh | Jan 2021 | B2 |
10923408 | Huang et al. | Feb 2021 | B2 |
10923413 | DeLaCruz | Feb 2021 | B2 |
10950547 | Mohammed et al. | Mar 2021 | B2 |
10964664 | Mandalapu et al. | Mar 2021 | B2 |
10985133 | Uzoh | Apr 2021 | B2 |
10991804 | DeLaCruz et al. | Apr 2021 | B2 |
10998292 | Lee et al. | May 2021 | B2 |
11004757 | Katkar et al. | May 2021 | B2 |
11011503 | Wang et al. | May 2021 | B2 |
11031285 | Katkar et al. | Jun 2021 | B2 |
11056348 | Theil | Jul 2021 | B2 |
11088099 | Katkar et al. | Aug 2021 | B2 |
11127738 | DeLaCruz et al. | Sep 2021 | B2 |
11158606 | Gao et al. | Oct 2021 | B2 |
11171117 | Gao et al. | Nov 2021 | B2 |
11176450 | Teig et al. | Nov 2021 | B2 |
11205600 | Shen et al. | Dec 2021 | B2 |
11256004 | Haba et al. | Feb 2022 | B2 |
11257727 | Katkar et al. | Feb 2022 | B2 |
11264357 | DeLaCruz et al. | Mar 2022 | B1 |
11276676 | Enquist et al. | Mar 2022 | B2 |
11329034 | Tao et al. | May 2022 | B2 |
11348898 | DeLaCruz et al. | May 2022 | B2 |
11355443 | Huang et al. | Jun 2022 | B2 |
11380597 | Katkar et al. | Jul 2022 | B2 |
11417576 | Katkar et al. | Aug 2022 | B2 |
11485670 | Ruben et al. | Nov 2022 | B2 |
11600542 | Huang et al. | Mar 2023 | B2 |
11670615 | Wang | Jun 2023 | B2 |
20020000328 | Motomura et al. | Jan 2002 | A1 |
20020003307 | Suga | Jan 2002 | A1 |
20020094608 | Brooks | Jul 2002 | A1 |
20020179921 | Cohn | Dec 2002 | A1 |
20030098060 | Yoshimi | May 2003 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20040120245 | Arikawa et al. | Jun 2004 | A1 |
20040259325 | Gan | Dec 2004 | A1 |
20050009246 | Enquist et al. | Jan 2005 | A1 |
20050082653 | McWilliams et al. | Apr 2005 | A1 |
20050263866 | Wan | Dec 2005 | A1 |
20060001123 | Heck et al. | Jan 2006 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20060097335 | Kim et al. | May 2006 | A1 |
20060115323 | Coppeta et al. | Jun 2006 | A1 |
20060197215 | Potter | Sep 2006 | A1 |
20060208326 | Nasiri et al. | Sep 2006 | A1 |
20070029562 | Koizumi | Feb 2007 | A1 |
20070045781 | Carlson et al. | Mar 2007 | A1 |
20070045795 | McBean | Mar 2007 | A1 |
20070096294 | Ikeda et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070134891 | Adetutu et al. | Jun 2007 | A1 |
20070188054 | Hasken et al. | Aug 2007 | A1 |
20070222048 | Huang | Sep 2007 | A1 |
20070295456 | Gudeman et al. | Dec 2007 | A1 |
20080080832 | Chen et al. | Apr 2008 | A1 |
20080124835 | Chen et al. | May 2008 | A1 |
20080283995 | Bucki et al. | Nov 2008 | A1 |
20080290490 | Fujii et al. | Nov 2008 | A1 |
20080296709 | Haba et al. | Dec 2008 | A1 |
20090053855 | Summers | Feb 2009 | A1 |
20090186446 | Kwon et al. | Jul 2009 | A1 |
20090267165 | Okudo et al. | Oct 2009 | A1 |
20100078786 | Maeda | Apr 2010 | A1 |
20100096713 | Jung | Apr 2010 | A1 |
20100148341 | Fuji et al. | Jun 2010 | A1 |
20100181676 | Montez et al. | Jul 2010 | A1 |
20100288525 | Basavanhally et al. | Nov 2010 | A1 |
20100301432 | Kittilsland et al. | Dec 2010 | A1 |
20110031633 | Hsu et al. | Feb 2011 | A1 |
20110115092 | Tago | May 2011 | A1 |
20110147859 | Tanaka et al. | Jun 2011 | A1 |
20110156242 | Sakaguchi et al. | Jun 2011 | A1 |
20110180921 | Loiselet | Jul 2011 | A1 |
20110290552 | Palmateer et al. | Dec 2011 | A1 |
20120061776 | Cheng et al. | Mar 2012 | A1 |
20120097733 | Ebefors et al. | Apr 2012 | A1 |
20120100657 | Di Cioccio et al. | Apr 2012 | A1 |
20120112335 | Ebefors et al. | May 2012 | A1 |
20120142144 | Taheri | Jun 2012 | A1 |
20120212384 | Kam et al. | Aug 2012 | A1 |
20120267730 | Renard et al. | Oct 2012 | A1 |
20120286380 | Yazdi et al. | Nov 2012 | A1 |
20120326248 | Daneman et al. | Dec 2012 | A1 |
20130099331 | Chen et al. | Apr 2013 | A1 |
20130122702 | Volant et al. | May 2013 | A1 |
20130187245 | Chien et al. | Jul 2013 | A1 |
20130271066 | Signorelli et al. | Oct 2013 | A1 |
20130277774 | Frey et al. | Oct 2013 | A1 |
20130277777 | Chang et al. | Oct 2013 | A1 |
20130293428 | Souriau et al. | Nov 2013 | A1 |
20140042593 | Mauder et al. | Feb 2014 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20140197534 | Partosa et al. | Jul 2014 | A1 |
20140217557 | Chen et al. | Aug 2014 | A1 |
20140225206 | Lin et al. | Aug 2014 | A1 |
20140225795 | Yu | Aug 2014 | A1 |
20140264653 | Cheng et al. | Sep 2014 | A1 |
20140361413 | Chapelon | Dec 2014 | A1 |
20150001632 | Liu et al. | Jan 2015 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150068666 | Abe et al. | Mar 2015 | A1 |
20150091153 | Liu et al. | Apr 2015 | A1 |
20150097215 | Chu et al. | Apr 2015 | A1 |
20150137345 | Choi et al. | May 2015 | A1 |
20150298965 | Tsai et al. | Oct 2015 | A1 |
20150336790 | Geen et al. | Nov 2015 | A1 |
20150336792 | Huang et al. | Nov 2015 | A1 |
20160002029 | Nasiri et al. | Jan 2016 | A1 |
20160107881 | Thompson et al. | Apr 2016 | A1 |
20160137492 | Cheng et al. | May 2016 | A1 |
20160146851 | Kamisuki | May 2016 | A1 |
20160229685 | Boysel | Aug 2016 | A1 |
20160240495 | Lachner et al. | Aug 2016 | A1 |
20160318757 | Chou et al. | Nov 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20170001858 | Adams et al. | Jan 2017 | A1 |
20170008757 | Cheng et al. | Jan 2017 | A1 |
20170062366 | Enquist | Mar 2017 | A1 |
20170081181 | Zhang et al. | Mar 2017 | A1 |
20170137281 | Favier et al. | May 2017 | A1 |
20170179029 | Enquist et al. | Jun 2017 | A1 |
20170186732 | Chu et al. | Jun 2017 | A1 |
20170194271 | Hsu et al. | Jul 2017 | A1 |
20170200711 | Uzoh et al. | Jul 2017 | A1 |
20170305738 | Chang et al. | Oct 2017 | A1 |
20170338214 | Uzoh et al. | Nov 2017 | A1 |
20180044175 | Ogashiwa et al. | Feb 2018 | A1 |
20180047682 | Chang et al. | Feb 2018 | A1 |
20180096931 | Huang et al. | Apr 2018 | A1 |
20180174995 | Wang et al. | Jun 2018 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180191047 | Huang et al. | Jul 2018 | A1 |
20180219038 | Gambino et al. | Aug 2018 | A1 |
20180226375 | Enquist et al. | Aug 2018 | A1 |
20180273377 | Katkar et al. | Sep 2018 | A1 |
20180286805 | Huang et al. | Oct 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20180337157 | Wang et al. | Nov 2018 | A1 |
20190051628 | Liu et al. | Feb 2019 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190096842 | Fountain, Jr. et al. | Mar 2019 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190164914 | Hu et al. | May 2019 | A1 |
20190198407 | Huang et al. | Jun 2019 | A1 |
20190198409 | Katkar et al. | Jun 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190348336 | Katkar et al. | Nov 2019 | A1 |
20190363079 | Thei et al. | Nov 2019 | A1 |
20190385935 | Gao et al. | Dec 2019 | A1 |
20190385966 | Gao et al. | Dec 2019 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035641 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200043817 | Shen et al. | Feb 2020 | A1 |
20200075520 | Gao et al. | Mar 2020 | A1 |
20200075534 | Gao et al. | Mar 2020 | A1 |
20200075553 | DeLaCruz et al. | Mar 2020 | A1 |
20200118973 | Wang et al. | Apr 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200131028 | Cheng et al. | Apr 2020 | A1 |
20200140267 | Katkar et al. | May 2020 | A1 |
20200140268 | Katkar et al. | May 2020 | A1 |
20200144217 | Enquist et al. | May 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200243380 | Uzoh et al. | Jul 2020 | A1 |
20200279821 | Haba et al. | Sep 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200335408 | Gao et al. | Oct 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20200411483 | Uzoh et al. | Dec 2020 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210118864 | DeLaCruz et al. | Apr 2021 | A1 |
20210134689 | Huang et al. | May 2021 | A1 |
20210143125 | DeLaCruz et al. | May 2021 | A1 |
20210181510 | Katkar et al. | Jun 2021 | A1 |
20210193603 | Katkar et al. | Jun 2021 | A1 |
20210193624 | DeLaCruz et al. | Jun 2021 | A1 |
20210193625 | DeLaCruz et al. | Jun 2021 | A1 |
20210202428 | Wang et al. | Jul 2021 | A1 |
20210242152 | Fountain, Jr. et al. | Aug 2021 | A1 |
20210265227 | Katkar et al. | Aug 2021 | A1 |
20210296282 | Gao et al. | Sep 2021 | A1 |
20210305202 | Uzoh et al. | Sep 2021 | A1 |
20210366820 | Uzoh | Nov 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
20220077063 | Haba | Mar 2022 | A1 |
20220077087 | Haba | Mar 2022 | A1 |
20220139867 | Uzoh | May 2022 | A1 |
20220139869 | Gao et al. | May 2022 | A1 |
20220208650 | Gao et al. | Jun 2022 | A1 |
20220208702 | Uzoh | Jun 2022 | A1 |
20220208723 | Katkar et al. | Jun 2022 | A1 |
20220246497 | Fountain, Jr. et al. | Aug 2022 | A1 |
20220285303 | Mirkarimi et al. | Sep 2022 | A1 |
20220319901 | Suwito et al. | Oct 2022 | A1 |
20220320035 | Uzoh et al. | Oct 2022 | A1 |
20220320036 | Gao et al. | Oct 2022 | A1 |
20220367302 | Katkar et al. | Nov 2022 | A1 |
20220415734 | Katkar et al. | Dec 2022 | A1 |
20230005850 | Fountain, Jr. | Jan 2023 | A1 |
20230019869 | Mirkarimi et al. | Jan 2023 | A1 |
20230036441 | Haba et al. | Feb 2023 | A1 |
20230067677 | Lee et al. | Mar 2023 | A1 |
20230069183 | Haba | Mar 2023 | A1 |
20230100032 | Haba et al. | Mar 2023 | A1 |
20230115122 | Uzoh et al. | Apr 2023 | A1 |
20230122531 | Uzoh | Apr 2023 | A1 |
20230123423 | Gao et al. | Apr 2023 | A1 |
20230125395 | Gao et al. | Apr 2023 | A1 |
20230130259 | Haba et al. | Apr 2023 | A1 |
20230132632 | Katkar et al. | May 2023 | A1 |
20230140107 | Uzoh et al. | May 2023 | A1 |
20230142680 | Guevara et al. | May 2023 | A1 |
20230154816 | Haba et al. | May 2023 | A1 |
20230154828 | Haba et al. | May 2023 | A1 |
20230187264 | Uzoh et al. | Jun 2023 | A1 |
20230187317 | Uzoh | Jun 2023 | A1 |
20230187412 | Gao et al. | Jun 2023 | A1 |
20230197453 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230197496 | Theil | Jun 2023 | A1 |
20230197559 | Haba et al. | Jun 2023 | A1 |
20230197560 | Katkar et al. | Jun 2023 | A1 |
20230197655 | Theil et al. | Jun 2023 | A1 |
20230207402 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230207437 | Haba | Jun 2023 | A1 |
20230207474 | Uzoh et al. | Jun 2023 | A1 |
20230207514 | Gao et al. | Jun 2023 | A1 |
20230215836 | Haba et al. | Jul 2023 | A1 |
20230245950 | Haba et al. | Aug 2023 | A1 |
20230260858 | Huang et al. | Aug 2023 | A1 |
20230268300 | Uzoh et al. | Aug 2023 | A1 |
20230299029 | Theil et al. | Sep 2023 | A1 |
20230343734 | Uzoh et al. | Oct 2023 | A1 |
20230360950 | Gao | Nov 2023 | A1 |
20230361074 | Uzoh et al. | Nov 2023 | A1 |
20230369136 | Uzoh et al. | Nov 2023 | A1 |
20230375613 | Haba et al. | Nov 2023 | A1 |
20230420313 | Katkar et al. | Dec 2023 | A1 |
20240038702 | Uzoh | Feb 2024 | A1 |
20240055407 | Workman et al. | Feb 2024 | A1 |
20240079376 | Suwito et al. | Mar 2024 | A1 |
Number | Date | Country |
---|---|---|
101554988 | Oct 2009 | CN |
109390305 | Feb 2019 | CN |
2813465 | Dec 2014 | EP |
H10-112517 | Apr 1998 | JP |
2000-100679 | Apr 2000 | JP |
2001-102479 | Apr 2001 | JP |
2001-148436 | May 2001 | JP |
2002-353416 | Dec 2002 | JP |
2008-130915 | Jun 2008 | JP |
2009-039843 | Feb 2009 | JP |
2009-238905 | Oct 2009 | JP |
2010-199608 | Sep 2010 | JP |
2011-131309 | Jul 2011 | JP |
2013-33786 | Feb 2013 | JP |
2013-513227 | Apr 2013 | JP |
2013-243333 | Dec 2013 | JP |
2014-219321 | Nov 2014 | JP |
2015-100886 | Jun 2015 | JP |
2015-153791 | Aug 2015 | JP |
2016-099224 | May 2016 | JP |
2018-160519 | Oct 2018 | JP |
10-2005-0101324 | Oct 2005 | KR |
10-2015-0097798 | Aug 2015 | KR |
10-2017-0108143 | Sep 2017 | KR |
201210098 | Mar 2012 | TW |
201423876 | Jun 2014 | TW |
201517175 | May 2015 | TW |
I533399 | May 2016 | TW |
WO 2005043584 | May 2005 | WO |
WO 2006100444 | Sep 2006 | WO |
WO 2007103224 | Sep 2007 | WO |
WO 2012130730 | Oct 2012 | WO |
WO 2014-074403 | May 2014 | WO |
WO 2017100256 | Jun 2017 | WO |
WO 2017151442 | Sep 2017 | WO |
Entry |
---|
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of the Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698. |
Beer et al., “Coplanar 122GHz Antenna Array With Air Cavity Reflector for Integration in Plastic Packages”, IEEE Antennas and Wireless Propagation Letters, 11:160-163, Jan. 2012. |
Boyle et al., “Epoxy Resins,” 2001, pp. 78-89, vol. 21, ASM Handbook, Composites (ASM International). |
Chipscale Review, “The Impact of CSPs on Encapsulation Materials,” ChipScale Review publication issue Mar. 1998, retrieved Feb. 21, 2014, 6 pages. |
Chiueh, Herming et al., “A Dynamic Thermal Management Circuit for System-On-Chip Designs,” Analog Integrated Circuits and Signal Processing, Jan. 25, 2003, 36, pp. 175-181. |
Chung et al., “Room temperature GaAseu + Si and InPeu + Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206. |
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812. |
Das, Rabindra N. et al., “Package-Interpose-Package (PIP) Technology for High End Electronics,” Endicott Interconnect Technologies, Inc., retrieved Jul. 31, 2014, 4 pages. |
Dreiza, Moody et al., “Joint Project for Mechanical Qualification of Next Generation High DensityPackage-on-Package (POP) with Through Mold Via Technology,” Amkor Technology, EMPC2009—17th European Microelectronics & Packaging Conference, Jun. 16, Remini, Italy, 8 pages. |
Daneman, “Applying the CMOS Test Flow to MEMS Manufacturing”, InvenSense, Inc., accessed on Apr. 5, 2020. |
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955. |
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77. |
Gösele et al., “Semiconductor Wafer Bonding: A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32. |
Gu et al., “A Multilayer Organic Package with 64 Dual-Polarized Antennas for 28GHz 5G Communication”, IBM Research, pp. 1-3, 2017. |
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258. |
Hosoda et al., “Room temperature GaAs—Si and InP—Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. and Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206. |
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, pp. 7-pp. |
Howlader et al., “Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference on, pp. 272-275. |
Howlader et al., “Characterization of the bonding strength and interface current of p-Si/ n-InP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066. |
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118. |
Inertial MEMS Manufacturing Trends 2014 Report by Yole Developpement Sample Report, Slide 11, https://www.slideshare.net/Yole_Developpement/yole-inertial-memsmanufacturingtrends2014sample. |
International Search Report and Written Opinion mailed Apr. 13, 2018 in International Application No. PCT/US2017/067742, 14 pages. |
International Search Report and Written Opinion mailed Apr. 16, 2018 in International Application No. PCT/US2017/067741, 17 pages. |
International Search Report and Written Opinion mailed May 31, 2018 in International Application No. PCT/US2018/022688, 2 pages. |
International Search Report and Written Opinion mailed Mar. 7, 2019, in International Application No. PCT/US2018/060044, 14 pages. |
International Search Report and Written Opinion mailed Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages. |
International Search Report and Written Opinion mailed Aug. 26, 2019 in International Application No. PCT/US2019/031113, 14 pages. |
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224. |
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467. |
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318. |
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195. |
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453. |
Kim et al., “Wafer-scale activated bonding of Cu—CU, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247. |
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Norton, Francis, “Permeation of gases through solids,” Journal of Applied Physics, Jan. 1957, vol. 28, No. 1. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(l), 6 pages. |
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444. |
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606. |
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852. |
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760. |
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525. |
Suga et al., “A new approach to Cu—Cu direct bump bonding,” IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference, Apr. 16-18, 1997, IEEE, pp. 146-151. |
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256. |
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018. |
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008. |
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—A new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705. |
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80. |
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, The American Ceramic Society, 1993, pp. 323-331. |
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111. |
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089. |
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197. |
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, Transducers, '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660. |
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387. |
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196. |
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348. |
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: An International Journal, 2002, vol. 50, Issue 1, pp. 53-59. |
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996). |
Takagi et al, “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63. |
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102. |
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectomechanical systems, Mar. 1994, vol. 3, No. 1, pp. 29-35. |
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938. |
Wang et al., “Reliability and microstructure of Au—Al and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919. |
Wang et al., “Reliability of Au bump-Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756. |
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106. |
Xu et al., “New Au—Al interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483. |
Zhang et al., “Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter—Wave Devices for Wireless Communications”, IEEE Transactions on Antennas and Propagation, 57(10):2830-2841, Oct. 2009. |
Zhou et al., “A Wideband Circularly Polarized Patch Antenna for 60 GHz Wireless Communications”, Wireless Engineering and Technology, 3:97-105, 2012. |
Zoschke, K. et al., “Hermetic wafer level packaging of MEMS components using through silicon via and wafer to wafer bonding technologies,” 2013 Electronic Components & Technology Conference, 2013 IEEE, pp. 1500-1507. |
“The Advantages of Integrated MEMS to Enable the Internet of Moving Things”, mCube, White Paper Jan. 2018. |
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389. |
Bush, Steve, “Electronica: Automotive power modules from on Semi,” ElectronicsWeekly.com, indicating an ONSEMI AR0820 product was to be demonstrated at a Nov. 2018 trade show, https://www.electronicsweekly.com/news/products/power-supplies/electronica-automotive-power-modules-semi-2018-11/ (published Nov. 8, 2018; downloaded Jul. 26, 2023). |
Morrison, Jim et al., “Samsung Galaxy S7 Edge Teardown,” Tech Insights (posted Apr. 24, 2016), includes description of hybrid bonded Sony IMX260 dual-pixel sensor, https://www.techinsights.com/blog/samsung-galaxy-s7-edge-teardown, downloaded Jul. 11, 2023, 9 pages. |
ONSEMI AR0820 image, cross section of a CMOS image sensor product. The part in the image was shipped on Sep. 16, 2021. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference BUSH, Nov. 8, 2018, ElectronicsWeekly.com (“BUSH article”); however, the imaged part and the part shown in the BUSH article share the part No. “ONSEMI AR0820.”. |
Sony IMX260 image, cross section of Sony dual-pixel sensor product labeled IMX260, showing peripheral probe and wire bond pads in a bonded structure. The part in the image was shipped in Apr. 2016. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference Morrison et al. (Tech Insights article dated Apr. 24, 2016), describing and showing a similar sensor product within the Samsung Galaxy S7; however the imaged part and the part shown in the Morrison et al. article share the part name “Sony IMX260.” |
Android Wiki, “Samsung Galaxy S2,” indicating that the Samsung Galaxy S2 was unveiled on Feb. 13, 2011 at the Mobile World Congress (MWC) in Barcelona, https://android.fandom.com/wiki/Samsung_Galaxy_S2 (downloaded Nov. 20, 2023). |
Gadgets360, “Sony Xperia S,” indicating that the Sony Xperia LT26i product was released on Feb. 12, 2012, https://www.gadgets360.com/sony-xperia-s-609 (downloaded Nov. 20, 2023). |
Michailos, Jean, “Future landscape for 3D Integration: from Interposers to 3D High Density,” 3d ASIP—Dec. 13-15, 2016, San Francisco Airport, USA, 46 pages. |
Omnivision OV20880 image, cross section of Omnivision product labeled OV20880, showing a hybrid bonded back side illuminated CMOS image sensor device with a pad opening to expose an aluminum bond pad. The part in the image was received on Sep. 24, 2021. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference Omnivision Technologies, Inc. in PR Newswire (“PR Newswire article”); however the imaged part and the part shown in the PR Newsire article share the part name “OV20880.” |
OmniVision Technologies, Inc., “OmniVision Announces New Family of 20-Megapixel PureCel®Plus-S Sensors for High-End Smartphones,” PR Newswire, https://www.prnewswire.com/news-releases/omnivision-announces-new-family-of-20-megapixel-purecelplus-s-sensors-for-high-end-smartphones-300358733.html (dated Nov. 7, 2016; downloaded Nov. 20, 2023). |
Samsung S5K3H2YX03 image, cross section of a back side illuminated CMOS image sensor (CIS) product, taken from Samsung Galaxy S2 phone. The part in the image was shipped on Nov. 25, 2011. The cross section shows tungsten and aluminum lining a trench formed in the back side of the sensor connecting a wire bond with a contact in the image sensor. The second image is a top-down view showing the wire bond pad and the trench that are depicted in the cross section. Applicant makes no representation that the part in the images is identical to image sensor products in the Galaxy S2 product identified in the separately submitted Android Wiki reference https://android.fandom.com/wiki/Samsung_Galaxy_S2 (“Android Wiki article”); however, the imaged sensor was obtained from a product named “Galaxy S2.” |
Sony Xperia LT26i Sensor image, cross-section of a front side illuminated CMOS image sensor obtained from a Sony Xperia LT26i phone. The part in the image was received on Mar. 29, 2012. The cross section shows a metal line connecting a solder bump at the back side to a contact at the front side of the sensor, with non-conductive epoxy covering the metal. The second image is a bottom-up view of the image sensor. The third image is a bottom-up closeup view showing the edge of the sensor, with the solder bumps and metal line of the cross-section visible. Applicant makes no representation that the part in the images is identical to image sensor products in the Sony Xperia LT26i product identified in the separately submitted Gadgets360 reference https://www.gadgets360.com/sony-xperia-s-609 (“Gadgets360 article”); however, the imaged sensor was obtained from a product named “Sony Xperia LT26i.” |
Sony IMX260 image, a first cross section of Sony product labeled IMX260, showing a hybrid bonded back side illuminated CMOS image sensor with a pad opening for a wire bond. The second image shows a second cross-section with peripheral probe and wire bond pads in the bonded structure. The part in the images was shipped in Apr. 2016. Applicant makes no representation that the part in the images is identical to the part identified in the separately submitted reference Morrison et al. (Tech Insights article dated Apr. 24, 2016), describing and showing a similar sensor product within the Samsung Galaxy S7; however the imaged part and the part shown in the Morrison et al. article share the part name “Sony IMX260 image.” |
Number | Date | Country | |
---|---|---|---|
20230361072 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17131588 | Dec 2020 | US |
Child | 18147212 | US | |
Parent | 16724017 | Dec 2019 | US |
Child | 17131588 | US | |
Parent | 15979312 | May 2018 | US |
Child | 16724017 | US | |
Parent | 15387385 | Dec 2016 | US |
Child | 15979312 | US |