The present disclosure relates to a packaged semiconductor device having a shielding against electromagnetic interference and to the manufacturing process thereof.
As is known, semiconductor devices are generally formed by a die comprising a semiconductor material body overlaid by one or more insulating layers, integrating conductive and/or micromechanical structures. The die is generally packaged in a packaging mass of insulating material, such as resin, that protects it from hostile environments. The die may be bonded to a support, for example a printed-circuit board, or other supporting board, generally of insulating material or formed by a succession of insulating and conductive layers. The die may also be bonded to another die (stacked solution). The packaging mass may surround the die or also part of the support and surround just one die or a plurality of dice, arranged laterally to each other, on top of each other, in contact with each other, or insulated from each other for forming electronic and/or micro-electro-mechanical devices.
The electronic and/or micro-electro-mechanical devices so packaged are generally used in more complex systems and apparatuses for implementation of various functions. For instance, the electronic and/or micro-electro-mechanical devices may form part of portable electronic apparatuses, such as cellphones, smartphones, music-player devices, tablets, portable computers (laptops, netbooks), video cameras, photographic cameras, consoles for videogames or any other portable or fixed apparatus, possibly having remote communication units.
In such situations, electronic and/or micro-electro-mechanical devices that form part of more complex systems may generate electrical or magnetic fields of noise, or conversely, may be disturbed by electrical and/or magnetic fields generated by other electronic devices present in the same apparatus or in apparatuses located nearby. In fact, such electrical and/or magnetic fields may create interference (referred to hereinafter also as electromagnetic interference—EMI) such as to reduce or even jeopardize the performance of sensitive devices. Consequently, it is increasingly desirable (and in some cases imposed by current standards) to provide shielding structures for protection from external devices and/or for reduction of emissions from the device.
Thus, to prevent any mutual interference, it is known to provide shielding structures on or in each packaged device.
A simple known shielding structure consists in providing a cap of conductive material, typically metal, over the die for forming a sort of Faraday's cage (see, for example, U.S. Pat. No. 6,614,102). Another known solution comprises forming a conductive shielding layer on at least a part of the packaging material surrounding the die. The conductive shielding layer, generally of metal, is grounded via contact pads typically formed on the support of the die. The conductive shielding layer may be glued or applied on the packaging mass via microelectronic techniques, such as sputtering, plating, or growth (see, for example, U.S. Pat. Nos. 7,342,303, 7,451,539 and 7,573,124).
The known solutions may, however, be improved. In fact, their implementation may be complex and/or costly, and may involve purposely devised operations and machines.
Furthermore, the shielding may represent a further structure, which, in addition to increasing the manufacturing costs, frequently entails an increase in the thickness or in general in the dimensions of the device. This increase in dimensions contrasts, however, with the present desires for miniaturization of electronic devices, in particular in the case of use in portable and/or complex apparatuses.
One or more embodiments of the present disclosure may provide a device and a process that overcomes the drawbacks of the prior art.
In one embodiment, a shielding may be obtained by bonding a plurality of metal ribbon sections fixed to the die to be shielded. The ribbon sections are bonded to supports, for example a supporting board that also carries one or more dice to be packaged.
The term “ribbon” means here a continuous flat material having (prior to cutting) a length much greater than the width and the thickness. The ribbon section used in the present device has a length greater than the width (for example, between twice and fifty times) and a thickness much smaller than the width (for example, between one half and approximately one fiftieth). In practice, the thickness of the ribbon sections considered here may be considered practically negligible as compared to the other two dimensions.
The ribbon sections may be obtained by cutting a ribbon reel commonly available on the market, for example a ribbon reel of aluminum, gold, silver, or a reel of double-layered ribbon, such as aluminum and copper. The ribbon sections may be bonded at their ends to a grid structure formed in the support of the die to be shielded and forming, together with the ribbon sections, an electromagnetic cage. The ribbon sections may be bonded via punch-welding of a continuous ribbon, using pressure and ultrasound and then cutting the continuous ribbon.
For a better understanding of the present disclosure, preferred embodiments thereof are now described, purely by way of non-limiting example, with reference to the attached drawings, wherein:
In detail, the device 1 comprises a support 2, for example a printed-circuit board PCB, having a first face (for example, a top face 2a) and a second face (for example a bottom face 2b). The support 2 has a reduced thickness in a central area for forming a cavity 3 facing the top face 2a (see also
A die 4 is fixed in the cavity 3 and accommodates an integrated electronic circuit or a micro-electro-mechanical device (not illustrated in detail). As may be seen in particular in the dashed line portion of
The contact regions 8 are arranged around the cavity 3 and are connected to conductive paths (not shown) provided on and/or within the support 2, as well as to through vias (not shown either) that connect the contact regions 8 to contact pads 9 on the bottom face 2b of the support 2. Alternatively, in a way not illustrated, the conductive paths may terminate at pads not shown on the top face 2a of the support 2 and/or wireless connection techniques of a known type, such as surface-mounting, may be used.
A shielding structure or electromagnetic cage 10 surrounds the die 4. The shielding structure 10 comprises a grid 14 formed in the support 2 and a shield 15 overlying the support 2. The grid 14 and the shield 15 are electrically coupled together and grounded.
The grid 14 comprises a peripheral strip 11, vertical regions 12 (
The peripheral strip 11 extends outward of the contact regions 8 (and thus outward of the die 4). In addition, the peripheral strip 11 faces the top face 2a of the support. In the example shown, in top plan view, the peripheral strip 11 has a quadrangular shape; in particular, it forms the sides of a square.
The vertical regions 12 extend throughout the depth the support 2 between the top face 2a and the bottom face 2b of the substrate 2, and electrically connect the peripheral strip 11 to the base portion 13.
The base portion 13 extends parallel to, and faces, the bottom face 2b of the substrate 2. The base portion 13 may be a continuous region, for example a plate, a non-continuous region with interruptions (as may be seen in the bottom view of
The conductive paths (not illustrated) that electrically connect the die 4 to the outside and extend between the contact regions 8 and the pads 9 may extend between pairs of vertical regions 12.
The shield 15 is formed by a plurality of metal ribbon sections 16, which extend over the die 4, between opposite points of the peripheral strip 11. In the shown example, the ribbon sections 16 extend between two opposite sides of the quadrangle formed by the peripheral strip 11. The ribbon sections 16 are parallel to each other and spaced apart and are bonded at their ends 17 to the peripheral strip 11.
As mentioned, the term “ribbon sections” 16 indicates sections of a continuous flat material, having a length greater than the width and a thickness much smaller than the other two dimensions, obtained by separation of a continuous reel of ribbon. In particular, each ribbon section 16 may have a width between one half and one tenth of the length, and a thickness of less than one half, for example one tenth or less of the width (for example, in commercially available ribbons, for widths that may be used for the present application, the width is between two and a half times and 40-50 times the nominal thickness of the ribbon).
For instance, each ribbon section 16 may have a length L1 (see also
With the dimensions indicated above, and on the hypothesis of having a die 4 with a height of 120 μm and a cavity with a depth of 100 μm, the ribbon sections 16 may have a maximum height H in the vertical direction (
To reduce the overall vertical dimension of the ribbon sections 16, they may have a top central portion 16a that is flattened.
A packaging mass 20 extends over the support 2, covering and embedding the die 4 and the shield 15, as well as the wires 6, filling the cavity 3, as may be seen in
Production of the device 1 is described hereinafter.
Initially, the die 4 is manufactured according to usual semiconductor-machining techniques, cut and bonded to the support 2, which is also made in a per se known manner and accommodates the grid structure 14, the contact regions 8, and the contact pads 9. In general, in this step the support 2 is not yet singulated and is joined to other supports to form a supporting panel.
For each die 4 the wired connections 6 are formed in a per se known manner, and the ribbon sections 16 are bonded to the peripheral strip 11. To this end, a reel 30 of metal ribbon is used, of the type illustrated in
One or more continuous ribbons 31 wound off one or more reels 30 are bonded to the respective support 2, individually or in parallel. In particular, for each continuous ribbon 31, after a first end has been bonded to a first side of the peripheral strip 11, the continuous ribbon 31 is passed over the die 4 and bonded on an opposite side of the peripheral strip 11. To this end, it is possible to use a bonding machine (or bonder) of the type used for forming power conductors in integrated devices, which are able to give a particular shape (or loop) on the ribbon section 16 (for example, to obtain the flattened portion 16a of
For instance, for an aluminum wire having a width of 1 mm and a thickness of 0.1 mm, bonding may be carried out applying a pressure between 0.4 and 0.7 kgf, and for a time interval of 50-90 ms.
In a per se known manner, the packaging mass 20 is molded on the entire panel of supports, and this is cut, to obtain a plurality of finished devices 1, as illustrated in
Also here, the ribbon sections 16 extend between and are bonded to the peripheral strip 11 and form the shield 15. The packaging mass 20 encloses both of the dice 4, the connection wires 6, and the ribbon sections 16.
The device described herein has numerous advantages.
In particular, it has a shielding structure built within the molded package 20 using standard processing steps in packaging of semiconductor devices.
Additional parts to be produced and/or fixed after packaging are not utilized. Consequently, the shielding does not entail an increase in dimensions, in particular in the thickness, of the finished device.
In particular, steps of plating or sputtering are not utilized to form external metal regions.
Consequently, the costs of production are reduced and the solution may be applied to any type of substrate or lead frame with dedicated layout or design.
Finally, it is clear that modifications and variations may be made to the device and to the manufacturing process described and illustrated herein, without thereby departing from the scope of the present disclosure.
For instance, even though the shield 15 and the ribbon sections 16 have been represented completely embedded in the packaging mass 20, parts of them (for example, the higher central portions 16a) may surface and extend flush with the surface of the package.
The die or dice 4 could be bonded to a flat support not provided with a cavity 3. In this case, the ribbon sections 16 would have a larger curvature.
The peripheral strip 11 might not be continuous, but may be formed by a plurality of regions arranged peripherally; further, it could be formed on the bottom or on the side walls of the cavity 3.
In the case of a multi-die package, the ribbon sections could be bonded also in intermediate areas, for example in areas arranged between the dice. In this case, instead of a single cavity 3, the support 2 could have a plurality of cavities or in any case raised portions that accommodate conductive regions belonging to the grid 14.
Furthermore, intermediate bonding points could be provided also in the case of the single-die solution, and the intermediate bonding points could be obtained directly on the die. Intermediate bonding points could be provided also in the case of a number of dice arranged laterally to each other instead of or in addition to bonding points on raised portions of the support.
The shield could be formed by two pluralities of ribbon sections arranged transverse, for example perpendicular, to each other, where the ribbon sections of one plurality extend over the ribbon sections of the other plurality.
The base region 13 may not be facing the second face of the support 2; for example, it may be provided in a buried conductive layer that extends underneath the die 4.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
TO2014A0076 | Jan 2014 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
4670347 | Lasik et al. | Jun 1987 | A |
5151769 | Immorlica, Jr. et al. | Sep 1992 | A |
5317107 | Osorio | May 1994 | A |
5485037 | Marrs | Jan 1996 | A |
6188578 | Lin et al. | Feb 2001 | B1 |
6348653 | Cho | Feb 2002 | B1 |
6614102 | Hoffman et al. | Sep 2003 | B1 |
6826053 | Kato et al. | Nov 2004 | B2 |
7259969 | Zarganis | Aug 2007 | B2 |
7342303 | Berry et al. | Mar 2008 | B1 |
7451539 | Morris et al. | Nov 2008 | B2 |
7573124 | Wang et al. | Aug 2009 | B2 |
7576415 | Cha et al. | Aug 2009 | B2 |
7943424 | Wang et al. | May 2011 | B1 |
7960818 | Davis et al. | Jun 2011 | B1 |
7964938 | Yoon et al. | Jun 2011 | B2 |
8071431 | Hoang et al. | Dec 2011 | B2 |
8072047 | Camacho et al. | Dec 2011 | B2 |
8736033 | Chuo | May 2014 | B1 |
20020130739 | Cotton | Sep 2002 | A1 |
20030089983 | Huang et al. | May 2003 | A1 |
20070063322 | Chow et al. | Mar 2007 | A1 |
20080111217 | Dimaano | May 2008 | A1 |
20090067149 | Bogursky et al. | Mar 2009 | A1 |
20090211802 | Poulsen | Aug 2009 | A1 |
20090242264 | Lei | Oct 2009 | A1 |
20090244876 | Li et al. | Oct 2009 | A1 |
20090244878 | Wurzel et al. | Oct 2009 | A1 |
20090273912 | Myers et al. | Nov 2009 | A1 |
20100085719 | Lu et al. | Apr 2010 | A1 |
20100157566 | Bogursky | Jun 2010 | A1 |
20100200983 | Ono | Aug 2010 | A1 |
20100202127 | Tuominen | Aug 2010 | A1 |
20100246143 | Dinh et al. | Sep 2010 | A1 |
20110038136 | Carey | Feb 2011 | A1 |
20110198737 | Yao et al. | Aug 2011 | A1 |
20110299262 | Crotty | Dec 2011 | A1 |
20120044663 | Lu et al. | Feb 2012 | A1 |
20120113601 | Kohara | May 2012 | A1 |
20120193737 | Pang et al. | Aug 2012 | A1 |
20120243191 | Wu | Sep 2012 | A1 |
20120281386 | Kim | Nov 2012 | A1 |
20120327630 | Feldstein et al. | Dec 2012 | A1 |
20130114228 | Merz | May 2013 | A1 |
20130250540 | Hou | Sep 2013 | A1 |
20140043785 | Huang et al. | Feb 2014 | A1 |
20140071635 | Werner et al. | Mar 2014 | A1 |
20140191385 | Di-Giacomo | Jul 2014 | A1 |
20140286009 | Hamilton et al. | Sep 2014 | A1 |
20150264844 | Jang et al. | Sep 2015 | A1 |
20150267324 | Agarwal | Sep 2015 | A1 |
20160120076 | Yoshida et al. | Apr 2016 | A1 |
20160227679 | English et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
102969303 | Mar 2013 | CN |
2005-353713 | Dec 2005 | JP |
Entry |
---|
Benton, “Ribbon Bonding,” Advanced Packaging 8(3):24-26, 1999. |
Laird Technologies, “Clip-on Symmetrical Shielding: Fingerstock Gaskets,” copyright 2011, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20170325329 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14607695 | Jan 2015 | US |
Child | 15658165 | US |