The following description relates to integrated circuits (“ICs”). More particularly, the following description relates to wafer-level packaging using wire bond wires in place of a redistribution layer for an IC.
Microelectronic assemblies generally include one or more ICs, such as for example one or more packaged dies (“chips”) or one or more dies. One or more of such ICs may be mounted on a circuit platform, such as a wafer such as in wafer-level-packaging (“WLP”), a printed board (“PB”), a printed wiring board (“PWB”), a printed circuit board (“PCB”), a printed wiring assembly (“PWA”), a printed circuit assembly (“PCA”), a package substrate, an interposer, or a chip carrier. Additionally, one IC may be mounted on another IC. An interposer may be an IC, and an interposer may be a passive or an active IC, where the latter includes one or more active devices, such as transistors for example, and the former does not include any active device. Furthermore, an interposer may be formed like a PWB, namely without any circuit elements such as capacitors, resistors, or active devices.
An IC may include conductive elements, such as pathways, traces, tracks, vias, contacts, pads such as contact pads and bond pads, plugs, nodes, or terminals for example, that may be used for making electrical interconnections with a circuit platform. These arrangements may facilitate electrical connections used to provide functionality of ICs. An IC may be coupled to a circuit platform by bonding, such as bonding traces or terminals, for example, of such circuit platform to bond pads or exposed ends of pins or posts or the like of an IC. Additionally, a redistribution layer (“RDL”) may be part of an IC to facilitate a flip-chip configuration, die stacking, or more convenient or accessible position of bond pads for example.
An RDL is a thin film technology, which conventionally involves masking operations, etching operations, and deposition operations. Accordingly, forming an RDL may add considerable cost to formation of a chip. Accordingly, it would be desirable and useful to provide a less costly form of interconnecting a chip than an RDL.
An apparatus relates generally to a microelectronic package. In such an apparatus, a microelectronic die has a first surface, a second surface opposite the first surface, and a sidewall surface between the first and second surfaces. A plurality of wire bond wires with proximal ends thereof are coupled to either the first surface or the second surface of the microelectronic die with distal ends of the plurality of wire bond wires extending away from either the first surface or the second surface, respectively, of the microelectronic die. A portion of the plurality of wire bond wires extends outside a perimeter of the microelectronic die into a fan-out (“FO”) region. A molding material covers the first surface, the sidewall surface, and portions of the plurality of the wire bond wires from the first surface of the microelectronic die to an outer surface of the molding material.
A method relates generally to wafer-level packaging. In such a method, a substrate is obtained. Microelectronic dies are attached to the substrate to form a die array of the microelectronic dies having gaps between neighboring dies of the microelectronic dies. Proximal ends of wire bond wires are wire bonded to the microelectronic dies. The substrate, including the die array, is covered with a molding material. The covering includes covering at least a majority length of lengths of the wire bond wires wire bonded to the microelectronic dies. At least a portion of the wire bond wires extend outside corresponding perimeters of the microelectronic dies corresponding thereto. Distal ends of the wire bond wires are revealed from the molding material. Interconnects are formed for the distal ends revealed. The die array is diced to provide microelectronic packages.
Other features will be recognized from consideration of the Detailed Description and Claims, which follow.
Accompanying drawing(s) show exemplary embodiment(s) in accordance with one or more aspects of exemplary apparatus(es) or method(s). However, the accompanying drawings should not be taken to limit the scope of the claims, but are for explanation and understanding only.
In the following description, numerous specific details are set forth to provide a more thorough description of the specific examples described herein. It should be apparent, however, to one skilled in the art, that one or more other examples or variations of these examples may be practiced without all the specific details given below. In other instances, well known features have not been described in detail so as not to obscure the description of the examples herein. For ease of illustration, the same number labels are used in different diagrams to refer to the same items; however, in alternative examples the items may be different.
Lower surface 16 may generally be associated with what is referred to as a “front side” of an in-process wafer, and upper surface 14 may generally be associated with what is referred to as a “backside” of an in-process wafer. Along those lines, a front-side of an in-process wafer may be used for forming what is referred to as front-end-of-line (“FEOL”) structures and back-end-of-line (“BEOL”) structures.
Generally, BEOL structures may include one or more inter-level dielectrics (“ILDs”) and one or more levels of metallization. Furthermore, each ILD may be composed of one or more dielectric layers. Additionally, metal from a metallization level may extend through one or more ILDs, as is known. Furthermore, each level of metallization may be composed of one or more metal layers. A passivation level may be formed on a last metallization layer. Such passivation level may include one or more dielectric layers, and further may include an anti-reflective coating (“ARC”). In some applications, such a passivation layer may be referred to as an inter-die layer.
An RDL 13 may be formed on such passivation level. Conventionally, an RDL 13 may include: a dielectric layer 17, such as a polyimide layer for example; a metal layer 19 on such dielectric layer 17 and connected to bond pads of a metal layer of a last metallization level of microelectronic die 11; and another dielectric layer 18, such as another polyimide layer for example, over such metal layer 19 while leaving a portion thereof exposed to provide bond pads 20. A terminal opening may expose such bond pads 20 of such RDL 13 metal layer 19. Thereafter, solder bumps, such as solder balls 33, or wire bonds may be coupled to such bond pads 20.
An RDL 13 metal layer 19, may be formed of a metal such as a copper, copper alloy, aluminum or other metal, and may be formed on such a passivation layer and on lower end contact surfaces of via conductors of microelectronic die 11. Balls 33 may be respectively formed on bonding pads 20, where such pads may be formed on or as part of metal layer 19. Balls 33 may be formed of a bonding material, such as solder or other bonding material. Balls 33 may be microbumps, C4 bumps, copper pillar bumps, ball grid array (“BGA”) balls, or some other die interconnect structure. In some applications, metal layer 19 may be referred to as a landing pad.
Formation of an RDL 13 may include lithography, deposition, etch, planarization, among other known operations for formation of an RDL. For example, a seed layer deposition may be before patterning and electroplating to provide conductors for respective solder bump pads or landings. Optionally, a conventional anisotropic etch may be used prior to depositing and patterning a polymer isolation layer as a liner, and a chemical-mechanical-polishing (“CMP”) may be used thereafter.
More recently, three-dimensional (“3D”) ICs or “3D ICs” have been formed by generally attaching one die to another at a bond pad level or an on-chip electrical wiring level. Microelectronic dies 11 may be diced from a wafer into single dies. Such single dies may be directly coupled to one another or bonded to a platform to provide a reconstituted wafer 10. Along those lines, microelectronic dies 11 may be tested prior to inclusion in reconstituted wafer 10. Such pre-tested prior to inclusion microelectronic dies 11 are sometimes referred to as “known good dies” or “KGDs”.
In other examples, one or more RDLs 13 may be formed. An RDL 13 may include numerous conductive traces extending on or within one or more dielectric sheets or layers. Such traces may be provided in one level or in multiple levels throughout a single dielectric layer, separated by portions of dielectric material within such RDL. Vias may be included in an RDL 13 to interconnect traces in different levels of such RDL.
For FO-WLP, reconstituted wafer 10 may have gaps between such dies in which molding material 12 is injected or otherwise deposited to provide a fan-out (“FO”) region 15 generally around a sidewall or sidewall surface 21 of microelectronic dies 11 of such reconstituted wafer 10. Accordingly, formation of an RDL 13 for multiple microelectronic dies 11 of a reconstituted wafer 10 may add considerable cost.
Microelectronic dies 11 may be coupled to a platform 101, such as a substrate 101. Substrate 101 may be a semiconductor substrate. Even though a semiconductor substrate may be used, any sheet or layer of semiconductor material or dielectric material, such as ceramic or glass for example, may be used as a substrate for WLP of reconstituted wafer 100. Furthermore, substrate 101 may, though need not, be present in a final structure.
Microelectronic die 11 may have an upper surface 14, a lower surface 16 opposite upper surface 14, and a sidewall surface 21 between such upper and lower surfaces. Upper surface 14 and lower surface 16 may extend in lateral directions and may be generally parallel to each other at a thickness of microelectronic die 11. Wire bond wires 102 may have proximal ends 103 of wire bond wires 102 coupled to lower surface 16 of microelectronic die 11 with distal ends 104 of wire bond wires 102 extending away from such lower surface 16 of microelectronic die 11. In another implementation, microelectronic die 11 may have proximal ends 103 of wire bond wires 102 coupled to an upper surface 14 of microelectronic die 11 with distal ends 104 of wire bond wires 102 extending away from such upper surface 14 of microelectronic die 11. However, for purposes of clarity and not limitation, it shall be assumed that wire bond wires 102 are coupled to BEOL pads 105 of microelectronic die 11 as part of lower surface 16.
Sidewall surface 21 may define a perimeter of microelectronic die 11. A portion of wire bond wires 102 may extend outside such perimeter die into a FO region 115. Along those lines, a molding material 12 may be injected or otherwise deposited for covering lower surface 16, sidewall surface 21, and wire bond wires 102 from proximal ends 103 coupled to lower surface 16 of microelectronic die 11 to an outer surface 109 of molding material 12 generally opposite an inner surface 108 of substrate 101. An outer perimeter of FO region 115 may extend to an outer perimeter 118 of molding material 12 coverage around a final structure. In other words, generally FO region 115 may provide a 0.1 mm or more extension region or ring around a corresponding microelectronic die 11 after dicing a package from a reconstituted wafer.
In this example, wire bond wires 102 extend over a lower surface 16 of microelectronic die 11. Again, substrate 101 may or may not be present in a final structure of fan-in only package 199. In this implementation, outer perimeter of molding material coverage around a final structure is at least 0.1 mm or more wider than microelectronic die 11. In other words, molding material 12 is at least 0.1 mm thick along sidewall surface 21 of microelectronic die 11. Wire bond wires 102 may be for coupling fan-in only package 199 to another circuit platform. In another implementation, molding material 12 may not be disposed outside of microelectronic die 11 along sidewall surface, as generally indicated by dashed lines 189. In such an implementation, molding material 12, as well as a bond via array (“BVA”) structure of wire bond wires 102 partially encased in such molding material 12, may be disposed only over lower surface 16 of microelectronic die 11, where wire bond wires 102 may be formed for example on microelectronic dies 11 of a silicon wafer for WLP in contrast to a reconstituted wafer.
For purposes of clarity and not limitation, reconstituted wafer 100 of
Interconnects 33 may be coupled to distal ends 104 of wire bond wires 102. In this example, interconnects 33 may be solder balls 33. However, in another implementation, interconnects may be microbumps or another form of interconnects. Furthermore, in another implementation, contacts, such as metal pads, may be formed on outer surface 109 for coupling distal ends 104 to solder balls 33.
A minimum pitch 114 of some of the distal ends 104 may be at least a factor of 3 times greater than a minimum pitch 113 of proximal ends 103. Pitch 114 may be at least approximately 300 microns for interconnects 33, including ball grid array (“BGA”) interconnects. Pitch 113 may be at most approximately 100 microns. Wire bond wires 102 may have a thickness in a range of approximately 15 to 50 microns. Such thicknesses may be substantially thicker than traces or wires in a conventional RDL.
Upper surface 14 of microelectronic die 11 may be coupled to an inner surface 108 of substrate 101. Molding material 12 may cover a portion of inner surface 108 of substrate 101 associated with FO region 115.
Wire bond wires 102 may be used instead of an RDL. Accordingly, no RDL need be used for WLP wire routing. Rather, wire bond wires 102 may be used. Additional thickness 119 added to reconstituted wafer 100 in comparison to a conventional reconstituted wafer 10 of
At 401, a substrate 101 is obtained. At 402, microelectronic dies 11 may be attached, such as by epoxy, laminate or other adhesives in the form of film, tape or paste, to surface 108 of substrate 101 to form a die array 301 of microelectronic dies 101 to provide a reconstituted wafer 100. Gaps 302 may exist between sidewall surfaces 21 of neighboring dies of microelectronic dies 11.
At 403, proximal ends 103 of wire bond wires 102 may be wire bonded to upper surfaces 16 of microelectronic dies 11. Wire bonding at 403 may be stitch bonding and/or ball bonding.
At 404, an exposed area of substrate 101, including in gaps 302, as well as exposed surfaces of microelectronic dies 11 of die array 301 may be covered, by injection or other deposition, with a molding material 12. Such covering at 404 may include covering at least a majority length of lengths of wire bond wires 102, where such wire bond wires 102 have previously been wire bonded at 403 to then exposed or otherwise accessible surfaces of microelectronic dies 11 for such wire bonding. For an injection molding at 404, such injection molding may be performed without a film assist for release of a mold thereof.
At least a portion of such wire bond wires 102 attached to a microelectronic die 11, namely such portion of wire bond wires 102 wire bonded at 403, may extend outside or beyond a perimeter of such microelectronic die 11. At least such a portion of wire bond wires 102 may extend over gaps 302 of die array 301.
At 405, distal ends 104 of wire bond wires 102 may be revealed from molding material 12. This reveal may be performed with an etch back 303 of molding material 12 in this example to remove an upper potion thereof for revealing distal ends 104. This etch back 303 may be a plasma (“dry”) etch or a chemical bath (“wet”) etch. However, in another implementation, a polishing, such as a CMP, may be used for such reveal.
At 406, interconnects 33 may be formed for direct or indirect contact with or to distal ends 104 revealed at 405. Along those lines, this forming may include a printing of solder or a ball drop followed by reflow, as is known.
At 407, die array 301, which may or may not include substrate 101 may be diced 304 for singulation. This dicing may involve cuts, whether mechanical, laser, or otherwise, in gaps 302 to provide separate microelectronic packages 305. In this implementation, substrate 101 is diced, and thus sections of substrate 101 are included in microelectronic packages 305. Even though a single microelectronic die 11 per microelectronic package 305 is illustratively depicted, in another implementation more than one microelectronic die 11 per microelectronic package 305 may be used, which implementation may result for example by alternately not dicing between neighboring microelectronic dies 11.
However, substrate 101 may be removed prior to dicing at 407, and such substrate 101 may then be reused for another iteration of WLP process 300. For example, substrate 101 may be penetrated with UV rays and adhesive used to attach microelectronic dies 11 may be a UV soluble adhesive for release of substrate 101 after molding at 404. For providing a reconstituted wafer 100, substrate 101 may be a carrier wafer, and microelectronic dies 11 may be known good dies. Thus, microelectronic packages 305 may be diced from a reconstituted WLP with FO regions 115 associated with gaps 302, including sidewall surfaces 21 corresponding to portions of a perimeter of die array 301 proximal to a wafer's edge.
At 405, distal ends 104 of wire bond wires 102 may be revealed from molding material 12. This reveal may be performed at 601 with a grinding back 501 of an upper surface 109 of molding material 12 to reveal distal ends 104 of wire bond wires 102. However, in another implementation, a polishing, such as a CMP, may be used for such reveal. After such a grind back at 601, a reveal at 405 may include at 602 an etch back of molding material 12 using etch 502, in this example to remove an upper portion of molding material 12 for revealing distal ends 104. This etch back at 602 may be a plasma (“dry”) etch or a chemical bath (“wet”) etch.
After revealing at 405, at 603 pads 503 may be formed on or at distal ends 104 of wire bond wires 102. This forming of pads 503 may be on an upper surface 109 of molding layer 12. Such forming may include forming a masking layer followed by seeding and electroplating or deposition of a metal, as is known.
At 406, interconnects 33 may be formed on pads 503 for coupling to distal ends 104 revealed at 405. Along those lines, this forming may include a printing of solder or a ball drop followed by reflow, as is known.
At 604, substrate 101 may be removed. Substrate 101 may be removed prior to dicing at 407 and sometime after molding at 404, and such substrate 101 may then be reused for another iteration of WLP process 300. For example, substrate 101 may be a glass or other translucent material capable of being penetrated with UV rays. An adhesive used to attach microelectronic dies 11 to substrate 101 may be a UV soluble adhesive for release of substrate 101 at 604 sometime after molding at 404 and prior to dicing at 407.
At 407, die array 11 may be diced 304 for singulation. This dicing may involve cuts, whether mechanical, laser, or otherwise, in gaps 302 to provide separate microelectronic packages 305. In this implementation, substrate 101 is not diced, and thus sections of substrate 101 are not included in microelectronic packages 305.
For providing a reconstituted wafer 100, substrate 101 may be a carrier wafer, and microelectronic dies 11 may be known good dies. Thus, microelectronic packages 305 may be diced from a reconstituted WLP with FO regions 115 associated with gaps 302, including sidewall surfaces 21 corresponding to portions of a perimeter of die array 301.
Positional accuracy of wire bond wires 102 when made as generally straight vertical wires from a surface of a microelectronic die 11 may be: approximately +/−20 microns in an x-direction 701; approximately +/−20 microns in a y-direction 702 with reference to corresponding contact pads 203 of microelectronic die 11 in an x-y plane of surface 16 of microelectronic die 11; and approximately +/−40 microns in a z-direction 703 orthogonal to such x-y plane. Width 211 and length 212 of microelectronic die 11 may each be respectively equal to or smaller than width 201 and length 202 of microelectronic package 305. From the above description, it should be appreciated that BGA pitch may be substantially larger than pitch of contacts 203. Accordingly, a substantial amount of alignment tolerance is provided for distal ends 104 of wire bond wires 102. However, for dense contact areas, wire bond wires 102 may be reduced in one or more solder ball 33 depopulation regions, such as region 800, for example.
Wire bond wires 102 may include slanted-out wire bond wires 102-1 and/or slanted-in wire bond wires 102-2. Microelectronic die 11 may have a perimeter 213, and proximate to such perimeter may be contacts 203. In this example, contracts 203 are distributed around such perimeter 213 of microelectronic die 11; however, in another implementation, such contacts 203 may not be proximate to all edges of perimeter 213 of microelectronic die 11.
Slanted-in wire bond wires 102-2 extend from such contacts 203 to a fan-in (“FI”) region 116 ending over a surface area associated with contacts 203 within perimeter 213 of microelectronic die 11. Slanted-in wire bond wires 102-2, which may include touched-down transverse-upward formed wires, may extend over a central region of surface 16 of microelectronic die 11 inside perimeter 213 into an FI region 116.
Slanted-out wire bond wires 102-1 extend from such contacts 203 to an FO region 115 ending outside a surface area associated with contacts 203 within perimeter 213 of microelectronic die 11. For slanted-out wire bond wires 102-1, such slanted-out wire bond wires 102-1 may include generally transverse portions prior to a touched-down contact point to an upper surface 109 of molding material 12, and from such contact point, such touched-down wires may be formed in an upward direction to provide a distal end 104. For slanted-in wire bond wires 102-2, such contact point may be on a surface 16 of microelectronic die 11. Wire bond wires 102 may be coupled to contacts 203 with either or both ball bonding or stitch bonding to such contracts 203 of microelectronic die 11. As shown in
At 1001, a region of substrate 101, including gaps 302, is covered with a molding material 12. Such molding material 12 may be injected to be generally level with surface 16.
At 1002, wire bond wire may be drawn with proximal ends 103 bonded to contacts 203 of microelectronic die 11 followed by drawing such wire bond wire to form wire bond wires 102. For some wire bond wires 102, they may be drawn generally traverse with respect to surface 16 and surface 109 to a touch-down contact point 903 on surface 109. This traverse section 902 of such wire bond wires 102 may extend into a FO region 115. From touch-down contact point 903 on surface 109, wire bond wire 102 may be drawn away, such as upwardly for example, from surface 109 to form an upward section 901 of such wire bond wires 102. Because formation of wire bond wires 102 may be continuous as between microelectronic dies 11 over gaps 302, some wire bond wires 102-4 may extend to a neighboring microelectronic die 11 until being severed, such as by dicing, to provide separate wire bond wires 102-1 for such neighboring microelectronic dies 11. This continuation of a wire bond wire 102 to a neighboring die for a subsequent touch-down followed by a subsequent bonding is generally indicated by dashed line 904.
At 1003, such FO region 115 may be further covered with molding material 12 along with covering die array 301, as well as wire bond wires 102, with such molding material. Molding material 12 may have a thickness above surface 16 of microelectronic die 11 of at least 50 microns in some implementations.
In
For a PoP microelectronic device 310, each of microelectronic packages 305 may optionally include wire bond wires 312 and/or 313. Wire bond wires 312 may extend from corresponding solder balls 33 along an outer surface 109 of molding material 12 through molding material 12 to an inner surface 108 of a substrate 101 of a microelectronic package 305. Wire bond wires 313 may extend between BEOL pads 105 of microelectronic die 11 as part of lower surface 16 to an inner surface 108 of substrate. In certain implementations, the top package may not have peripheral wire bond wires 312 or 313.
In
In this example implementation, a lower microelectronic package 305 does not have a substrate 101, and an upper microelectronic package 305 includes a substrate 101. In this example implementation, FO regions 115 of upper and lower microelectronic packages 305 may be aligned to one another to provide avenues 311 for routing, including without limitation through PoP routed wire bond wires 312. Wire bond wires 312 may extend substantially beyond molding material 12 of upper microelectronic package 305, and may be inserted into corresponding holes in molding material 12 of lower microelectronic package 305, as generally delineated with a dashed line. These holes may subsequently be filled with additional molding material 12 or other fill material. Moreover, upper microelectronic package 305 may include wire bond wires 313, as previously described.
A bonding layer 188 or other interface layer may be disposed on upper surface 14 of a lower microelectronic die 11 and a lower surface 16 of an upper microelectronic die 11 to provide a microelectronic package 305. In this example implementation, an FO region 115 of lower microelectronic die 11 may be within an FI region of a larger upper microelectronic die 11. Wire bond wires 312 may extend from lower surfaces 16 of microelectronic dies 11 beyond molding material 12. Other features of microelectronic package 305 have been previously described, and thus are not repeated for purpose of clarity and not limitation.
While the foregoing describes exemplary embodiment(s) in accordance with one or more aspects of the invention, other and further embodiment(s) in accordance with the one or more aspects of the invention may be devised without departing from the scope thereof, which is determined by the claim(s) that follow and equivalents thereof. Claim(s) listing steps do not imply any order of the steps. Trademarks are the property of their respective owners.
This application is a continuation of, and hereby claims priority to, pending U.S. patent application Ser. No. 14/701,049, filed on Apr. 30, 2015, the entirety of which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2230663 | Alden | Feb 1941 | A |
3289452 | Koellner | Dec 1966 | A |
3358897 | Christensen | Dec 1967 | A |
3430835 | Grable et al. | Mar 1969 | A |
3623649 | Keisling | Nov 1971 | A |
3795037 | Luttmer | Mar 1974 | A |
3900153 | Beerwerth et al. | Aug 1975 | A |
4067104 | Tracy | Jan 1978 | A |
4072816 | Gedney et al. | Feb 1978 | A |
4213556 | Persson et al. | Jul 1980 | A |
4327860 | Kirshenboin et al. | May 1982 | A |
4422568 | Elles et al. | Dec 1983 | A |
4437604 | Razon et al. | Mar 1984 | A |
4604644 | Beckham et al. | Aug 1986 | A |
4642889 | Grabbe | Feb 1987 | A |
4667267 | Hernandez et al. | May 1987 | A |
4695870 | Patraw | Sep 1987 | A |
4716049 | Patraw | Dec 1987 | A |
4725692 | Ishii et al. | Feb 1988 | A |
4771930 | Gillotti et al. | Sep 1988 | A |
4793814 | Zifcak et al. | Dec 1988 | A |
4804132 | DiFrancesco | Feb 1989 | A |
4845354 | Gupta et al. | Jul 1989 | A |
4902600 | Tamagawa et al. | Feb 1990 | A |
4924353 | Patraw | May 1990 | A |
4925083 | Farassat et al. | May 1990 | A |
4955523 | Carlommagno et al. | Sep 1990 | A |
4975079 | Beaman et al. | Dec 1990 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
4998885 | Beaman et al. | Mar 1991 | A |
4999472 | Neinast et al. | Mar 1991 | A |
5067007 | Otsuka et al. | Nov 1991 | A |
5067382 | Zimmerman et al. | Nov 1991 | A |
5083697 | DiFrancesco | Jan 1992 | A |
5095187 | Gliga | Mar 1992 | A |
5133495 | Angulas et al. | Jul 1992 | A |
5138438 | Masayuki et al. | Aug 1992 | A |
5148265 | Khandros et al. | Sep 1992 | A |
5148266 | Khandros et al. | Sep 1992 | A |
5186381 | Kim | Feb 1993 | A |
5189505 | Bartelink | Feb 1993 | A |
5196726 | Nishiguchi et al. | Mar 1993 | A |
5203075 | Angulas et al. | Apr 1993 | A |
5214308 | Nishiguchi et al. | May 1993 | A |
5220489 | Barreto et al. | Jun 1993 | A |
5222014 | Lin | Jun 1993 | A |
5238173 | Ura et al. | Aug 1993 | A |
5241454 | Ameen et al. | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5316788 | Dibble et al. | May 1994 | A |
5340771 | Rostoker | Aug 1994 | A |
5346118 | Degani et al. | Sep 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5397997 | Tuckerman et al. | Mar 1995 | A |
5438224 | Papageorge et al. | Aug 1995 | A |
5455390 | DiStefano et al. | Oct 1995 | A |
5468995 | Higgins, III | Nov 1995 | A |
5476211 | Khandros | Dec 1995 | A |
5494667 | Uchida et al. | Feb 1996 | A |
5495667 | Farnworth et al. | Mar 1996 | A |
5518964 | DiStefano et al. | May 1996 | A |
5531022 | Beaman et al. | Jul 1996 | A |
5536909 | DiStefano et al. | Jul 1996 | A |
5541567 | Fogel et al. | Jul 1996 | A |
5571428 | Nishimura et al. | Nov 1996 | A |
5578869 | Hoffman et al. | Nov 1996 | A |
5608265 | Kitano et al. | Mar 1997 | A |
5615824 | Fjelstad et al. | Apr 1997 | A |
5635846 | Beaman et al. | Jun 1997 | A |
5656550 | Tsuji et al. | Aug 1997 | A |
5659952 | Kovac et al. | Aug 1997 | A |
5679977 | Khandros et al. | Oct 1997 | A |
5688716 | DiStefano et al. | Nov 1997 | A |
5718361 | Braun et al. | Feb 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5731709 | Pastore et al. | Mar 1998 | A |
5736780 | Murayama | Apr 1998 | A |
5736785 | Chiang et al. | Apr 1998 | A |
5766987 | Mitchell et al. | Jun 1998 | A |
5787581 | DiStefano et al. | Aug 1998 | A |
5801441 | DiStefano et al. | Sep 1998 | A |
5802699 | Fjelstad et al. | Sep 1998 | A |
5811982 | Beaman et al. | Sep 1998 | A |
5821763 | Beaman et al. | Oct 1998 | A |
5830389 | Capote et al. | Nov 1998 | A |
5831836 | Long et al. | Nov 1998 | A |
5839191 | Economy et al. | Nov 1998 | A |
5854507 | Miremadi et al. | Dec 1998 | A |
5874781 | Fogal et al. | Feb 1999 | A |
5898991 | Fogel et al. | May 1999 | A |
5908317 | Heo | Jun 1999 | A |
5912505 | Itoh et al. | Jun 1999 | A |
5948533 | Gallagher et al. | Sep 1999 | A |
5953624 | Bando et al. | Sep 1999 | A |
5971253 | Gilleo et al. | Oct 1999 | A |
5973391 | Bischoff et al. | Oct 1999 | A |
5977618 | DiStefano et al. | Nov 1999 | A |
5980270 | Fjelstad et al. | Nov 1999 | A |
5989936 | Smith et al. | Nov 1999 | A |
5994152 | Khandros et al. | Nov 1999 | A |
6000126 | Pai | Dec 1999 | A |
6002168 | Bellaar et al. | Dec 1999 | A |
6032359 | Carroll | Mar 2000 | A |
6038136 | Weber | Mar 2000 | A |
6052287 | Palmer et al. | Apr 2000 | A |
6054337 | Solberg | Apr 2000 | A |
6054756 | DiStefano et al. | Apr 2000 | A |
6077380 | Hayes et al. | Jun 2000 | A |
6117694 | Smith et al. | Sep 2000 | A |
6121676 | Solberg | Sep 2000 | A |
6124546 | Hayward et al. | Sep 2000 | A |
6133072 | Fjelstad | Oct 2000 | A |
6145733 | Streckfuss et al. | Nov 2000 | A |
6157080 | Tamaki et al. | Dec 2000 | A |
6158647 | Chapman et al. | Dec 2000 | A |
6164523 | Fauty et al. | Dec 2000 | A |
6168965 | Malinovich et al. | Jan 2001 | B1 |
6177636 | Fjelstad | Jan 2001 | B1 |
6180881 | Isaak | Jan 2001 | B1 |
6194250 | Melton et al. | Feb 2001 | B1 |
6194291 | DiStefano et al. | Feb 2001 | B1 |
6202297 | Faraci et al. | Mar 2001 | B1 |
6206273 | Beaman et al. | Mar 2001 | B1 |
6208024 | DiStefano | Mar 2001 | B1 |
6211572 | Fjelstad et al. | Apr 2001 | B1 |
6211574 | Tao et al. | Apr 2001 | B1 |
6215670 | Khandros | Apr 2001 | B1 |
6218728 | Kimura | Apr 2001 | B1 |
6225688 | Kim et al. | May 2001 | B1 |
6238949 | Nguyen | May 2001 | B1 |
6258625 | Brofman et al. | Jul 2001 | B1 |
6260264 | Chen et al. | Jul 2001 | B1 |
6262482 | Shiraishi et al. | Jul 2001 | B1 |
6268662 | Test et al. | Jul 2001 | B1 |
6295729 | Beaman et al. | Oct 2001 | B1 |
6300780 | Beaman et al. | Oct 2001 | B1 |
6303997 | Lee et al. | Oct 2001 | B1 |
6313528 | Solberg | Nov 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6329224 | Nguyen et al. | Dec 2001 | B1 |
6332270 | Beaman et al. | Dec 2001 | B2 |
6334247 | Beaman et al. | Jan 2002 | B1 |
6358627 | Benenati et al. | Mar 2002 | B2 |
6362520 | DiStefano | Mar 2002 | B2 |
6362525 | Rahim | Mar 2002 | B1 |
6376769 | Chung | Apr 2002 | B1 |
6388333 | Taniguchi et al. | May 2002 | B1 |
6395199 | Krassowski et al. | May 2002 | B1 |
6399426 | Capote et al. | Jun 2002 | B1 |
6407448 | Chun | Jun 2002 | B2 |
6407456 | Ball | Jun 2002 | B1 |
6410431 | Bertin et al. | Jun 2002 | B2 |
6413850 | Ooroku et al. | Jul 2002 | B1 |
6439450 | Chapman et al. | Aug 2002 | B1 |
6458411 | Goossen et al. | Oct 2002 | B1 |
6469260 | Horiuchi et al. | Oct 2002 | B2 |
6469373 | Funakura et al. | Oct 2002 | B2 |
6472743 | Huang et al. | Oct 2002 | B2 |
6476503 | Imamura et al. | Nov 2002 | B1 |
6476506 | O'Connor | Nov 2002 | B1 |
6476583 | McAndrews | Nov 2002 | B2 |
6486545 | Glenn et al. | Nov 2002 | B1 |
6489182 | Kwon | Dec 2002 | B2 |
6489676 | Taniguchi et al. | Dec 2002 | B2 |
6495914 | Sekine et al. | Dec 2002 | B1 |
6507104 | Ho et al. | Jan 2003 | B2 |
6509639 | Lin | Jan 2003 | B1 |
6514847 | Ohsawa et al. | Feb 2003 | B1 |
6515355 | Jiang et al. | Feb 2003 | B1 |
6522018 | Tay et al. | Feb 2003 | B1 |
6550666 | Chew et al. | Feb 2003 | B2 |
6526655 | Beaman et al. | Mar 2003 | B2 |
6531784 | Shim et al. | Mar 2003 | B1 |
6545228 | Hashimoto | Apr 2003 | B2 |
6555918 | Masuda et al. | Apr 2003 | B2 |
6560117 | Moon | May 2003 | B2 |
6563205 | Fogal et al. | May 2003 | B1 |
6563217 | Corisis et al. | May 2003 | B2 |
6573458 | Matsubara et al. | Jun 2003 | B1 |
6578754 | Tung | Jun 2003 | B1 |
6581276 | Chung | Jun 2003 | B2 |
6581283 | Sugiura et al. | Jun 2003 | B2 |
6624653 | Cram | Sep 2003 | B1 |
6630730 | Grigg | Oct 2003 | B2 |
6639303 | Siniaguine | Oct 2003 | B2 |
6647310 | Yi et al. | Nov 2003 | B1 |
6650013 | Yin et al. | Nov 2003 | B2 |
6653170 | Lin | Nov 2003 | B1 |
6684007 | Yoshimura et al. | Jan 2004 | B2 |
6686268 | Farnworth et al. | Feb 2004 | B2 |
6687988 | Sugiura et al. | Feb 2004 | B1 |
6693363 | Tay et al. | Feb 2004 | B2 |
6696305 | Kung et al. | Feb 2004 | B2 |
6699730 | Kim et al. | Mar 2004 | B2 |
6708403 | Beaman et al. | Mar 2004 | B2 |
6720783 | Satoh et al. | Apr 2004 | B2 |
6730544 | Yang | May 2004 | B1 |
6733711 | Durocher et al. | May 2004 | B2 |
6734539 | Degani et al. | May 2004 | B2 |
6734542 | Nakatani et al. | May 2004 | B2 |
6740980 | Hirose | May 2004 | B2 |
6740981 | Hosomi | May 2004 | B2 |
6741085 | Khandros et al. | May 2004 | B1 |
6746894 | Fee et al. | Jun 2004 | B2 |
6754407 | Chakravorty et al. | Jun 2004 | B2 |
6756252 | Nakanishi | Jun 2004 | B2 |
6756663 | Shiraishi et al. | Jun 2004 | B2 |
6759738 | Fallon et al. | Jul 2004 | B1 |
6762078 | Shin et al. | Jul 2004 | B2 |
6765287 | Lin | Jul 2004 | B1 |
6774317 | Fjelstad | Aug 2004 | B2 |
6774467 | Horiuchi et al. | Aug 2004 | B2 |
6774473 | Shen | Aug 2004 | B1 |
6774494 | Arakawa | Aug 2004 | B2 |
6777787 | Shibata | Aug 2004 | B2 |
6777797 | Egawa | Aug 2004 | B2 |
6778406 | Eldridge et al. | Aug 2004 | B2 |
6780746 | Kinsman et al. | Aug 2004 | B2 |
6787926 | Chen et al. | Sep 2004 | B2 |
6790757 | Chillipeddi et al. | Sep 2004 | B1 |
6800941 | Lee et al. | Oct 2004 | B2 |
6812575 | Furusawa | Nov 2004 | B2 |
6815257 | Yoon et al. | Nov 2004 | B2 |
6825552 | Light et al. | Nov 2004 | B2 |
6828665 | Pu et al. | Dec 2004 | B2 |
6828668 | Smith et al. | Dec 2004 | B2 |
6844619 | Tago | Jan 2005 | B2 |
6856235 | Fjelstad | Feb 2005 | B2 |
6864166 | Yin et al. | Mar 2005 | B1 |
6867499 | Tabrizi | Mar 2005 | B1 |
6874910 | Sugimoto et al. | Apr 2005 | B2 |
6897565 | Pflughaupt et al. | May 2005 | B2 |
6900530 | Tsai | May 2005 | B1 |
6902869 | Appelt et al. | Jun 2005 | B2 |
6902950 | Ma et al. | Jun 2005 | B2 |
6906408 | Cloud et al. | Jun 2005 | B2 |
6908785 | Kim | Jun 2005 | B2 |
6909181 | Aiba et al. | Jun 2005 | B2 |
6917098 | Yamunan | Jul 2005 | B1 |
6930256 | Huemoeller et al. | Aug 2005 | B1 |
6933598 | Kamezos | Aug 2005 | B2 |
6933608 | Fujisawa | Aug 2005 | B2 |
6939723 | Corisis et al. | Sep 2005 | B2 |
6946380 | Takahashi | Sep 2005 | B2 |
6951773 | Ho et al. | Oct 2005 | B2 |
6962282 | Manansala | Nov 2005 | B2 |
6962864 | Jeng et al. | Nov 2005 | B1 |
6977440 | Pflughaupt et al. | Dec 2005 | B2 |
6979599 | Silverbrook | Dec 2005 | B2 |
6987032 | Fan et al. | Jan 2006 | B1 |
6989122 | Pham et al. | Jan 2006 | B1 |
7009297 | Chiang et al. | Mar 2006 | B1 |
7017794 | Nosaka | Mar 2006 | B2 |
7021521 | Sakurai et al. | Apr 2006 | B2 |
7045884 | Standing | May 2006 | B2 |
7051915 | Mutaguchi | May 2006 | B2 |
7052935 | Pai et al. | May 2006 | B2 |
7053477 | Kamezos et al. | May 2006 | B2 |
7053485 | Bang et al. | May 2006 | B2 |
7061079 | Weng et al. | Jun 2006 | B2 |
7061097 | Yokoi | Jun 2006 | B2 |
7067911 | Lin et al. | Jun 2006 | B1 |
7071028 | Koike et al. | Jul 2006 | B2 |
7071547 | Kang et al. | Jul 2006 | B2 |
7071573 | Lin | Jul 2006 | B1 |
7078788 | Vu et al. | Jul 2006 | B2 |
7078822 | Dias et al. | Jul 2006 | B2 |
7095105 | Cherukuri et al. | Aug 2006 | B2 |
7112520 | Lee et al. | Sep 2006 | B2 |
7115986 | Moon et al. | Oct 2006 | B2 |
7119427 | Kim | Oct 2006 | B2 |
7121891 | Cherian | Oct 2006 | B2 |
7138722 | Miyamoto et al. | Nov 2006 | B2 |
7170185 | Hogerton et al. | Jan 2007 | B1 |
7176043 | Haba et al. | Feb 2007 | B2 |
7176506 | Beroz et al. | Feb 2007 | B2 |
7176559 | Ho et al. | Feb 2007 | B2 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7187072 | Fukitomi et al. | Mar 2007 | B2 |
7190061 | Lee | Mar 2007 | B2 |
7198980 | Jiang et al. | Apr 2007 | B2 |
7198987 | Warren et al. | Apr 2007 | B1 |
7205670 | Oyama | Apr 2007 | B2 |
7215033 | Lee et al. | May 2007 | B2 |
7216794 | Lange et al. | May 2007 | B2 |
7225538 | Eldridge et al. | Jun 2007 | B2 |
7227095 | Roberts et al. | Jun 2007 | B2 |
7229906 | Babinetz et al. | Jun 2007 | B2 |
7233057 | Hussa | Jun 2007 | B2 |
7242081 | Lee | Jul 2007 | B1 |
7246431 | Bang et al. | Jul 2007 | B2 |
7256069 | Akram et al. | Aug 2007 | B2 |
7259445 | Lau et al. | Aug 2007 | B2 |
7262124 | Fujisawa | Aug 2007 | B2 |
7262506 | Mess et al. | Aug 2007 | B2 |
7268421 | Lin | Sep 2007 | B1 |
7276799 | Lee et al. | Oct 2007 | B2 |
7287322 | Mahieu et al. | Oct 2007 | B2 |
7290448 | Shirasaka et al. | Nov 2007 | B2 |
7294920 | Chen et al. | Nov 2007 | B2 |
7294928 | Bang et al. | Nov 2007 | B2 |
7298033 | Yoo | Nov 2007 | B2 |
7301770 | Campbell et al. | Nov 2007 | B2 |
7307348 | Wood et al. | Dec 2007 | B2 |
7321164 | Hsu | Jan 2008 | B2 |
7323767 | James et al. | Jan 2008 | B2 |
7327038 | Kwon et al. | Feb 2008 | B2 |
7342803 | Inagaki et al. | Mar 2008 | B2 |
7344917 | Gautham | Mar 2008 | B2 |
7345361 | Malik et al. | Mar 2008 | B2 |
7355289 | Hess et al. | Apr 2008 | B2 |
7365416 | Kawabata et al. | Apr 2008 | B2 |
7368924 | Beaman et al. | May 2008 | B2 |
7371676 | Hembree | May 2008 | B2 |
7372151 | Fan et al. | May 2008 | B1 |
7378726 | Punzalan et al. | May 2008 | B2 |
7390700 | Gerber et al. | Jun 2008 | B2 |
7391105 | Yeom | Jun 2008 | B2 |
7391121 | Otremba | Jun 2008 | B2 |
7416107 | Chapman et al. | Aug 2008 | B2 |
7425758 | Corisis et al. | Sep 2008 | B2 |
7453157 | Haba et al. | Nov 2008 | B2 |
7456091 | Kuraya et al. | Nov 2008 | B2 |
7456495 | Pohl et al. | Nov 2008 | B2 |
7462936 | Haba et al. | Dec 2008 | B2 |
7476608 | Craig et al. | Jan 2009 | B2 |
7476962 | Kim | Jan 2009 | B2 |
7485562 | Chua et al. | Feb 2009 | B2 |
7495179 | Kubota et al. | Feb 2009 | B2 |
7495342 | Beaman et al. | Feb 2009 | B2 |
7495644 | Hirakata | Feb 2009 | B2 |
7504284 | Ye et al. | Mar 2009 | B2 |
7504716 | Abbott | Mar 2009 | B2 |
7517733 | Camacho et al. | Apr 2009 | B2 |
7527505 | Murata | May 2009 | B2 |
7528474 | Lee | May 2009 | B2 |
7535090 | Furuyama et al. | May 2009 | B2 |
7537962 | Jang et al. | May 2009 | B2 |
7538565 | Beaman et al. | May 2009 | B1 |
7550836 | Chou et al. | Jun 2009 | B2 |
7564116 | Ahn et al. | Jul 2009 | B2 |
7576415 | Cha et al. | Aug 2009 | B2 |
7576439 | Craig et al. | Aug 2009 | B2 |
7578422 | Lange et al. | Aug 2009 | B2 |
7582963 | Gerber et al. | Sep 2009 | B2 |
7589394 | Kawano | Sep 2009 | B2 |
7592638 | Kim | Sep 2009 | B2 |
7595548 | Shirasaka et al. | Sep 2009 | B2 |
7605479 | Mohammed | Oct 2009 | B2 |
7621436 | Mii et al. | Nov 2009 | B2 |
7625781 | Beer | Dec 2009 | B2 |
7629695 | Yoshimura et al. | Dec 2009 | B2 |
7633154 | Dai et al. | Dec 2009 | B2 |
7633765 | Scanlan et al. | Dec 2009 | B1 |
7642133 | Wu et al. | Jan 2010 | B2 |
7646102 | Boon | Jan 2010 | B2 |
7659612 | Hembree et al. | Feb 2010 | B2 |
7659617 | Kang et al. | Feb 2010 | B2 |
7663226 | Cho et al. | Feb 2010 | B2 |
7671457 | Hiner et al. | Mar 2010 | B1 |
7671459 | Corisis et al. | Mar 2010 | B2 |
7675152 | Gerber et al. | Mar 2010 | B2 |
7677429 | Chapman et al. | Mar 2010 | B2 |
7682960 | Wen | Mar 2010 | B2 |
7682962 | Hembree | Mar 2010 | B2 |
7683460 | Heitzer et al. | Mar 2010 | B2 |
7683482 | Nishida et al. | Mar 2010 | B2 |
7692931 | Chong et al. | Apr 2010 | B2 |
7696631 | Beaulieu et al. | Apr 2010 | B2 |
7706144 | Lynch | Apr 2010 | B2 |
7709968 | Damberg et al. | May 2010 | B2 |
7719122 | Tsao et al. | May 2010 | B2 |
7723839 | Yano et al. | May 2010 | B2 |
7728443 | Hembree | Jun 2010 | B2 |
7737545 | Fjelstad et al. | Jun 2010 | B2 |
7750483 | Lin et al. | Jul 2010 | B1 |
7757385 | Hembree | Jul 2010 | B2 |
7759782 | Haba et al. | Jul 2010 | B2 |
7777238 | Nishida et al. | Aug 2010 | B2 |
7777328 | Enomoto | Aug 2010 | B2 |
7777351 | Berry et al. | Aug 2010 | B1 |
7780064 | Wong et al. | Aug 2010 | B2 |
7781877 | Jiang et al. | Aug 2010 | B2 |
7795717 | Goller | Sep 2010 | B2 |
7807512 | Lee et al. | Oct 2010 | B2 |
7808093 | Kagaya et al. | Oct 2010 | B2 |
7834464 | Meyer et al. | Nov 2010 | B2 |
7838334 | Yu et al. | Nov 2010 | B2 |
7842541 | Rusli et al. | Nov 2010 | B1 |
7850087 | Hwang et al. | Dec 2010 | B2 |
7851259 | Kim | Dec 2010 | B2 |
7855462 | Boon et al. | Dec 2010 | B2 |
7855464 | Shikano | Dec 2010 | B2 |
7857190 | Takahashi et al. | Dec 2010 | B2 |
7859033 | Brady | Dec 2010 | B2 |
7872335 | Khan et al. | Jan 2011 | B2 |
7880290 | Park | Feb 2011 | B2 |
7892889 | Howard et al. | Feb 2011 | B2 |
7898083 | Castro | Mar 2011 | B2 |
7901989 | Haba et al. | Mar 2011 | B2 |
7902644 | Huang et al. | Mar 2011 | B2 |
7902652 | Sec et al. | Mar 2011 | B2 |
7910385 | Kweon et al. | Mar 2011 | B2 |
7911805 | Haba | Mar 2011 | B2 |
7919846 | Hembree | Apr 2011 | B2 |
7919871 | Moon et al. | Apr 2011 | B2 |
7923295 | Shim et al. | Apr 2011 | B2 |
7923304 | Choi et al. | Apr 2011 | B2 |
7928552 | Cho et al. | Apr 2011 | B1 |
7932170 | Huemoeller et al. | Apr 2011 | B1 |
7934313 | Lin et al. | May 2011 | B1 |
7939934 | Haba et al. | May 2011 | B2 |
7944034 | Gerber et al. | May 2011 | B2 |
7956456 | Gurrum et al. | Jun 2011 | B2 |
7960843 | Hedler et al. | Jun 2011 | B2 |
7964956 | Bet-Shliemoun | Jun 2011 | B1 |
7967062 | Campbell et al. | Jun 2011 | B2 |
7974099 | Grajcar | Jul 2011 | B2 |
7977597 | Roberts et al. | Jul 2011 | B2 |
7990711 | Andry et al. | Aug 2011 | B1 |
7994622 | Mohammed et al. | Aug 2011 | B2 |
8004074 | Mori et al. | Aug 2011 | B2 |
8004093 | Oh et al. | Aug 2011 | B2 |
8008121 | Choi et al. | Aug 2011 | B2 |
8012797 | Shen et al. | Sep 2011 | B2 |
8017437 | Yoo et al. | Sep 2011 | B2 |
8017452 | Ishihara et al. | Sep 2011 | B2 |
8018033 | Moriya | Sep 2011 | B2 |
8018065 | Lam | Sep 2011 | B2 |
8020290 | Sheats | Sep 2011 | B2 |
8021907 | Pagaila et al. | Sep 2011 | B2 |
8035213 | Lee et al. | Oct 2011 | B2 |
8039316 | Chi et al. | Oct 2011 | B2 |
8039960 | Lin | Oct 2011 | B2 |
8039970 | Yamamori et al. | Oct 2011 | B2 |
8048479 | Hedler et al. | Nov 2011 | B2 |
8053814 | Chen et al. | Nov 2011 | B2 |
8053879 | Lee et al. | Nov 2011 | B2 |
8053906 | Chang et al. | Nov 2011 | B2 |
8058101 | Haba et al. | Nov 2011 | B2 |
8063475 | Choi et al. | Nov 2011 | B2 |
8071424 | Kang et al. | Dec 2011 | B2 |
8071431 | Hoang et al. | Dec 2011 | B2 |
8071470 | Khor et al. | Dec 2011 | B2 |
8076765 | Chen et al. | Dec 2011 | B2 |
8076770 | Kagaya et al. | Dec 2011 | B2 |
8080445 | Pagaila | Dec 2011 | B1 |
8084867 | Tang et al. | Dec 2011 | B2 |
8092734 | Jiang et al. | Jan 2012 | B2 |
8093697 | Haba et al. | Jan 2012 | B2 |
8106498 | Shin et al. | Jan 2012 | B2 |
8115283 | Bolognia et al. | Feb 2012 | B1 |
8119516 | Endo | Feb 2012 | B2 |
8120054 | Seo et al. | Feb 2012 | B2 |
8120186 | Yoon | Feb 2012 | B2 |
8138584 | Wang et al. | Mar 2012 | B2 |
8143141 | Sun et al. | Mar 2012 | B2 |
8143710 | Cho | Mar 2012 | B2 |
8158888 | Shen et al. | Apr 2012 | B2 |
8169065 | Kohl et al. | May 2012 | B2 |
8174119 | Pendse | May 2012 | B2 |
8183682 | Groenhuis et al. | May 2012 | B2 |
8183684 | Nakazato | May 2012 | B2 |
8193034 | Pagaila et al. | Jun 2012 | B2 |
8194411 | Leung et al. | Jun 2012 | B2 |
8198716 | Periaman et al. | Jun 2012 | B2 |
8207604 | Haba et al. | Jun 2012 | B2 |
8213184 | Knickerbocker | Jul 2012 | B2 |
8217502 | Ko | Jul 2012 | B2 |
8225982 | Pirkle et al. | Jul 2012 | B2 |
8232141 | Choi et al. | Jul 2012 | B2 |
8237257 | Yang | Aug 2012 | B2 |
8258010 | Pagaila et al. | Sep 2012 | B2 |
8258015 | Chow et al. | Sep 2012 | B2 |
8263435 | Choi et al. | Sep 2012 | B2 |
8264091 | Cho et al. | Sep 2012 | B2 |
8269335 | Osumi | Sep 2012 | B2 |
8278746 | Ding et al. | Oct 2012 | B2 |
8288854 | Weng et al. | Oct 2012 | B2 |
8293580 | Kim et al. | Oct 2012 | B2 |
8299368 | Endo | Oct 2012 | B2 |
8304900 | Jang et al. | Nov 2012 | B2 |
8314492 | Egawa | Nov 2012 | B2 |
8315060 | Morikita et al. | Nov 2012 | B2 |
8318539 | Cho et al. | Nov 2012 | B2 |
8319338 | Berry et al. | Nov 2012 | B1 |
8324633 | McKenzie et al. | Dec 2012 | B2 |
8330272 | Haba | Dec 2012 | B2 |
8349735 | Pagaila et al. | Jan 2013 | B2 |
8354297 | Pagaila et al. | Jan 2013 | B2 |
8362620 | Pagani | Jan 2013 | B2 |
8372741 | Co | Feb 2013 | B1 |
8390108 | Cho et al. | Mar 2013 | B2 |
8390117 | Shimizu et al. | Mar 2013 | B2 |
8395259 | Eun | Mar 2013 | B2 |
8399972 | Hoang et al. | Mar 2013 | B2 |
8404520 | Chau et al. | Mar 2013 | B1 |
8409922 | Camacho et al. | Apr 2013 | B2 |
8415704 | Ivanov et al. | Apr 2013 | B2 |
8419442 | Horikawa et al. | Apr 2013 | B2 |
8435899 | Miyata et al. | May 2013 | B2 |
8450839 | Corisis et al. | May 2013 | B2 |
8476115 | Choi et al. | Jul 2013 | B2 |
8476770 | Shao et al. | Jul 2013 | B2 |
8482111 | Haba | Jul 2013 | B2 |
8487421 | Sato et al. | Jul 2013 | B2 |
8492201 | Pagaila et al. | Jul 2013 | B2 |
8502387 | Choi et al. | Aug 2013 | B2 |
8507297 | Iida et al. | Aug 2013 | B2 |
8508045 | Khan et al. | Aug 2013 | B2 |
8518746 | Pagaila et al. | Aug 2013 | B2 |
8520396 | Schmidt et al. | Aug 2013 | B2 |
8525214 | Lin et al. | Sep 2013 | B2 |
8525314 | Haba et al. | Sep 2013 | B2 |
8525318 | Kim et al. | Sep 2013 | B1 |
8552556 | Kim et al. | Oct 2013 | B1 |
8558379 | Kwon | Oct 2013 | B2 |
8558392 | Chua et al. | Oct 2013 | B2 |
8564141 | Lee et al. | Oct 2013 | B2 |
8567051 | Val | Oct 2013 | B2 |
8569892 | Mori et al. | Oct 2013 | B2 |
8580607 | Haba | Nov 2013 | B2 |
8598717 | Masuda | Dec 2013 | B2 |
8618646 | Sasaki et al. | Dec 2013 | B2 |
8618659 | Sato et al. | Dec 2013 | B2 |
8624374 | Ding et al. | Jan 2014 | B2 |
8637991 | Haba | Jan 2014 | B2 |
8642393 | Yu et al. | Feb 2014 | B1 |
8646508 | Kawada | Feb 2014 | B2 |
8653626 | Lo et al. | Feb 2014 | B2 |
8653668 | Uno et al. | Feb 2014 | B2 |
8653676 | Kim et al. | Feb 2014 | B2 |
8659164 | Haba | Feb 2014 | B2 |
8664780 | Han et al. | Mar 2014 | B2 |
8669646 | Tabatabai et al. | Mar 2014 | B2 |
8670261 | Crisp et al. | Mar 2014 | B2 |
8680662 | Haba et al. | Mar 2014 | B2 |
8680677 | Wyland | Mar 2014 | B2 |
8680684 | Haba et al. | Mar 2014 | B2 |
8685792 | Chow et al. | Apr 2014 | B2 |
8697492 | Haba et al. | Apr 2014 | B2 |
8723307 | Jiang et al. | May 2014 | B2 |
8728865 | Haba et al. | May 2014 | B2 |
8729714 | Meyer | May 2014 | B1 |
8742576 | Thacker et al. | Jun 2014 | B2 |
8742597 | Nickerson | Jun 2014 | B2 |
8766436 | Delucca et al. | Jul 2014 | B2 |
8772152 | Co et al. | Jul 2014 | B2 |
8772817 | Yao | Jul 2014 | B2 |
8785245 | Kim | Jul 2014 | B2 |
8791575 | Oganesian et al. | Jul 2014 | B2 |
8791580 | Park et al. | Jul 2014 | B2 |
8796846 | Lin et al. | Aug 2014 | B2 |
8802494 | Lee et al. | Aug 2014 | B2 |
8810031 | Chang et al. | Aug 2014 | B2 |
8811055 | Yoon | Aug 2014 | B2 |
8816404 | Kim et al. | Aug 2014 | B2 |
8835228 | Mohammed | Sep 2014 | B2 |
8836136 | Chau et al. | Sep 2014 | B2 |
8836140 | Ma et al. | Sep 2014 | B2 |
8836147 | Uno et al. | Sep 2014 | B2 |
8841765 | Haba et al. | Sep 2014 | B2 |
8846521 | Sugizaki | Sep 2014 | B2 |
8847376 | Oganesian et al. | Sep 2014 | B2 |
8853558 | Gupta et al. | Oct 2014 | B2 |
8878353 | Haba et al. | Nov 2014 | B2 |
8884416 | Lee et al. | Nov 2014 | B2 |
8893380 | Kim et al. | Nov 2014 | B2 |
8907466 | Haba | Dec 2014 | B2 |
8907500 | Haba et al. | Dec 2014 | B2 |
8912651 | Yu et al. | Dec 2014 | B2 |
8916781 | Haba et al. | Dec 2014 | B2 |
8922005 | Hu et al. | Dec 2014 | B2 |
8923004 | Low et al. | Dec 2014 | B2 |
8927337 | Haba et al. | Jan 2015 | B2 |
8937309 | England et al. | Jan 2015 | B2 |
8940630 | Damberg et al. | Jan 2015 | B2 |
8940636 | Pagaila et al. | Jan 2015 | B2 |
8946757 | Mohammed et al. | Feb 2015 | B2 |
8948712 | Chen et al. | Feb 2015 | B2 |
8963339 | He et al. | Feb 2015 | B2 |
8970049 | Kamezos | Mar 2015 | B2 |
8975726 | Chen | Mar 2015 | B2 |
8978247 | Yang et al. | Mar 2015 | B2 |
8981559 | Hsu et al. | Mar 2015 | B2 |
8987132 | Gruber et al. | Mar 2015 | B2 |
8988895 | Mohammed et al. | Mar 2015 | B2 |
8993376 | Camacho et al. | Mar 2015 | B2 |
9006031 | Camacho et al. | Apr 2015 | B2 |
9012263 | Mathew et al. | Apr 2015 | B1 |
9041227 | Chau et al. | May 2015 | B2 |
9054095 | Pagaila | Jun 2015 | B2 |
9082763 | Yu et al. | Jul 2015 | B2 |
9093435 | Sato et al. | Jul 2015 | B2 |
9095074 | Haba et al. | Jul 2015 | B2 |
9105483 | Chau et al. | Aug 2015 | B2 |
9105552 | Yu et al. | Aug 2015 | B2 |
9117811 | Zohni | Aug 2015 | B2 |
9123664 | Haba | Sep 2015 | B2 |
9136254 | Zhao et al. | Sep 2015 | B2 |
9142586 | Wang et al. | Sep 2015 | B2 |
9153562 | Haba et al. | Oct 2015 | B2 |
9171790 | Yu et al. | Oct 2015 | B2 |
9177832 | Camacho | Nov 2015 | B2 |
9196586 | Chen et al. | Nov 2015 | B2 |
9196588 | Leal | Nov 2015 | B2 |
9214434 | Kim et al. | Dec 2015 | B1 |
9224647 | Koo et al. | Dec 2015 | B2 |
9224717 | Sato et al. | Dec 2015 | B2 |
9258922 | Chen et al. | Feb 2016 | B2 |
9263394 | Uzoh et al. | Feb 2016 | B2 |
9263413 | Mohammed | Feb 2016 | B2 |
9299670 | Yap et al. | Mar 2016 | B2 |
9318452 | Chen et al. | Apr 2016 | B2 |
9324696 | Choi et al. | Apr 2016 | B2 |
9330945 | Song et al. | May 2016 | B2 |
9349706 | Co et al. | May 2016 | B2 |
9362161 | Chi et al. | Jun 2016 | B2 |
9378982 | Lin et al. | Jun 2016 | B2 |
9379074 | Uzoh et al. | Jun 2016 | B2 |
9379078 | Yu et al. | Jun 2016 | B2 |
9401338 | Magnus et al. | Jul 2016 | B2 |
9412661 | Lu et al. | Aug 2016 | B2 |
9418940 | Hoshino et al. | Aug 2016 | B2 |
9418971 | Chen et al. | Aug 2016 | B2 |
9437459 | Carpenter et al. | Sep 2016 | B2 |
9443797 | Marimuthu et al. | Sep 2016 | B2 |
9449941 | Tsai et al. | Sep 2016 | B2 |
9461025 | Yu et al. | Oct 2016 | B2 |
9496152 | Cho et al. | Nov 2016 | B2 |
9502390 | Caskey et al. | Nov 2016 | B2 |
9508622 | Higgins | Nov 2016 | B2 |
9559088 | Gonzalez et al. | Jan 2017 | B2 |
9570382 | Haba | Feb 2017 | B2 |
9583456 | Uzoh et al. | Feb 2017 | B2 |
9601454 | Zhao et al. | Mar 2017 | B2 |
20010042925 | Yamamoto et al. | Nov 2001 | A1 |
20020014004 | Beaman et al. | Feb 2002 | A1 |
20020125556 | Oh et al. | Sep 2002 | A1 |
20020171152 | Miyazaki | Nov 2002 | A1 |
20030006494 | Lee et al. | Jan 2003 | A1 |
20030048108 | Beaman et al. | Mar 2003 | A1 |
20030057544 | Nathan et al. | Mar 2003 | A1 |
20030094666 | Clayton et al. | May 2003 | A1 |
20030162378 | Mikami | Aug 2003 | A1 |
20040041757 | Yang et al. | Mar 2004 | A1 |
20040262728 | Sterrett et al. | Dec 2004 | A1 |
20050017369 | Clayton et al. | Jan 2005 | A1 |
20050062492 | Beaman et al. | Mar 2005 | A1 |
20050082664 | Funaba et al. | Apr 2005 | A1 |
20050095835 | Humpston et al. | May 2005 | A1 |
20050161814 | Mizukoshi et al. | Jul 2005 | A1 |
20050173807 | Zhu et al. | Aug 2005 | A1 |
20050176233 | Joshi et al. | Aug 2005 | A1 |
20060087013 | Hsieh | Apr 2006 | A1 |
20060216868 | Yang et al. | Sep 2006 | A1 |
20060255449 | Lee et al. | Nov 2006 | A1 |
20070010086 | Hsieh | Jan 2007 | A1 |
20070080360 | Mirsky et al. | Apr 2007 | A1 |
20070164457 | Yamaguchi et al. | Jul 2007 | A1 |
20070190747 | Hup | Aug 2007 | A1 |
20070254406 | Lee | Nov 2007 | A1 |
20070271781 | Beaman et al. | Nov 2007 | A9 |
20070290325 | Wu et al. | Dec 2007 | A1 |
20080006942 | Park et al. | Jan 2008 | A1 |
20080017968 | Choi et al. | Jan 2008 | A1 |
20080023805 | Howard et al. | Jan 2008 | A1 |
20080042265 | Merilo et al. | Feb 2008 | A1 |
20080047741 | Beaman et al. | Feb 2008 | A1 |
20080048690 | Beaman et al. | Feb 2008 | A1 |
20080048691 | Beaman et al. | Feb 2008 | A1 |
20080048697 | Beaman et al. | Feb 2008 | A1 |
20080054434 | Kim | Mar 2008 | A1 |
20080073769 | Wu et al. | Mar 2008 | A1 |
20080100316 | Beaman et al. | May 2008 | A1 |
20080100317 | Beaman et al. | May 2008 | A1 |
20080100318 | Beaman et al. | May 2008 | A1 |
20080100324 | Beaman et al. | May 2008 | A1 |
20080105984 | Lee et al. | May 2008 | A1 |
20080106281 | Beaman et al. | May 2008 | A1 |
20080106282 | Beaman et al. | May 2008 | A1 |
20080106283 | Beaman et al. | May 2008 | A1 |
20080106284 | Beaman et al. | May 2008 | A1 |
20080106285 | Beaman et al. | May 2008 | A1 |
20080106291 | Beaman et al. | May 2008 | A1 |
20080106872 | Beaman et al. | May 2008 | A1 |
20080111568 | Beaman et al. | May 2008 | A1 |
20080111569 | Beaman et al. | May 2008 | A1 |
20080111570 | Beaman et al. | May 2008 | A1 |
20080112144 | Beaman et al. | May 2008 | A1 |
20080112145 | Beaman et al. | May 2008 | A1 |
20080112146 | Beaman et al. | May 2008 | A1 |
20080112147 | Beaman et al. | May 2008 | A1 |
20080112148 | Beaman et al. | May 2008 | A1 |
20080112149 | Beaman et al. | May 2008 | A1 |
20080116912 | Beaman et al. | May 2008 | A1 |
20080116913 | Beaman et al. | May 2008 | A1 |
20080116914 | Beaman et al. | May 2008 | A1 |
20080116915 | Beaman et al. | May 2008 | A1 |
20080116916 | Beaman et al. | May 2008 | A1 |
20080117611 | Beaman et al. | May 2008 | A1 |
20080117612 | Beaman et al. | May 2008 | A1 |
20080117613 | Beaman et al. | May 2008 | A1 |
20080121879 | Beaman et al. | May 2008 | A1 |
20080123310 | Beaman et al. | May 2008 | A1 |
20080129319 | Beaman et al. | Jun 2008 | A1 |
20080129320 | Beaman et al. | Jun 2008 | A1 |
20080132094 | Beaman et al. | Jun 2008 | A1 |
20080156518 | Honer et al. | Jul 2008 | A1 |
20080164595 | Wu et al. | Jul 2008 | A1 |
20080169548 | Baek | Jul 2008 | A1 |
20080217708 | Reisner et al. | Sep 2008 | A1 |
20080280393 | Lee et al. | Nov 2008 | A1 |
20080284045 | Gerber et al. | Nov 2008 | A1 |
20080303153 | Oi et al. | Dec 2008 | A1 |
20080308305 | Kawabe | Dec 2008 | A1 |
20090008796 | Eng et al. | Jan 2009 | A1 |
20090014876 | Youn et al. | Jan 2009 | A1 |
20090032913 | Haba | Feb 2009 | A1 |
20090085185 | Byun et al. | Apr 2009 | A1 |
20090091009 | Corisis et al. | Apr 2009 | A1 |
20090102063 | Lee et al. | Apr 2009 | A1 |
20090127686 | Yang et al. | May 2009 | A1 |
20090128176 | Beaman et al. | May 2009 | A1 |
20090140415 | Furuta | Jun 2009 | A1 |
20090166664 | Park et al. | Jul 2009 | A1 |
20090166873 | Yang et al. | Jul 2009 | A1 |
20090189288 | Beaman et al. | Jul 2009 | A1 |
20090194829 | Chung et al. | Aug 2009 | A1 |
20090256229 | Ishikawa et al. | Oct 2009 | A1 |
20090315579 | Beaman et al. | Dec 2009 | A1 |
20100032822 | Liao et al. | Feb 2010 | A1 |
20100044860 | Haba et al. | Feb 2010 | A1 |
20100078795 | Dekker et al. | Apr 2010 | A1 |
20100193937 | Nagamatsu et al. | Aug 2010 | A1 |
20100200981 | Huang et al. | Aug 2010 | A1 |
20100258955 | Miyagawa et al. | Oct 2010 | A1 |
20100289142 | Shim et al. | Nov 2010 | A1 |
20100314748 | Hsu | Dec 2010 | A1 |
20100327419 | Muthukumar et al. | Dec 2010 | A1 |
20110042699 | Park et al. | Feb 2011 | A1 |
20110068478 | Pagaila et al. | Mar 2011 | A1 |
20110157834 | Wang | Jun 2011 | A1 |
20110209908 | Lin et al. | Sep 2011 | A1 |
20110215472 | Chandrasekaran | Sep 2011 | A1 |
20120001336 | Zeng et al. | Jan 2012 | A1 |
20120043655 | Khor et al. | Feb 2012 | A1 |
20120063090 | Hsiao et al. | Mar 2012 | A1 |
20120080787 | Shah et al. | Apr 2012 | A1 |
20120086111 | Iwamoto et al. | Apr 2012 | A1 |
20120126431 | Kim et al. | May 2012 | A1 |
20120153444 | Haga et al. | Jun 2012 | A1 |
20120184116 | Pawlikowski et al. | Jul 2012 | A1 |
20130001797 | Choi et al. | Jan 2013 | A1 |
20130040423 | Tung | Feb 2013 | A1 |
20130049218 | Gong et al. | Feb 2013 | A1 |
20130087915 | Warren et al. | Apr 2013 | A1 |
20130153646 | Ho | Jun 2013 | A1 |
20130200524 | Han et al. | Aug 2013 | A1 |
20130234317 | Chen et al. | Sep 2013 | A1 |
20130256847 | Park et al. | Oct 2013 | A1 |
20130323409 | Read et al. | Dec 2013 | A1 |
20130328178 | Bakalski et al. | Dec 2013 | A1 |
20140035892 | Shenoy et al. | Feb 2014 | A1 |
20140103527 | Marimuthu et al. | Apr 2014 | A1 |
20140124949 | Paek et al. | May 2014 | A1 |
20140175657 | Oka et al. | Jun 2014 | A1 |
20140225248 | Henderson et al. | Aug 2014 | A1 |
20140231980 | Lim | Aug 2014 | A1 |
20140239479 | Start | Aug 2014 | A1 |
20140239490 | Wang | Aug 2014 | A1 |
20140308907 | Chen | Oct 2014 | A1 |
20140312503 | Seo | Oct 2014 | A1 |
20150044823 | Mohammed | Feb 2015 | A1 |
20150076714 | Haba et al. | Mar 2015 | A1 |
20150130054 | Lee et al. | May 2015 | A1 |
20150206865 | Yu et al. | Jul 2015 | A1 |
20150340305 | Lo | Nov 2015 | A1 |
20150380376 | Mathew et al. | Dec 2015 | A1 |
20160043813 | Chen et al. | Feb 2016 | A1 |
20160172268 | Katkar et al. | Jun 2016 | A1 |
20160200566 | Ofner et al. | Jul 2016 | A1 |
20160225692 | Kim et al. | Aug 2016 | A1 |
20170117231 | Awujoola et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1352804 | Jun 2002 | CN |
1641832 | Jul 2005 | CN |
1877824 | Dec 2006 | CN |
101409241 | Apr 2009 | CN |
101449375 | Jun 2009 | CN |
101675516 | Mar 2010 | CN |
101819959 | Sep 2010 | CN |
102324418 | Jan 2012 | CN |
102009001461 | Sep 2010 | DE |
920058 | Jun 1999 | EP |
1449414 | Aug 2004 | EP |
2234158 | Sep 2010 | EP |
S51-050661 | May 1976 | JP |
59189069 | Oct 1984 | JP |
61125062 | Jun 1986 | JP |
S62158338 | Jul 1987 | JP |
62-226307 | Oct 1987 | JP |
1012769 | Jan 1989 | JP |
64-71162 | Mar 1989 | JP |
1118364 | May 1989 | JP |
H04-346436 | Dec 1992 | JP |
06268015 | Sep 1994 | JP |
H06268101 | Sep 1994 | JP |
H06333931 | Dec 1994 | JP |
07-122787 | May 1995 | JP |
09505439 | May 1997 | JP |
H1065054 | Mar 1998 | JP |
H10135220 | May 1998 | JP |
H10135221 | May 1998 | JP |
11-074295 | Mar 1999 | JP |
11135663 | May 1999 | JP |
H11-145323 | May 1999 | JP |
11251350 | Sep 1999 | JP |
H11260856 | Sep 1999 | JP |
11317476 | Nov 1999 | JP |
2000323516 | Nov 2000 | JP |
2001196407 | Jul 2001 | JP |
2001326236 | Nov 2001 | JP |
2002050871 | Feb 2002 | JP |
2002289769 | Oct 2002 | JP |
2003122611 | Apr 2003 | JP |
2003-174124 | Jun 2003 | JP |
2003307897 | Oct 2003 | JP |
2003318327 | Nov 2003 | JP |
2004031754 | Jan 2004 | JP |
2004047702 | Feb 2004 | JP |
2004048048 | Feb 2004 | JP |
2004-172157 | Jun 2004 | JP |
2004-200316 | Jul 2004 | JP |
2004281514 | Oct 2004 | JP |
2004-319892 | Nov 2004 | JP |
2004327855 | Nov 2004 | JP |
2004327856 | Nov 2004 | JP |
2004343030 | Dec 2004 | JP |
2005011874 | Jan 2005 | JP |
2005033141 | Feb 2005 | JP |
2005093551 | Apr 2005 | JP |
2003377641 | Jun 2005 | JP |
2005142378 | Jun 2005 | JP |
2005175019 | Jun 2005 | JP |
2003426392 | Jul 2005 | JP |
2005183880 | Jul 2005 | JP |
2005183923 | Jul 2005 | JP |
2005203497 | Jul 2005 | JP |
2005302765 | Oct 2005 | JP |
2006108588 | Apr 2006 | JP |
2006186086 | Jul 2006 | JP |
2006344917 | May 2007 | JP |
2007123595 | May 2007 | JP |
2007-208159 | Aug 2007 | JP |
2007194436 | Aug 2007 | JP |
2007234845 | Sep 2007 | JP |
2007287922 | Nov 2007 | JP |
2007-335464 | Dec 2007 | JP |
200834534 | Feb 2008 | JP |
2008166439 | Jul 2008 | JP |
2008171938 | Jul 2008 | JP |
2008235378 | Oct 2008 | JP |
2008251794 | Oct 2008 | JP |
2008277362 | Nov 2008 | JP |
2008306128 | Dec 2008 | JP |
2009004650 | Jan 2009 | JP |
2009044110 | Feb 2009 | JP |
2009506553 | Feb 2009 | JP |
2009508324 | Feb 2009 | JP |
2009064966 | Mar 2009 | JP |
2009088254 | Apr 2009 | JP |
2009111384 | May 2009 | JP |
2009528706 | Aug 2009 | JP |
2009260132 | Nov 2009 | JP |
2010103129 | May 2010 | JP |
2010135671 | Jun 2010 | JP |
2010192928 | Sep 2010 | JP |
2010199528 | Sep 2010 | JP |
2010206007 | Sep 2010 | JP |
2011514015 | Apr 2011 | JP |
2011166051 | Aug 2011 | JP |
100265563 | Sep 2000 | KR |
20010061849 | Jul 2001 | KR |
2001-0094894 | Nov 2001 | KR |
10-0393102 | Jul 2002 | KR |
20020058216 | Jul 2002 | KR |
20060064291 | Jun 2006 | KR |
10-2007-0058680 | Jun 2007 | KR |
20080020069 | Mar 2008 | KR |
100865125 | Oct 2008 | KR |
20080094251 | Oct 2008 | KR |
100886100 | Feb 2009 | KR |
20090033605 | Apr 2009 | KR |
20090123680 | Dec 2009 | KR |
20100033012 | Mar 2010 | KR |
10-2010-0050750 | May 2010 | KR |
20100062315 | Jun 2010 | KR |
101011863 | Jan 2011 | KR |
20120075855 | Jul 2012 | KR |
20150012285 | Feb 2015 | KR |
200539406 | Dec 2005 | TW |
200810079 | Feb 2008 | TW |
200849551 | Dec 2008 | TW |
200933760 | Aug 2009 | TW |
201023277 | Jun 2010 | TW |
201250979 | Dec 2012 | TW |
02-13256 | Feb 2002 | WO |
03-045123 | May 2003 | WO |
2004077525 | Sep 2004 | WO |
2006050691 | May 2006 | WO |
2007101251 | Sep 2007 | WO |
2008065896 | Jun 2008 | WO |
2008120755 | Oct 2008 | WO |
2009096950 | Aug 2009 | WO |
2009158098 | Dec 2009 | WO |
2010014103 | Feb 2010 | WO |
2010041630 | Apr 2010 | WO |
2010101163 | Sep 2010 | WO |
2012067177 | May 2012 | WO |
2013059181 | Apr 2013 | WO |
2013065895 | May 2013 | WO |
2014107301 | Jul 2014 | WO |
Entry |
---|
U.S. Appl. No. 13/477,532, mailed May 22, 2012. |
U.S. Office Action for U.S. Appl. No. 12/769,930, dated May 5, 2011. |
“Wafer Level Stack—WDoD”, [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages. |
Written Opinion for Appln. No. PCT/US2014/050125, dated Jul. 15, 2015. |
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D Integration,” May 2010, STATS ChipPAC Ltd. |
International Search Report and Written Opinion for Appln. No. PCT/US2013/041981, dated Nov. 13, 2013. |
International Search Report and Written Opinion for Appln. No. PCT/US2013/053437, dated Nov. 25, 2013. |
International Search Report and Written Opinion for Appln. No. PCT/US2013/075672, dated Apr. 22, 2014. |
International Search Report and Written Opinion for Appln. No. PCT/US2014/014181, dated Jun. 13, 2014. |
International Search Report and Written Opinion for Appln. No. PCT/US2014/050125, dated Feb. 4, 2015. |
International Search Report and Written Opinion for Appln. No. PCT/US2014/050148, dated Feb. 9, 2015. |
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Mar. 20, 2015. |
International Search Report and Written Opinion for Appln. No. PCT/US2015/011715, dated Apr. 20, 2015. |
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Dec. 15, 2015. |
International Search Report and Written Opinion for Appln. No. PCT/US2016/056402, dated Jan. 31, 2017. |
Japanese Office Action for Appln. No. 2013-509325, dated Oct. 18, 2013. |
Japanese Office Action for Appln. No. 2013-520776, dated Apr. 21, 2015. |
Japanese Office Action for Appln. No. 2013-520777, dated May 22, 2015. |
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France, May 21, 2010. |
Kim et al., “Application of Through Mold Via (TMV) as PoP Base Package,” 2008, 6 pages. |
Korean Office Action for Appn. 10-2011-0041843, dated Jun. 20, 2011. |
Korean Office Action for Appn. 2014-7025992, dated Feb. 5, 2015. |
Korean Search Report KR10-2010-0113271, dated Jan. 12, 2011. |
Korean Search Report KR10-2011-0041843, dated Feb. 24, 2011. |
Meiser, S., “Klein Und Komplex,” Elektronik Irl Press Ltd, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992) pp. 72-77, XP000277326, [ISR Appln. No. PCT/US2012/060402, dated Feb. 21, 2013 provides concise stmt. of relevance). |
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates and 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003. |
North Corporation, Processed intra-Layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil], NMBITM, Version 2001.6. |
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages. |
Partial International Search Report from Invitation to Pay Additional Fees for Appln. No. PCT/US2012/028738, dated Jun. 6, 2012. |
Partial International Search Report for Appln. No. PCT/US2012/060402, dated Feb. 21, 2013. |
Partial International Search Report for Appln. No. PCT/US2013/026126, dated Jun. 17, 2013. |
Partial International Search Report for Appln. No. PCT/US2013/075672, dated Mar. 12, 2014. |
Partial International Search Report for Appln. No. PCT/US2014/014181, dated May 8, 2014. |
Partial International Search Report for Appln. No. PCT/US2015/033004, dated Sep. 9, 2015. |
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages. |
Taiwan Office Action for 100125521, dated Dec. 20, 2013. |
Taiwan Office Action for 100125522, dated Jan. 27, 2014. |
Taiwan Office Action for 100141695, dated Mar. 19, 2014. |
Taiwan Office Action for 100138311, dated Jun. 27, 2014. |
Taiwan Office Action for 100140428, dated Jan. 26, 2015. |
Taiwan Office Action for 102106326, dated Sep. 8, 2015. |
Taiwan Office Action for 103103350, dated Mar. 21, 2016. |
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013. |
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages. |
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003. |
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages. |
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages. |
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages. |
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages. |
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014. |
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015. |
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015. |
EE Times Asia “3D Plus Wafer Level Stack” [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.eetasia.com/ART_8800428222_280300_NT_DEC52276.htm>, 2 pages. |
Extended European Search Report for Appln. No. EP13162975, dated Sep. 5, 2013. |
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com. |
International Search Report for Appln. No. PCT/US2005/039716, dated Apr. 5, 2006. |
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Sep. 14, 2011. |
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Jan. 17, 2012. |
International Search Report and Written Opinion for Appln. No. PCT/US2011/060551, dated Apr. 18, 2012. |
International Search Report and Written Opinion for Appln. No. PCT/US2011/044342, dated May 7, 2012. |
International Search Report and Written Opinion for Appln. No. PCT/US2011/044346, dated May 11, 2012. |
International Search Report and Written Opinion for Appln. No. PCT/US2012/060402, dated Apr. 2, 2013. |
International Search Report and Written Opinion for Appln. No. PCT/US2013/026126, dated Jul. 25, 2013. |
International Search Report and Written Opinion for Appln. No. PCT/US2013/052883, dated Oct. 21, 2013. |
Taiwan Search Report for 105128420, dated Sep. 26, 2017. |
Number | Date | Country | |
---|---|---|---|
20170069591 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14701049 | Apr 2015 | US |
Child | 15357553 | US |