Wire bond support structure and microelectronic package including wire bonds therefrom

Information

  • Patent Grant
  • 9947641
  • Patent Number
    9,947,641
  • Date Filed
    Friday, July 22, 2016
    8 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
A microelectronic package may include a substrate having first and second regions, a first surface and a second surface remote from the first surface; at least one microelectronic element overlying the first surface within the first region; electrically conductive elements at the first surface within the second region; a support structure having a third surface and a fourth surface remote from the third surface and overlying the first surface within the second region in which the third surface faces the first surface, second and third electrically conductive elements exposed respectively at the third and fourth surfaces and electrically connected to the conductive elements at the first surface in the first region; and wire bonds defining edge surfaces and having bases electrically connected through ones of the third conductive elements to respective ones of the second conductive elements and ends remote from the support structure and the bases.
Description
BACKGROUND OF THE DISCLOSURE

Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent to each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.


Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.


Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.


An interposer can be provided as an interconnection element having contacts and top and bottom surfaces thereof electrically connected with one or more packaged or unpackaged semiconductor dies at one of the top or bottom surface thereof, and electrically connected with another component at the other one of the top or bottom surfaces. The other component may in some cases be a package substrate which in turn may be electrically connected with another component which may be or may include a circuit panel.


Despite all of the above-described advances in the art, still further improvements in interconnection elements incorporating a bond via array and methods of making such interconnection elements would be desirable.


SUMMARY OF THE DISCLOSURE

In accordance with an embodiment of the disclosure, a microelectronic package may include a substrate having a first region and a second region, the substrate having a first surface and a second surface remote from the first surface; at least one microelectronic element overlying the first surface within the first region; electrically conductive elements at the first surface of the substrate within the second region; a support structure having a third surface and a fourth surface remote from the third surface and overlying the first surface within the second region in which the third surface faces the first surface, the support structure having second and third electrically conductive elements exposed respectively at the third and fourth surfaces, the second electrically conductive elements being electrically connected to the conductive elements at the first surface of the substrate in the first region; and wire bonds defining edge surfaces and having bases electrically connected through ones of the third conductive elements to respective ones of the second conductive elements and ends remote from the support structure and the bases.


In accordance with an embodiment of the disclosure, a microelectronic package may include a substrate having a first region and a second region, the substrate having a first surface and a second surface remote from the first surface; at least one microelectronic element overlying the first surface within the first region; electrically conductive elements exposed at the first surface of the substrate within the second region; wire bonds defining edge surfaces, having ends electrically connected to respective ones of the conductive elements at the first surface in the first region through respective second electrically conductive elements and having bases remote from the substrate and the ends; third electrically conductive elements respectively overlying and electrically connected with the bases of the wire bonds; and a dielectric encapsulation layer extending from at least one of the first or second surfaces and covering portions of the third electrically conductive elements and covering the wire bonds such that the wire bonds are separated from one another by the encapsulation layer, the encapsulation layer overlying at least the second region of the substrate, and, wherein unencapsulated portions of the third electrically conductive elements are defined by portions of the third electrically conductive elements that are uncovered by the encapsulation layer, the unencapsulated portions including surfaces of the third electrically conductive elements remote from the bases.


In accordance with an embodiment of the disclosure, a method of making a structure may include joining a support structure including wire bonds to a substrate, wherein the substrate has a first surface and a second surface remote from the first surface and a plurality of conductive elements at a the first surface, wherein a support structure has a third surface and a fourth surface remote from the third surface and second and third electrically conductive elements exposed respectively at the third and fourth surfaces, the second electrically conductive elements being electrically connected to the conductive elements at a first portion of the first surface of the substrate, wherein the wire bonds define edge surfaces and have bases electrically connected through ones of the third conductive elements to respective ones of the second conductive elements and ends remote from the support structure and the bases; and forming a continuous dielectric encapsulation element on the substrate and the support structure, wherein the dielectric element is formed overlying and extending from the first portion of the first surface and filling spaces between and covering portions of the wire bonds such that the covered portions of the wire bonds are separated from one another by the encapsulation element, wherein unencapsulated portions of the wire bonds are defined by portions of the wire bonds that are uncovered by the encapsulation element, the unencapsulated portions including the ends, the encapsulation element overlying at least the first portion and the fourth surface of the support structure and defining a second portion of the first surface, the second portion being other than the first portion and having an area sized to accommodate an entire area of a microelectronic element, and at least some of the conductive elements at the first surface are at the second portion and configured for connection with the microelectronic element.


In accordance with an embodiment of the disclosure, a method of making a structure may include joining wire bonds of a support structure to a substrate having a first region and a second region, wherein the substrate has a first surface and a second surface remote from the first surface and a plurality of conductive elements at the first surface, wherein a support structure has a third surface and a fourth surface remote from the third surface and second electrically conductive elements exposed at the third surface, the second electrically conductive elements being electrically connected to the conductive elements at a first portion of the first surface of the substrate by wire bonds, wherein the wire bonds define edge surfaces, have ends and have bases remote from the ends and electrically connected to the second electrically conductive elements, wherein the joining includes bonding the ends with respective ones of the conductive elements at the second region of the first surface of the substrate by flowing third electrically conductive elements through which the respective ones of the conductive elements at the first surface are electrically connected with the ends of the wire bonds; and forming a dielectric element on the substrate and removing support structure, wherein the dielectric element is formed overlying and extending from the second region of the first surface and filling spaces between and covering portions of the wire bonds such that the covered portions of the wire bonds are separated from one another by the encapsulation element, wherein unencapsulated portions of the second electrically conductive elements are defined by portions of the second electrically conductive elements that are uncovered by the encapsulation layer when the support structure is removed, the unencapsulated portions including surfaces of the second electrically conductive elements remote from the bases of the wire bonds, the dielectric element overlying at least the first region of the first surface, the first region being other than the second region and having an area sized to accommodate an entire area of at least one microelectronic element.


In accordance with an embodiment of the disclosure, a structure may include a substrate having a first surface and a second surface remote from the first surface, and conductive vias extending therein; first and second electrically conductive elements exposed respectively at the first and second surfaces; a plurality of wire bonds defining edge surfaces and having bases electrically connected through ones of the first conductive elements and ones of the conductive vias to respective ones of the second conductive elements and ends remote from the substrate and the bases, the edge surface of each wire bond being separated from the edge surface of adjacent wire bonds, wherein the substrate defines at least one opening interior of portions of the first surface having an area sized to accommodate an entire area of a microelectronic element.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1(a) is a diagrammatic sectional view of an in-process unit according to an embodiment of the disclosure.



FIG. 1(b) is a diagrammatic sectional view of a microelectronic assembly according to an embodiment of the disclosure.



FIG. 1(c) is a top plan view of the in-process unit of FIG. 1(a).



FIG. 2 is a diagrammatic sectional view of a microelectronic package including the in-process unit of FIG. 1(a) and the microelectronic assembly of FIG. 1(b) according to an embodiment of the disclosure.



FIG. 3 is a diagrammatic sectional view of an in-process unit according to another embodiment of the disclosure.



FIG. 4 is a diagrammatic sectional view of an in-process unit according to another embodiment of the disclosure



FIGS. 5-9 are diagrammatic sectional views illustrating stages in a method of fabricating a microelectronic package according to an embodiment of the disclosure.



FIG. 10 is a diagrammatic sectional of a microelectronic package including a redistribution layer at an outer surface of the package according to an embodiment of the disclosure.



FIG. 11 is a diagrammatic sectional of a microelectronic package including a thermally conductive element according to an embodiment of the disclosure.



FIG. 12 is diagrammatic sectional of an in-process unit including a plurality of thermally conductive elements according to an embodiment of the disclosure.



FIG. 13 is a diagrammatic sectional view of a microelectronic package including the in-process unit of FIG. 12 and a microelectronic assembly according to an embodiment of the disclosure.





DETAILED DESCRIPTION

A microelectronic package 10 may be fabricated by joining and electrically connecting wire bonds 14 extending from a support structure 12 with a microelectronic assembly 16 including a microelectronic element 18, such as a semiconductor chip, in accordance with an embodiment of the disclosure, as shown in FIGS. 1(a), 1(b), 1(c) and 2. The chip may embody a plurality of active devices (e.g., transistors, diodes, etc.), a plurality of passive devices (e.g., resistors, capacitors, inductors, etc.), or both active devices and passive devices. In a particular embodiment, the chip may be configured to have a predominant function as a logic chip, e.g., a programmable general or special purpose processor, a microcontroller, a field programmable gate array (“FPGA”) device, an application specific integrated circuit (“ASIC”), a digital signal processor, among others, or a predominant function other than as a logic chip, such as a memory, for example, a volatile memory storage area, e.g., dynamic random access memory (“DRAM”), static random access memory (“SRAM”), a nonvolatile memory storage array such as flash memory or magnetic random access memory (“MRAM”). As such, the embodiment of FIG. 2 is in the form of a packaged microelectronic element such as a semiconductor chip assembly that is used in computer or other electronic applications.


Referring to FIGS. 1(a) and 1(c), the support structure 12 may include a substrate 20 having a first surface and a second surface 24, and opposing edge surfaces 19 extending from the surface 22 to the surface 24. The substrate 20 typically is in the form of a dielectric element, which is substantially flat. The dielectric element may be sheet-like and may be thin. In particular embodiments, the dielectric element can include one or more layers of organic dielectric material or composite dielectric materials, such as, without limitation: polyimide, polytetrafluoroethylene (“PTFE”), epoxy, epoxy-glass, FR-4, BT resin, thermoplastic, or thermoset plastic materials.


The first surface 14 and second surface 16 may be substantially parallel to each other and spaced apart at a distance perpendicular to the surfaces 14, 16 defining the thickness of the substrate 12. The thickness of substrate 12 may be within a range of generally acceptable thicknesses for the present application. In an embodiment, the distance between the first surface 14 and the second surface 16 is between about 10-500 μm. For purposes of this discussion, the first surface 14 may be described as being positioned opposite or remote from second surface 16. Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the drawings, and is not limiting.


Electrically conductive elements 26 and 28, in the form of contacts or pads, may be arranged, respectively, at the first and second surfaces 22, 24. As used in the present description, when an electrically conductive element is described as being “at” the surface of another element having dielectric structure, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure. Thus, a conductive structure that is exposed at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric. The conductive elements 26, 28 may be flat, thin elements which are respectively aligned in a direction of the thickness of the substrate 20. The conductive elements 26, 28 may be a solid metal material, such as copper, gold, nickel, Palladium or other materials that are acceptable for such an application, including various alloys including one or more of copper, gold, nickel, palladium or combinations thereof.


At least some of conductive elements 26 may be interconnected to corresponding conductive elements 28. Such an interconnection may be completed using vias 30 formed in substrate 20 that can be lined or filled with conductive metal 33 that can be formed of the same material as conductive elements 26, 28.


A plurality of wire bonds 14 may be joined electrically with at least some of the conductive elements 26. The wire bonds 14 may be bonded at a base 32 thereof, such as a ball bond or a wedge bond, to the conductive element 26. Each of the wire bonds 14 may extend to a free end 34 remote from the base 32 of such wire bond and remote from substrate 20, and include an edge surface 36 extending from the free end 34 to the base 32. As described below, the ends 34 of wire bonds 14 are characterized as being free in that they are not electrically connected or otherwise joined to microelectronic element 18 or any other conductive features within microelectronic package 10 that are, in turn, connected to microelectronic element 18. In other words, free ends 34 are available for electrical connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature external to package 10 when the wire bonds 14 are joined to the microelectronic assembly 16. The fact that ends 34 are held in a predetermined position by, for example, an encapsulation layer in the package 10 as discussed herein (see FIG. 2) or otherwise joined or electrically connected to another conductive feature does not mean that they are not “free” as described herein, so long as any such feature is not electrically connected to microelectronic element 18. Conversely, base 32 is not free as it is either directly or indirectly electrically connected to microelectronic element 18, as described herein. The particular size and shape of base 32 can vary according to the type of material used to form wire bond 14, the desired strength of the connection between wire bond 14 and conductive element 26, or the particular process used to form wire bond 14. The wire bonds 14 may have a construction and be formed on the substrate 20 extending from the conductive elements 26 in any suitable manner, such as described in U.S. 2013/0093087, filed Feb. 24, 2012, incorporated by reference herein.


The substrate 20 having the wire bonds 14 joined with the conductive elements 26 at the surface 22 and extending therefrom, and the conductive elements 26 electrically connected to respective conductive elements 28 at the surface 24 through the vias 30, may serve as an in-process unit in the form of the support structure 12 that supports the wire bonds 14 before the wire bonds are joined with the microelectronic assembly 16, such as illustrated in FIG. 1(b) and FIG. 2 and discussed in detail below. In one embodiment, the support structure 12 may be configured in the form of a frame surrounding an open, interior region 38 having dimensions sufficient to receive components therein, such as a microelectronic element 18 as shown in FIG. 2.


Referring to FIG. 1(b), the microelectronic assembly 16 may include a substrate 40 having a first surface and a second surface 44. The substrate 40 may have a similar shape and configuration as the substrate 20, as described above. The substrate 40, unlike the substrate 20, may have terminals for further electrical interconnection with a circuit panel, e.g., a circuit board. Alternatively, the substrate 40 can be a circuit panel or circuit board. In one example thereof, the substrate 40 can be a module board of a dual-inline memory module (“DIMM”). In yet another variation, the substrate 40 can be a microelectronic element such as a semiconductor chip embodying a plurality of active devices, e.g., in form of an integrated circuit or otherwise. In one embodiment, the substrate 40 may be considered as divided into a first region 46 and a second region 48. The first region 46 lies within the second region 48 and includes a central portion of the substrate 40 and extends outwardly therefrom. The second region 48 substantially surrounds the first region 46 and extends outwardly therefrom to the outer edges of the substrate 40. In this embodiment, no specific characteristic of the substrate 40 itself physically divides the two regions; however, the regions are demarked for purposes of discussion herein with respect to treatments or features applied thereto or contained therein.


The microelectronic element 18 may be mounted to first surface 42 of the substrate 40 within first region 46. Microelectronic element 18 may be a semiconductor chip or another comparable device. In the embodiment of FIG. 1(b), the microelectronic element 18 is mounted to the first surface 42 as a “flip-chip” configuration, where contacts (not shown) on the microelectronic element 18 may be connected to conductive elements 50 at the surface 42 within the first region 46, such as by solder bumps or the like (not shown) that are positioned beneath microelectronic element 18. In an embodiment, conductive elements 50 are formed from materials similar to those from which the elements 26, 28 are formed.


The conductive elements 50 may further include pads or contacts 52 within the second region 48 at the surface 42. At least some of conductive elements 50 may be interconnected to the pads 52, and at least some of the conductive elements and pads 52 may be connected to conductive pads or terminals (not shown) at the surface 44 of the substrate 40. Such an interconnection can be completed using vias (not shown) formed in the substrate 40 that can be lined or filled with conductive metal, similarly as described above for the support structure 20. Optionally, conductive elements 50 and pads 52 can be further interconnected to one another by traces on the substrate 40.


Third conductive elements 54, such as formed of a conductive paste or solder or other conductive masses, may overlie and contact surfaces 56 of the pads 52 remote from and opposite the surface 42 of the substrate 40. In one embodiment, stenciling, dispensing, screen printing, controlled spraying, e.g., a process similar to inkjet printing, or transfer molding may be used to form conductive elements 54 on the pads 52. The elements 54 may be a bond material metal or bond metal, similar to the elements 50. The pads 52 may be arranged in a pattern within the second region so as to be aligned in a thickness direction of the assembly 16 with respective pads 28 of the support structure 12, which are arranged in a predetermined pattern, when the wire bonds 14 of the support structure 12 are joined with the assembly 16 as shown in FIG. 2, to form the microelectronic package 10. In the microelectronic package 10, corresponding pads 28 are joined and electrically connected to pads 52 through the conductive elements 56, and the wire bonds 14 hence may be electrically connected to contacts of the microelectronic element 18 and conductive elements of the assembly 16.


Microelectronic assembly 10 further may include an encapsulation layer 58 formed from a dielectric material. In the embodiment of FIG. 2, encapsulation layer 58 is formed, such as by film-assisting molding or like techniques, over the portions of first surface 42 of substrate 40 that are not otherwise covered by or occupied by microelectronic element 18, or conductive elements 50. Similarly, encapsulation layer 58 is formed over the portions of conductive elements 52 that are not otherwise covered by the conductive elements 56, uncovered portions of the conductive elements 56, uncovered portions of the conductive elements 26, 28, portions of the surfaces 22, 24 not otherwise covered by the conductive elements 26, 28, and the edges 19 of the support structure 12. Encapsulation layer 58 may also substantially cover the microelectronic element 18, the wire bonds 14, including the bases 32 and at least a portion of edge surfaces 36 thereof. A portion of wire bonds 14 may remain uncovered by encapsulation layer 58, which can also be referred to as unencapsulated portions 59, thereby making the wire bond available for electrical connection to a feature or element located outside of encapsulation layer 58. In embodiments, at least end surfaces 34 of wire bonds 14 and optionally portions of the edges surfaces 36 may remain uncovered by encapsulation layer 58, such as described in US 2013/0093087, incorporated by reference herein. In other words, encapsulation layer 58 may cover all of microelectronic package 10 from first surface and above, with the exception of a portion of the wire bonds 14, such as end surfaces 34, edge surfaces 36 or combinations of the two.


Encapsulation layer 58, desirably an integral, continuous layer, serves to protect the other elements within microelectronic package 10, particularly wire bonds 14. This allows for a more robust structure that is less likely to be damaged by testing thereof or during transportation or assembly to other microelectronic structures. Encapsulation layer 58 may be formed from a dielectric material with insulating properties such as that described in U.S. Patent App. Pub. No. 2010/0232129, which is incorporated by reference herein.


Advantageously, the microelectronic assembly 16 may be fabricated completely and independently, and the wire bonds 14 may be joined thereto using the support structure 12, which is also fabricated independently, to obtain the microelectronic package 10.


In another embodiment as shown in FIG. 3, a support structure 112 having components the same or similar to the support structure 12 as described above, may further include a redistribution layer 120 of dielectric material extending along the surface 24. Traces 122 at surface 124 of the redistribution layer 120, the surface 124 being remote from surface 22 of the support structure 12 and remote from and opposite surface 126 of the redistribution layer 120, may be electrically connected to contact pads 28. The traces 122 may extend through substrate 128 of the redistribution layer 120 to pads 130 at the surface 126. The pads 130 are arranged at the surface 126, such that similar to the support structure 12 and as shown in FIG. 1, wire bonds 14 may be electrically connected with at least some of the to the pads 52, through traces 122 connected with pads 130 which are aligned with the pads 52 at the surface 42 of the assembly 16. In one embodiment, the redistribution layer 120 may overlie only a portion of the surface 24 of the support structure 12 and the pads 28. The redistribution layer 120, in effect, serves as what is known as a fan-out layer that may allow the support structure 12 to connect to an array of different configurations of pads 52 at the surface 42 of the microelectronic assembly 16 than the array of conductive elements 26 at the surface 22 of the support structure 112 would otherwise permit.


In another embodiment as shown in FIG. 4, a support structure 212 having components the same or similar to the support structure 12 as described above, may further include a redistribution layer 220 of dielectric material extending along the surface 22. Traces 222 at surface 224 of the redistribution layer 220, the surface 224 facing the surface 22 of the support structure 212 and remote from and opposite the surface 226 of the redistribution layer 220, may be electrically connected to contact pads 225 at the surface 224. The traces 222 may extend through substrate 228 of the redistribution layer 220 to pads 230 at the surface 226. The pads 225 may be arranged at the surface 224 to contact the pads 26 at the surface 22. The pads 230 at the surface 226 may be joined to bases of wire bonds 14, similar to the connection with the pads 26 in the support structure 12 and as shown in FIG. 1(a). The redistribution layer 212, thus, may provide that the wire bonds 14 may be electrically connected with at least some of the pads 26, through traces 222 electrically connected with pads 230 and pads 225 which are aligned with the pads 26 at the surface 22 of the support structure 212. In one embodiment, the redistribution layer 220 may overlie only a portion of the surface 22 of the support structure 212 and the pads 26. The redistribution layer 220, in effect, serves as a fan-out layer that may allow the support structure 212 to connect to an array of different configurations of pads 52 at the surface 42 of the microelectronic assembly 16 than the conductive element 26 array at the surface 22 of the support structure 212 would otherwise permit.


In a further embodiment, a support structure may have a redistribution layer at a surface of the support structure that can be joined with a surface of a microelectronic assembly, such as the assembly 16, and the surface of the support structure to which the wire bonds are joined and extend therefrom.



FIGS. 5-9 show steps for manufacturing a microelectronic package 400 in accordance with another embodiment of the disclosure. Referring to FIG. 5, a first metallization layer 402, such as including copper or like conductive materials, may be deposited on a surface 404 of a release layer 406, which is attached at a surface 408, remote from the surface 404, to a temporary substrate 409 using an adhesive layer 411. The metal layer 402 may be deposited in some manner, such as by patterning of a metal foil, such as a copper foil, as suitable, to obtain conductive elements 410, in the form of pads or contacts similar to the conductive elements 26 as described above, arranged on the release layer 406.


Referring to FIG. 6, wire bonds 414 having bases 416 and free ends 418 remote from the bases, such as described above for the wire bonds 14, may be electrically connected to the conductive elements 410, for example, by joining bases 416 which are in the form of ball bonds or wedge bonds to surfaces 419 of the elements 410 which are remote from the surface 404 of the release layer 406. The structure as illustrated in FIG. 6 is an in-process unit 440 including wire bonds 414 arranged for joining to contact pads of a microelectronic assembly, such as assembly 500 as shown in FIG. 7. As the wire bond array of the unit 440 is formed separately from the microelectronic assembly 500, potential contamination of the contact surfaces of the wire bonds during manufacture of the microelectronic assembly may be avoided.


Referring to FIG. 7, the microelectronic assembly 500 may be assembled to provide for electrical connections between a microelectronic element 502 thereof and the wire bonds 414 of the in-process unit 440, when the wire bonds 414 are joined to the assembly 500 to form the package 400 as illustrated in FIGS. 8-9. The assembly 500 may include a substrate 504, which may include logic components and electrical connections thereto (not shown), having a first surface 506 and a second surface 508 remote from the first surface 506. The substrate 504 may have a similar shape and configuration as the substrate 20, as described above. In one embodiment, the substrate 504 may be considered as divided into a first region 510 and a second region 512. The first region 510 lies within the second region 512 and includes a central portion of the substrate 504 and extends outwardly therefrom. The second region 512 substantially surrounds the first region 510 and extends outwardly therefrom to the outer edges of the substrate 504.


The microelectronic element 502, which may be a semiconductor chip or another comparable device, may be mounted to the first surface 506 of the substrate 504 within first region 510 as a flip-chip configuration, similar to the microelectronic element 18 of the assembly 16. Contacts 513 on the microelectronic element 502 at a surface 515 facing the surface 506 may be electrically connected to conductive elements 514 within the first region 510 at the surface 506 by conductive masses 516, such as solder bumps, conductive paste or the like, positioned beneath the microelectronic element 502. In an embodiment, the conductive elements 514 are formed from materials similar to those from which the conductive elements of the package 10 are formed.


The conductive elements 514 may further include pads or contacts 518 within the second region 512 at the surface 506. At least some of conductive elements 514 may be interconnected to the pads 518 through electrically conductive traces (not shown), and also electrically connected with electronic components (not shown) in the substrate 504 through the conductive traces within the substrate 504. At least some of the conductive elements 514 and pads 518 may be connected to conductive pads or terminals (not shown) at the surface 508 of the substrate 504. Such an interconnection can be completed using vias (not shown) formed in the substrate 504 lined or filled with conductive metal, similarly as described above for the assembly 16. In this manner, the first microelectronic element 502 may be electrically interconnected with the at least some of the contacts or terminals at the surface 508. Optionally, conductive elements 514 and pads 518 can be further interconnected to one another by traces on the substrate 504.


Electrically conductive masses 520, such as formed of a conductive paste, solder or like materials, may overlie and contact surfaces 522 of the pads 518 remote from and opposite the surface 506 of the substrate 504. The masses 520 may be made of the same or similar material as the masses 516, and be formed on the surface 506 in any order or simultaneously with respect to formation of the masses 516, using the same or similar techniques as described above for the masses 56.


Microelectronic assembly 500 further may include an encapsulation layer 530 formed from a dielectric material. In the embodiment of FIG. 7, the encapsulation layer 530 may be formed, such as by molding, over portions of the conductive elements 514 and contacts 513 of the microelectronic assembly 502 not otherwise covered by the masses 514, portions of the masses 513 that are uncovered, and portions of the first surface 506 of substrate 504 in the region 510 that are not otherwise covered by another element. In addition, the encapsulation layer 530 may be formed over opposing side surfaces 503, 505 of the microelectronic element 502 that extend from the surface 515 to a surface 507 of the element 502 remote from and opposite the surface 515. The layer 530 may protect microelectronic element 502 to avoid electrical short circuiting between wire bonds 414 when the wire bonds 414 are joined with the assembly 500, so to help avoid malfunction or possible damage due to unintended electrical contact between a wire bond 414 and the microelectronic element 502.


In one embodiment, the conductive masses 520 may be formed over the pads 518 subsequent to formation of the dielectric layer 530 covering the microelectronic element 502 and a portion of the surface 506 at the region 510.


Referring to FIGS. 6-8, the pads 522 may be arranged in a pattern within the second region 512 so as to be aligned in a thickness direction of the assembly 500 with respective ends 418 of wire bonds 414, which are arranged in a predetermined pattern, when the in-process unit 440 is joined with the assembly 500, during a step of fabricating the package 400. In the package 400, respective pads 518 may be electrically connected with pads 410 through the masses 520 and the wire bonds 414. In one embodiment, the conductive masses 520 may be caused to reflow, after which the in-process unit 440 may joined with the assembly 500 by being joined with respective ends 418 of the wire bonds 414.


In one embodiment, when joining the in-process unit 440 with the assembly 500, spacers or stand-offs 535, such as made of dielectric material, may be provided extending from the surface 506 of the assembly 500 to a surface 433 of the release layer 406 of the in-process unit 440 facing the surface 506 of the assembly 500. The spacers 535 may avoid the free standing wire bonds 414 of the in-process unit 440 from bending or becoming deformed due to the mass of the unit 440, before dielectric material is provided between the surfaces 433 and 506 as discussed below.


Subsequent to the wire bonds 414 being joined respectively with the pads 518 through the conductive masses 520, a second encapsulation layer 550 formed from a dielectric material may be formed over uncovered portions of surfaces of components between, and uncovered portions of surfaces of, the release layer 406 and the surface 506. In the embodiment of FIG. 8, the encapsulation layer 550 may be formed over portions of the pads 518 and pads 410 not otherwise covered by the masses 520 and the bases 416 of the wire bonds 414, uncovered portions of the wire bonds 414 and the masses 520, portions of the surface 506 of substrate 504 in the region 510 or 512 that are not otherwise covered by another element, an uncovered outer surface 532 of the encapsulation layer 530, and any uncovered portions of the surfaces 503, 505 or 507 of the microelectronic element 502. The encapsulation layer 550 may define a major surface 554, which is remote from the surface 506 of the substrate 504 and is adjacent a surface 405 of the release layer 406 facing the surface 506. Surfaces 470 of the conductive elements 510, which are remote from the surfaces 419 of the elements 518 to which the bases 416 are joined, remain uncovered by the encapsulation layer 550 within the major surface 554.


Referring to FIG. 9, after the encapsulation layer 550 is formed, the release layer 406 and the temporary substrate 409 may be removed from the encapsulation layer 550, such as by applying a suitable chemical to dissolve the release layer 406 which may be an adhesive. In one embodiment, the release layer may be from a water soluble plastic material such that it can be removed by exposure to water without affecting the other components of the in-process unit or the package. In another embodiment, the release layer 406 may be removed from the encapsulation layer 550 after exposure to ultraviolet light. After removal of the release layer 406 and the temporary substrate 409, the surfaces 419 remain uncovered and, thus, available for electrical connection and being joined to other components, such as traces, pads or terminals of another microelectronic assembly or package.


In one embodiment, referring to FIG. 10, the package 400 may further include a redistribution layer 600 of dielectric material extending along the surface 554. Traces 602 at surface 604 of the redistribution layer 600, the surface 604 facing the surface 554 and being remote from surface 606 of the redistribution layer 600, may be electrically connected with the conductive elements 410 by contacting the surfaces 470 thereof. The traces 602 may extend through substrate 608 of the redistribution layer 600 to pads 612 at the surface 606. The pads 612 may be arranged at the surface 606 to provide for connection to external electrically conductive elements of another external component, such that the wire bonds 414 may electrically connect the microelectronic element 502 with the external component through the traces 602 connected with pads 602, which are aligned in a direction of the thickness of the package 400 with the surfaces 470 of the pads 410. The redistribution layer 600, in effect, serves as a fan-out layer of the interconnects of the assembly 500, which are limited to the periphery of the top surface of the assembly 500, to the full area array at a top surface 554 of the encapsulation layer 550.


In another embodiment, referring to FIG. 11, a microelectronic package 400A may have a similar construction to the package 400 as described above, except that the package 400A may further include a thermally conductive element or heat spreader 650 to remove heat generated by the microelectronic element. The thermally conductive element 650 may be disposed overlying the surface 507 of the microelectronic element 502 and respective portions 506A of the surface 506 extending away from the element 502 from locations aligned in a direction of the thickness of the package 400A with the sides 503, 505. A portion of the encapsulation layer 550 may separate the element 650 from the wire bonds 414 and any electrically conductive elements joined with and extending away from the bases of the wire bonds, so as to electrically insulate the element 650 from such any other electrically conductive component of the package. In one embodiment, a portion 580 of the encapsulation layer 550 overlying the microelectronic element 502 and the portions 506A of the surface 506 may be removed by photolithography or like techniques, to define an open recess 580. In one example, laser ablation can be used to recess the encapsulation layer 550 uniformly to form a planar recessed surface 581 within the portion 580 extending from the surface 507 of the microelectronic element 502. Techniques that can be used to remove at least portions of the encapsulation layer selectively may include “wet blasting” techniques. In wet blasting, a stream of abrasive particles carried by a liquid medium is directed towards a target to remove material from the surface of the target. The stream of particles may sometimes be combined with a chemical etchant which may facilitate or accelerate the removal of material selectively to other structure such as the conductive elements 410 which are to remain after wet blasting.


The element 650, which may include copper or like thermally conductive material, may then be deposited or patterned at the surface 554 so as to be formed in the recess 580. A thermally conductive material in the form of an adhesive or grease 582, which may be applied first on the surface 507 or a portion of the surface 652 to confront the surface 507, may attach the element 650 to the microelectronic element 502. In one embodiment, the thermally conductive material is not electrically conductive so that the element 650 is electrically isolated from the microelectronic element 502. The thermally conductive material 582 may transfer heat between the microelectronic element 502 and the element 650 so as to remove heat from the package 400A.


In another embodiment, spreader 650 may be formed during formation of a first metallization layer 402. The same metal of the layer 402, such as copper, may be patterned to form the pads 410 at a periphery of the layer 402, while a larger microelectronic element attach pad serving as spreader 650 is formed at an interior or center portion of the layer 402. Thermal paste 582 may be applied at the surface 507 of the microelectronic element 502 in the assembly 500. The in-process-unit formed from the metal layer 402 as described in this embodiment may then be joined with the assembly 500, similarly as described above.


In another embodiment, a microelectronic package 400B, as illustrated in FIG. 13, may include thermally conductive elements to remove heat from a microelectronic element and a substrate of a microelectronic assembly, such as the microelectronic assembly 500 illustrated in FIG. 7. The package 400B may be formed similarly and include similar components as described above for the package 400, except that an in-process unit 940, which includes similar components as the in-process unit 440 and further includes thermal elements 950 and 960 as shown in FIG. 12 to provide for thermal dissipation, may be used to join wire bonds 414 and the thermal elements to the assembly 500. Referring to FIG. 12, thermal element 950 may be attached to surface 404 with an adhesive in a first region 404A that lies within a second region 404B of the release layer 406 and includes a central portion of the in process-unit 940 and extends outwardly therefrom. The second region 404B substantially surrounds the region 404A and extends outwardly therefrom to a third region 404C, which substantially surrounds the region 404B and extends outwardly therefrom to the outer edges of the in-process unit 940. The wire bonds 414 and the conductive elements 410 are within the region 404B. The thermal element 950 may be mounted at a surface 951 thereof remote from a surface 952 by adhesive (not shown) to the surface 404 within first region 404A, and the thermal element 960 may be mounted by adhesive at a surface 961 remote from a surface 962 to the surface 404 within the region 404C. The in-process unit 940 may then be joined to the microelectronic assembly 500, which is in a same or similar processing state as illustrated in FIG. 7, where, similarly as in the package 400, the ends 418 of the wire bonds 414 are joined through the conductive masses 520 to the conductive elements 518. In addition, thermally conductive material 582, which may be at a portion of the surface 506 in the region 404 facing the surface 962 or on the surface 962, may attach the element 960 with the surface 506. In one embodiment, the thermally conductive element 960 may have a frame shape so as least partially surround the region 404B of surface 506 of the package 404A at which the wire bonds 414 are disposed.


After joining the wire bonds 414 and thermal elements 950 and 960 to the assembly 550, an encapsulation layer 550A from a dielectric material may be formed over uncovered portion between the release layer 406 of the in process unit 940 (not shown in FIG. 13) and the surface 506, similarly as described above. In the embodiment of FIG. 13, the encapsulation layer 550A may be formed over the same uncovered portions and elements as in the package 400 illustrated in FIG. 8. In addition, the encapsulation layer 550A may be formed on portions of surface 952 of the thermal element 950 not covered by thermal adhesive 582, and opposing surfaces 953 of the thermal element 950 extending from the surface 951 to the surface 952, and a surface 963 of the thermal element 960 extending from the surface 961 and 962 and facing the wire bonds 414. The encapsulation layer 550A may define a major surface 554A, which is remote from the surface 506 of the substrate 504. Similarly as in the package 400, after removal of the release layer 406 and temporary substrate 490, surfaces 470 of the conductive elements 510, which are remote from the surfaces 419 to which the bases 416 are joined, remain uncovered by the encapsulation layer 550 within the major surface 554, and furthermore surfaces 961 and 951 of the thermal elements 960 and 950, respectively, remain uncovered. Accordingly, heat generated during operation of the package by the microelectronic element 502 and the substrate 504 may be transferred away therefrom by the thermal elements 950 and 960 and the thermally conductive material 582, thereby avoiding damage to the package's electronic circuitry due to overheating.


The above-described embodiments and variations of the invention can be combined in ways other than as specifically described above. It is intended to cover all such variations which lie within the scope and spirit of the invention.

Claims
  • 1. A method of making a structure, comprising: joining wire bonds of a support structure to a substrate having a first region and a second region, wherein the substrate has a first surface and a second surface remote from the first surface and a plurality of conductive elements at the first surface, wherein the support structure has a third surface and a fourth surface remote from the third surface and second electrically conductive elements exposed at the third surface, the second electrically conductive elements being electrically connected to the conductive elements at a first portion of the first surface of the substrate by wire bonds, wherein the wire bonds define edge surfaces, have ends and have bases remote from the ends and electrically connected to the second electrically conductive elements, wherein the joining includes bonding the ends with respective ones of the conductive elements at the second region of the first surface of the substrate by flowing third electrically conductive elements through which the respective ones of the conductive elements at the first surface are electrically connected with the ends of the wire bonds; andforming a dielectric element on the substrate and removing the support structure, wherein the dielectric element is formed overlying and extending from the second region of the first surface and filling spaces between and covering portions of the wire bonds such that the covered portions of the wire bonds are separated from one another by the dielectric element, wherein unencapsulated portions of the second electrically conductive elements are defined by portions of the second electrically conductive elements that are uncovered by the encapsulation layer when the support structure is removed, the unencapsulated portions including surfaces of the second electrically conductive elements remote from the bases of the wire bonds, the dielectric element overlying at least the first region of the first surface, the first region being other than the second region and having an area sized to accommodate an entire area of at least one microelectronic element.
  • 2. The method of claim 1, wherein the third electrically conductive elements include at least one of solder or a conductive paste.
  • 3. The method of claim 1, wherein the encapsulation layer includes a surface remote from the substrate uncovering the unencapsulated portions of the second electrically conductive elements.
  • 4. The method of claim 1, further comprising: forming a redistribution layer extending along at least a portion of a surface of the encapsulation layer remote from the first surface of the substrate and defining the uncovered portions of the second electrically conductive elements,wherein the redistribution layer includes a redistribution substrate having a fifth surface adjacent the surface of the encapsulation layer and a sixth surface remote from the fifth surface, first electrically conductive pads at the fifth surface of the redistribution substrate aligned with respective ones of the bases of the wire bonds facing the uncovered portions of the third electrically conductive elements, and second electrically conductive pads at the fourth surface of the redistribution substrate electrically connected with the first conductive pads.
  • 5. The method of claim 1 further comprising: forming a thermally conductive layer element overlying and in thermal communication with a surface of the microelectronic element remote from the first surface of the substrate and disposed within a recess of the encapsulation layer.
  • 6. The method of claim 1 further comprising: forming thermally conductive elements overlying and in thermal communication with a surface of the microelectronic element remote from the first surface of the substrate and portions of the first surface at the second region, wherein the encapsulation layer is formed after the forming of the thermally conductive elements.
  • 7. A method for forming a microelectronic package, comprising: forming wire bonds on contacts on a temporary support structure, the wire bonds having bases attached to the contacts and having ends remote from the bases;forming a microelectronic assembly separately from the temporary support structure, the microelectronic assembly having conductive elements;joining the ends of the wire bonds to the conductive elements of the microelectronic assembly with conductive masses, wherein the joining defines a region between facing surfaces of the temporary support structure and the microelectronic assembly;forming a dielectric layer in the region on portions of the conductive masses and the wire bonds therein; andremoving the temporary support structure.
  • 8. The method according to claim 7, wherein the forming of the wire bonds on the contacts on the temporary support structure comprises: attaching a release layer to a surface of a temporary substrate; andforming a metalization layer on a surface of the release layer to provide the contacts.
  • 9. The method according to claim 8, wherein the forming of the metalization layer comprises patterning a metal foil to provide pads as the contacts.
  • 10. The method according to claim 7, wherein the forming a microelectronic assembly comprises mounting a semiconductor chip to a surface of a substrate.
  • 11. The method according to claim 10, further comprising providing spacers extending from the surface of the substrate of the microelectronic assembly.
  • 12. The method according to claim 11, wherein the dielectric layer is a first dielectric layer, the method further comprising forming a second dielectric layer between a surface of the semiconductor chip and the surface of the substrate of the microelectronic assembly.
  • 13. The method according to claim 10, further comprising providing thermal elements extending from the surface of the substrate of the microelectronic assembly.
  • 14. The method according to claim 10, wherein the conductive elements are interconnected to the semiconductor chip by traces of the substrate.
  • 15. The method according to claim 10, wherein the conductive elements are pads having contact surfaces.
  • 16. The method according to claim 15, wherein the conductive masses are disposed on the contact surfaces.
  • 17. The method according to claim 16, further comprising reflowing the conductive masses prior to the joining.
  • 18. The method according to claim 7, wherein the contacts are of a redistribution layer.
  • 19. The method according to claim 7, further comprising forming a heat spreader with formation of the contacts.
  • 20. A method for forming a microelectronic package, comprising: forming wire bonds on a temporary support structure, the wire bonds having bases and ends remote from the bases;forming a microelectronic assembly separately from the temporary support structure, the microelectronic assembly having conductive elements;joining the ends of the wire bonds to the conductive elements of the microelectronic assembly with conductive masses, wherein the joining defines a region between facing surfaces of the temporary support structure and the microelectronic assembly;forming a dielectric layer in the region on portions of the conductive masses and the wire bonds therein;removing the temporary support structure; andforming a redistribution layer interconnected to the bases.
CROSS REFERENCED TO RELATED APPLICATION(S)

This application is a divisional of U.S. patent application Ser. No. 14/291,874, filed May 30, 2014, which is hereby incorporated by reference in its entirety.

US Referenced Citations (479)
Number Name Date Kind
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 DiFrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Barreto et al. Jun 1993 A
5340771 Rostoker Aug 1994 A
5346118 Dagani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelsad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5898991 Fogel et al. May 1999 A
5912505 Itoh et al. Jun 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad et al. Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Faraci et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 DiStefano Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6407448 Chun Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6476503 Imamura et al. Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6489182 Kwon Dec 2002 B2
6489676 Taniguchi et al. Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6550666 Chew et al. Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563217 Corisis et al. May 2003 B2
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6693363 Tay et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6730544 Yang May 2004 B1
6734542 Nakatani et al. May 2004 B2
6740546 Corisis et al. May 2004 B2
6740981 Hosomi May 2004 B2
6746894 Fee et al. Jun 2004 B2
6756252 Nakanishi Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774467 Horichi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6800941 Lee et al. Oct 2004 B2
6815257 Yoon et al. Nov 2004 B2
6828665 Pu et al. Dec 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6867499 Tabrizi Mar 2005 B1
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6909181 Aiba et al. Jun 2005 B2
6917098 Yamunan Jul 2005 B1
6930256 Huemoeller et al. Aug 2005 B1
6933598 Karnezos Aug 2005 B2
6933608 Fujisawa Aug 2005 B2
6946380 Takahashi Sep 2005 B2
6951773 Ho et al. Oct 2005 B2
6962282 Manansaia Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7017794 Nosaka Mar 2006 B2
7021521 Sakurai et al. Apr 2006 B2
7045884 Standing May 2006 B2
7053477 Kamezos et al. May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071028 Koike et al. Jul 2006 B2
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7095105 Cherukuri et al. Aug 2006 B2
7112520 Lee et al. Sep 2006 B2
7115986 Moon et al. Oct 2006 B2
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176043 Haba et al. Feb 2007 B2
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7187072 Fukutomi et al. Mar 2007 B2
7190061 Lee Mar 2007 B2
7215033 Lee et al. May 2007 B2
7216794 Lange et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Babinetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7256069 Akram et al. Aug 2007 B2
7259445 Lau et al. Aug 2007 B2
7262124 Fujisawa Aug 2007 B2
7268421 Lin Sep 2007 B1
7294928 Bang et al. Nov 2007 B2
7298033 Yoo Nov 2007 B2
7323767 James et al. Jan 2008 B2
7342803 Inagaki et al. Mar 2008 B2
7345361 Mallik et al. Mar 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7390700 Gerber et al. Jun 2008 B2
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7425758 Corisis et al. Sep 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7456495 Pohi et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7495644 Beaman et al. Feb 2009 B2
7504716 Abbott Mar 2009 B2
7517733 Camacho et al. Apr 2009 B2
7527505 Murata May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7589394 Kawano Sep 2009 B2
7605479 Mohammed Oct 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7859033 Brady Jan 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682962 Hembree Mar 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7723839 Yano et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7759782 Haba et al. Jul 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7838334 Yu et al. Nov 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7901989 Haba et al. Mar 2011 B2
7902644 Huang et al. Mar 2011 B2
7902652 Seo et al. Mar 2011 B2
7919846 Hembree Apr 2011 B2
7919871 Moon et al. Apr 2011 B2
7923295 Shim, II Apr 2011 B2
7923304 Choi et al. Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7977597 Roberts et al. Jul 2011 B2
7994622 Mohammed et al. Aug 2011 B2
8004093 Oh et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8017437 Yoo et al. Sep 2011 B2
8017452 Ishihara et al. Sep 2011 B2
8018033 Moriya Sep 2011 B2
8020290 Sheats Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8053906 Chang et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8063475 Choi et al. Nov 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8106498 Shin et al. Jan 2012 B2
8330272 Haba Jan 2012 B2
8120186 Yoon Feb 2012 B2
8143710 Cho Mar 2012 B2
8169065 Kohi et al. May 2012 B2
8183682 Groenhuis et al. May 2012 B2
8183684 Nakazato May 2012 B2
8193034 Pagaila et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8225982 Pirkle et al. Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8258010 Pagaila et al. Sep 2012 B2
8258015 Chow et al. Sep 2012 B2
8264091 Cho et al. Sep 2012 B2
8269335 Osumi Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8318539 Cho et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8390108 Cho et al. Mar 2013 B2
8409922 Camacho et al. Apr 2013 B2
8435899 Miyata et al. May 2013 B2
8450839 Corisis et al. May 2013 B2
8476115 Choi et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8502387 Choi et al. Aug 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8558379 Kwon Oct 2013 B2
8580607 Haba Nov 2013 B2
8598717 Masuda Dec 2013 B2
8618646 Sasaki et al. Dec 2013 B2
8618659 Sato Dec 2013 B2
8624374 Ding et al. Jan 2014 B2
8637991 Haba Jan 2014 B2
8659164 Haba Feb 2014 B2
8680684 Haba et al. Mar 2014 B2
8685792 Chow et al. Apr 2014 B2
8697492 Haba et al. Apr 2014 B2
8728865 Haba et al. May 2014 B2
8770260 Kim et al. Jul 2014 B2
8796846 Lin et al. Aug 2014 B2
8836136 Chau et al. Sep 2014 B2
8846521 Sugizaki Sep 2014 B2
8853558 Gupta et al. Oct 2014 B2
8878353 Haba et al. Nov 2014 B2
8912651 Yu et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8970049 Kamezos Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
9082763 Yu et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105552 Yu et al. Aug 2015 B2
9123664 Haba Sep 2015 B2
9136254 Zhao Sep 2015 B2
9142586 Wang et al. Sep 2015 B2
9171790 Yu Oct 2015 B2
9349706 Co et al. May 2016 B2
9412714 Co Aug 2016 B2
9418940 Hoshino et al. Aug 2016 B2
9496152 Cho et al. Nov 2016 B2
9502390 Caskey et al. Nov 2016 B2
20020014004 Beaman et al. Feb 2002 A1
20020171152 Miyazaki Nov 2002 A1
20030002770 Chakravorty et al. Jan 2003 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030094666 Clayton et al. May 2003 A1
20030162378 Mikami Aug 2003 A1
20040262728 Sterrett et al. Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050062492 Beaman et al. Apr 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20060255449 Lee et al. Nov 2006 A1
20070190747 Humpston et al. Aug 2007 A1
20070241437 Kagaya et al. Oct 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080129319 Beaman et al. Jun 2008 A1
20080129320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080284001 Mori et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080315385 Gerber et al. Dec 2008 A1
20090014876 Youn et al. Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090189288 Beaman et al. Jul 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090302445 Pagaila et al. Dec 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20100078795 Dekker et al. Apr 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110237027 Kim et al. Sep 2011 A1
20120015481 Kim Jan 2012 A1
20120018885 Lee et al. Jan 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20120280386 Sato et al. Nov 2012 A1
20130049221 Han et al. Feb 2013 A1
20130049222 Camacho Mar 2013 A1
20140124949 Paek et al. May 2014 A1
Foreign Referenced Citations (100)
Number Date Country
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
10189959 Sep 2010 CN
102324418 Jan 2012 CN
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10-135220 May 1998 JP
H10-135221 May 1998 JP
1118364 Jan 1999 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11-260856 Sep 1999 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003174124 Jun 2003 JP
2003307897 Oct 2003 JP
2004031754 Jan 2004 JP
2004-172157 Jun 2004 JP
2004281514 Oct 2004 JP
2004-319892 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2003377641 Jun 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2003426392 Jul 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2006344917 Dec 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009-508324 Feb 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
100265563 Sep 2000 KR
2001-0094894 Nov 2001 KR
10-0393102 Jul 2002 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20150012285 Feb 2015 KR
200810079 Feb 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
2002013256 Feb 2002 WO
2003045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007101251 Sep 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (46)
Entry
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003.
“EE Times Asia,” [online—Retrieved Aug. 5, 2010], <http://www.eetasia.com/ART_8800428222_480300_nt_dec52276.HTM>, 4 pages.
Extended European Search Report, EP13162975, dated Sep. 5, 2013.
International Search Report, PCT/US2005/039716, dated Apr. 5, 2006.
International Search Report, PCT/US2011/024143, dated Sep. 14, 2011.
International Search Report and Written Opinion, PCT/US2011/024143, dated Jan. 17, 2012.
International Search Report and Written Opinion, PCT/US2011/060551, dated Apr. 18, 2012.
International Search Report and Written Opinion, PCT/US2011/044342, dated May 7, 2012.
International Search Report and Written Opinion, PCT/US2011/044346, dated May 11, 2012.
International Search Report and Written Opinion, PCT/US2012/060402, dated Apr. 2, 2013.
International Search Report and Written Opinion, PCT/US2013/026126, dated Jul. 25, 2013.
International Search Report and Written Opinion, PCT/US2013/052883, dated Oct. 21, 2011.
International Search Report and Written Opinion, PCT/US2013/041981, dated Nov. 13, 2013.
International Search Report and Written Opinion, PCT/US2013/053437, dated Nov. 25, 2013.
International Search Report and Written Opinion, PCT/US2013/075672, dated Apr. 22, 2014.
International Search Report and Written Opinion, PCT/US2015/011715, dated Apr. 20, 2015.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France, May 21, 2010.
Kim et al., “Application of Through Mold Via (TMV) as PoP Base Package,” 2008, 6 pages.
Korean Search Report, KR10-2011-0113271, dated Jan. 12, 2011.
Korean Search Report, KR10-2011-0041843, dated Feb. 24, 2011.
Meiser, S., “Klein Und Komplex,” Elektronik, IRL Press Ltd., DE, vol. 41, No. 1, Jan. 7, 1992, (Jan. 7, 1992), pp. 72-77, XP000277326. (Intl. Search Report for Appln. No. PCT/US2012/060402 dated Feb. 21, 2013 provides concise stmt of relevance).
Neo-Manhattan Tehnology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates & 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003.
North Corporation, “Processed Intra-Layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil],” NMBITM, Version 2001.6.
Office Action from Chinese Application No. 201180022247.8, dated Sep. 16, 2014.
Office Action from Chinese Application No. 201180022247.8, dated Apr. 14, 2015.
Office Action from Chinese Application No. 201310264264.3, dated May 12, 2015.
Office Action from Japanese Application No. 2013-509325, dated Oct. 18, 2013.
Office Action from Japanese Application No. 2013-520776, dated Apr. 21, 2015.
Office Action from Japanese Application No. 2013-520777, dated May 22, 2015.
Office Action from Korean Application No. 10-2011-0041843, dated Jun. 20, 2011.
Office Action from Korean Application No. 2014-7025992, dated Feb. 5, 2015.
Office Action from U.S. Appl. No. 12/769,930, dated May 5, 2011.
Office Action from Taiwan Application No. 100125521, dated Dec. 20, 2013.
Office Action from Taiwan Application No. 100125522, dated Jan. 27, 2014.
Office Action from Taiwan Application No. 100141695, dated Mar. 19, 2014.
Office Action from Taiwan Application No. 101138311, dated Jun. 27, 2014.
Office Action from Taiwan Application No. 100140428, dated Jan. 26, 2015.
Office Action from Taiwan Application No. 102106326, dated Sep. 18, 2015.
Partial International Search Report from Invitations to Pay Additional Fees, PCT/US2012-028738, dated Jun. 6, 2012.
Partial International Search Report, PCT/US2012-060402, dated Feb. 21, 2013.
Partial International Search Report, PCT/US2013/026126, dated Jun. 17, 2013.
Partial International Search Report, PCT/US2013/075672, dated Mar. 12, 2014.
Partial International Search Report, PCT/US2015/033004, dated Sep. 9, 2015.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
“Wafer Level Stack—WDoD,” [online—Retrieved Aug. 5, 2010] <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D Integration,” STATS ChipPac Ltd., May 2010.
Related Publications (1)
Number Date Country
20160329308 A1 Nov 2016 US
Divisions (1)
Number Date Country
Parent 14291874 May 2014 US
Child 15217084 US