1. Field of the Invention
The present invention generally relates to a method for making a circuit board structure, the circuit board structure and a package structure obtained therefrom. In particular, the present invention is directed to a method for making a circuit board structure and a package structure by means of a carrier with an attached release film to support a copper film covered with a solder mask to the circuit board structure and the package structure.
2. Description of the Prior Art
A circuit board is an essential component of an electronic device. With the trend of always scaling down the size of the electronic devices, various carrier structures are therefore proposed to support the die. Some pins extend outwards to connect other circuits surrounding the circuit board to form proper electrical connections.
As far as the current technology is concerned, a circuit structure called “lead frame” is conventionally known.
However, as the data processed by the die increases and the speed for processing needs to be higher, the lead frame as illustrated cannot provide more pins 120 to meet the demands because the space around the die is so limited. In such a way, the application of the traditional lead frame 102 as a result is restricted.
After the carrier structure 201 for supporting dies as illustrated in
The die 240 is disposed on the die pad 221 within the circuit pattern 220 and surrounded by the solder mask layer 231 at the same time as well as electrically connected to other parts of the circuit pattern 220 by means of the bonding wires 250. The sealant material 200 completely covers the die pad 221, the die 240, the bonding wire 250 and partially covers the substrate 210 and the solder mask layer 230. The solder balls 270 are surrounded by the solder mask layer 232. In both the carrier structure 201 for supporting dies as illustrated in
In the light of the above-mentioned carrier structures, the package structures and the conventional methods for making lead frames are not yet perfect, thus other novel carrier structures, package structures and the fabrication methods are still needed to provide a much simpler structure and to be free from conventional pin count restrictions.
The present invention hence proposes a novel circuit board structure, a novel package structure and the novel fabrication methods thereof. The circuit board structure and the package structure of the present invention employ a one-side-patterned solder mask so the total structure and the fabrication methods are much simplified. Besides, the circuit board structure and the package structure of the present invention can break the restriction of insufficient pins encountered in the prior art in order to keep pace with the demands for more pins when the data processed by the die increases and the speed for processing needs to be higher.
The present invention in a first aspect proposes a method for making a circuit board structure. First, a first substrate and a second substrate are provided. The first substrate includes a release film attached to a carrier. The second substrate includes a copper film covered with a first solder mask. Second, the first solder mask is patterned on one side only. Next, the release film and the patterned first solder mask are pressed together so that the first substrate is attached to the second substrate. Then, the copper film is patterned to form a first pattern and a second pattern. The first pattern is in direct contact with the release film and the second pattern is in direct contact with the patterned first solder mask. Later, a first protective layer is formed to cover the first pattern and the second pattern to form a circuit board structure.
In one embodiment of the present invention, the first pattern is a die pad and the second pattern is a circuit pattern which is protected by the patterned solder mask. In another embodiment of the present invention, a second solder mask may be formed to selectively cover the second pattern. In still another embodiment of the present invention, a packaging structure may be formed to be disposed on the carrier. In a further embodiment of the present invention, the release film and the carrier may be optionally removed to expose the first pattern and the patterned solder mask to obtain another packaging structure.
The present invention in a second aspect proposes a circuit board structure. The circuit board structure of the present invention includes a carrier, a release film, a patterned solder mask, a first conductive pattern, a second conductive pattern and a protective layer. The release film is attached to the carrier. The single-side-patterned solder mask is disposed on the release film and in direct contact with the release film. The first conductive pattern is disposed on the release film and in direct contact with the release film. The second conductive pattern is disposed on the release film, adjacent to the first conductive pattern and in direct contact with the patterned solder mask. The protective layer covers the first conductive pattern and the second conductive pattern.
The present invention in a third aspect proposes a circuit board structure. The circuit board structure of the present invention includes a carrier, a release film, a patterned solder mask, a first conductive pattern, a second conductive pattern, a covering solder mask and a protective layer. The release film is attached to the carrier. The single-side-patterned solder mask is disposed on the release film and in direct contact with the release film. The first conductive pattern is disposed on the release film and in direct contact with the release film. The second conductive pattern is disposed on the release film, adjacent to the first conductive pattern and in direct contact with the patterned solder mask. The covering solder mask selectively covers the second conductive pattern. The protective layer covers the first conductive pattern and the second conductive pattern.
The present invention in a fourth aspect proposes a package structure. The package structure of the present invention includes a sealant material, a single-side-patterned solder mask, a first conductive pattern, a second conductive pattern, a first protective layer, a second protective layer, a die and a bonding wire. The patterned solder mask is disposed on a surface of the sealant material. The first conductive pattern is disposed on the same surface as the sealant material. The second conductive pattern is disposed in the sealant material, adjacent to the first conductive pattern and in direct contact with the patterned solder mask. The first protective layer is completely disposed in the sealant material and covers the first conductive pattern and the second conductive pattern. The second protective layer completely covers the first conductive pattern. The die is completely disposed in the sealant material and on the first pattern. The bonding wire is also completely disposed in the sealant material and selectively electrically connects the die and the first conductive pattern.
The present invention in a fifth aspect proposes another package structure. The package structure of the present invention includes a sealant material, a single-side-patterned solder mask, a first conductive pattern, a second conductive pattern, a covering solder mask, a first protective laver, a second protective layer, a die and a bonding wire. The patterned solder mask is disposed on a surface of the sealant material. The first conductive pattern is disposed on the same surface as the sealant material. The second conductive pattern is disposed in the sealant material, adjacent to the first conductive pattern and in direct contact with the patterned solder mask. The covering solder mask completely covers the second conductive pattern. The first protective layer is completely disposed in the sealant material and covers the first conductive pattern. The second protective layer is disposed completely outside the sealant material, covers the first conductive pattern. The die is completely disposed in the sealant material and on the first pattern. The bonding wire is also completely disposed in the sealant material and selectively electrically connects the die and the first conductive pattern.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
The present invention in a first aspect provides a first embodiment of the method for making a circuit board structure.
The carrier 311 may be any suitable material, such as polyethylene terephthalate (PET), polycarbonate (PC), polymethylmethacrylate (PMMA) or a copperless substrate. The release film 312 may be a plastic and sticky material and has better adhesion to the carrier 311. The release film 312 accordingly adheres to one side of the carrier 311 by means of such adhesion. For a trial production, on one hand the release film 312 may be applied to the carrier 311 by means of screen printing. On the other hand, for a mass production, the release film 312 may be applied to the carrier 311 by means of rollers.
Second, please refer to
Then, please refer to
Next, please refer to
In a second embodiment of the present invention for making a circuit board structure as shown in
Afterwards, as shown in
Or alternatively, as shown in
After the aforesaid steps, the laminated first substrate 310 and second substrate 320 together form a novel circuit board structure 301. Please refer to
As described earlier, the release film 312 is attached to the carrier 311 with a stronger adhesion therebetween. The patterned solder mask 322 is disposed on the release film 312 and in direct contact with the release film 312. In one embodiment of the present invention, when the patterned solder mask 322 of the second substrate 320 is attached to the release film 312 of the first substrate 310, preferably the patterned solder mask 322 is embedded in the release film 312. The first conductive pattern 325 and the second conductive pattern 326 are respectively disposed on the release film 312. On one hand, the first conductive pattern 325 is in direct contact with the release film 312. On the other hand, the second conductive pattern 326 is in direct contact with the patterned solder mask 322. In other words, the second conductive pattern 326 corresponds to the patterned solder mask 322. Further, the first conductive pattern 325 and the second conductive pattern 326 are often adjacent to each other or arranged in an alternate order. The first protective layer 323 covers the first conductive pattern 325 and the second conductive pattern 326. The first protective layer 323 may include at least one of Ni, Ag and Au, to form a composite Ni/Au protective layer.
In another embodiment of the present invention, the circuit board structure 301 as illustrated in
As shown in
In still another embodiment of the present invention, the pre-package structure 303 as illustrated in
Please note that the carrier 311 and the release film 312 can be easily removed form the pre-package structure 303 without jeopardizing other parts of the pre-package structure 303 because the release film 312 has a stronger adhesion to the carrier 311 and a relatively weaker adhesion to the patterned solder mask 322. At this moment, the patterned solder mask 322 is selectively disposed between the first pattern 325. After the carrier 311 and the release film 312 is removed from the pre-package structure 303, the patterned solder mask 322 and the first pattern 325 in the pre-package structure 305 are exposed.
In order to protect the fragile copper film of the first pattern 325, in still another embodiment of the present invention, the pre-package structure 305 shown in
After the aforesaid steps, a novel package structure 307 is obtained. Please refer to
In the package structure 307 of the present invention as shown in
In one aspect, the first protection layer 323 is completely disposed in the sealant material 333 and covers the first conductive pattern 325 and the second conductive material 326. In another aspect, the second protection layer 324 is completely disposed outside the sealant material 333 and completely covers the first conductive pattern 325. The first protection layer 323 and the second protection layer 324 may independently include at least one of Ni, Ag and Au, or an OSP (Organic Solderability Preservative). The die 331 is disposed on the first conductive pattern 325 and optionally electrically connected to the first conductive pattern 325 by the bonding wire 332. The die 331 and the bonding wire 332 are simultaneously disposed in the sealant material 333 to form a package. Other features of the package structure 307 of the present invention, such as the package, may refer to the above descriptions and will not be repeated here.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Date | Country | Kind |
---|---|---|---|
99113040 A | Apr 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5480503 | Casey | Jan 1996 | A |
6569712 | Ho | May 2003 | B2 |
6769174 | Siegel | Aug 2004 | B2 |
6853060 | Seok | Feb 2005 | B1 |
7247526 | Fan | Jul 2007 | B1 |
20020168798 | Glenn et al. | Nov 2002 | A1 |
20040200062 | Siegel | Oct 2004 | A1 |
20060261446 | Wood et al. | Nov 2006 | A1 |
20070090524 | Abbott | Apr 2007 | A1 |
20070105270 | Lee | May 2007 | A1 |
20080290513 | Byun | Nov 2008 | A1 |
20090041270 | Schrank et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
101488463 | Jul 2009 | CN |
200494502 | Mar 2004 | JP |
20000041060 | Jul 2000 | KR |
1020090052688 | May 2009 | KR |
552694 | Sep 2003 | TW |
200610073 | Mar 2006 | TW |
200939417 | Sep 2009 | TW |
Number | Date | Country | |
---|---|---|---|
20110260308 A1 | Oct 2011 | US |