This disclosure relates generally to integrated circuits, and more particularly to micro-bump joints with improved strength and method of forming the same.
In the manufacturing of wafers, integrated circuit devices such as transistors are first formed at the surfaces of semiconductor substrates. Interconnect structures are then formed over the integrated circuit devices. Bumps are formed on the surfaces of the semiconductor wafers, and are electrically coupled to integrated circuit devices. The semiconductor wafers are sawed into semiconductor chips, also commonly known as dies.
In the packaging of the semiconductor chips, the semiconductor chips are often bonded with other chips or package substrates using flip-chip bonding. Solders are used to join the bumps in the semiconductor chips, or join the bumps in the semiconductor chips to the bond pads in the package substrates. When two semiconductor chips (or one semiconductor chip and a package substrate) are bonded, a solder bump may be pre-formed on one of the bumps or bond pads. A re-flow is then performed so that the solder bump joins the semiconductor chips. Conventional bumps were typically large, and hence micro-bumps were developed. Micro-bump flip-chip interconnections allow for high bonding densities.
In accordance with one aspect of the embodiment, a device includes a work piece including a metal bump; and a dielectric layer having a portion directly over the metal bump. The metal bump and a surface of the portion of the dielectric layer form an interface. A metal finish is formed over and contacting the metal bump. The metal finish extends from over the dielectric layer to below the interface.
Other embodiments are also disclosed.
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the embodiments, and do not limit the scope of the disclosure.
A novel bond structure is provided in accordance with an embodiment. The variations of the embodiment are discussed. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
Referring to
Metal pad 28 is formed over interconnect structure 12. Metal pad 28 may comprise aluminum (Al), copper (Cu), silver (Ag), gold (Au), nickel (Ni), tungsten (W), alloys thereof, and/or multi-layers thereof. Metal pad 28 may be electrically coupled to semiconductor devices 14, for example, through the underlying interconnection structure 12. Passivation layer 30 may be formed to cover edge portions of metal pad 28. In an exemplary embodiment, passivation layer 30 is formed of polyimide or other known dielectric materials.
Under bump metallurgy (UBM) 32 is formed on, and electrically connected to, metal pad 28. UBM 32 may include a copper layer and a titanium layer (not shown). Copper bump 34 is formed on UBM 32. In an embodiment, copper bump 34 is formed by plating. An exemplary plating process includes forming a blanket UBM layer (not shown, wherein UBM 32 is a part of the UBM layer), forming a mask (not shown) on the UBM layer, patterning the mask to form an opening, plating copper bump 34 into the opening, and removing the mask and the portion of the UBM layer previously covered by the mask. Copper bump 34 may be formed of substantially pure copper or copper alloys.
Metal finish 36 may be formed on copper bump 34, for example, by plating. Metal finish 36 may comprise different materials and layers, and may be used to prevent the oxidation and the diffusion of copper bump 34 to/from solder cap 40. In an embodiment, metal finish 36 is formed of nickel, although other metals may be added. Alternatively, metal finish 36 may be formed of electroless nickel electroless palladium immersion gold (ENEPIG), which includes a nickel layer, a palladium layer on the nickel layer, and a gold layer on the palladium layer. Metal finish 36 may be limited in the region directly over copper bump 34, and is not formed on sidewalls of copper bump 34. Alternatively, metal finish 36 is also formed on the sidewalls of copper bump 34. In subsequent discussion, UBM 32, copper bump 34, and metal finish 36 in combination are referred to as metal bump 38. Solder cap 40 may be formed on metal bump 38, and may comprise a lead-free solder material containing, for example, SnAg, SnAgCu, and the like, although solder cap 40 may also be formed of an eutectic solder material containing, for example, lead (Pb) and tin (Sn).
Metal bump 110 comprises metal layer 112, which may include nickel layer 112A and copper seed layer 112B, for example. Metal layer 112 may act as an UBM and a barrier layer for the formation of metal layer 114. In an exemplary embodiment, the thickness of nickel layer 112A may be between about 200 Å to about 1000 Å, and the thickness of copper seed layer 112B may be between about 1 kÅ to about 5 kÅ. One skilled in the art will realize, however, that the dimensions recited throughout the description are merely examples, and will change if different formation technologies are used. Metal layer 114 is formed over metal layer 112, for example, by electro or electroless plating. Metal layer 114 may be formed of copper (for example, pure or substantially pure copper), aluminum, silver, and alloys thereof. Thickness T of metal layer 114 may be between about 1 μm to about 10 μm. Throughout the description, metal layer 112 and metal layer 114 in combination are referred to micro-bump 110. In a top view, micro-bump 110 may appear to have a rectangular, square, or a circular shape. A horizontal dimension W1 (which may be a length, a width, or a diameter, depending on the shape of micro-bump 110) may be between about 5 μm and about 30 μm, although different dimensional may be used.
After the formation of micro-bump 110, dielectric layer 118 is blanket formed to cover the surface of work piece 100. The formation methods of dielectric layer 118 may include chemical vapor deposition (CVD) methods such as plasma enhanced CVD (PECVD) or other applicable methods. The thickness of dielectric layer 118 may be between about 0.1 μm and about 1 μm. Dielectric layer 118 may be a conformal layer, wherein the thickness of sidewall portions on the sidewalls of micro-bump 110 is close to the thickness of horizontal portions. Further, dielectric layer 118 comprises a first portion 118A directly over micro-bump 110, a sidewall portion 118B, and a second portion 118C not directly over micro-bump 110, wherein portions 118A and 118C are connected to opposite ends of sidewall portion 118B. A patterning is then performed to form opening 120 in dielectric layer 118, with micro-bump 110 being exposed through opening 120. Dielectric layer 118 may be formed of silicon nitride, although other dielectric materials such as silicon oxide, silicon oxynitride, or the like, may be used. After the formation of opening 120, the top surface of micro-bump 110 includes two portions, center portion 110A that is exposed through opening 120, and edge portion 110B that is covered by dielectric layer 118, wherein portion 110A is substantially level with portion 110B. Edge portion 110B of the top surface of micro-bump 110 is also the interface between the bottom surface of dielectric portion 118A and the top surface of micro-bump 110. Accordingly, the interface is also denoted as 110B.
Referring to
Next, as shown in
Work piece 2 and work piece 100 may be bonded through flip-chip bonding, as shown in
In the embodiments shown in
After the etching, mask 140 is removed. The resulting structure is shown in
Referring to
In the embodiments, by extending metal finish 132 below the interface between dielectric layer 118 and micro-bump 110 (metal layer 114), the strength of the resulting bonding is significantly improved. Experiments have been performed to study conventional bond structures in which the interfaces between the metal finishes and the micro-bumps are level with the interface between the dielectric layers and the micro-bumps. In the experiments, two chips bonded through the conventional micro-bumps were pulled away from each other. The experiment results revealed that 80 percent of the bond broke at the interfaces between the metal finishes and the micro-bumps. Accordingly, with the embodiments, the conventional weak points are strengthened, and the reliability of the bond structures is improved.
Although the embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.
This application is a continuation of U.S. patent application Ser. No. 14/521,233, entitled “Strength of Micro-Bump Joints” filed on Oct. 22, 2014, which is a continuation of U.S. patent application Ser. No. 12/789,696 (now U.S. Pat. No. 8,901,736, Issued Dec. 2, 2014), entitled “Strength of Micro-Bump Joints” filed on May 28, 2010, which applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4811082 | Jacobs et al. | Mar 1989 | A |
4990462 | Sliwa, Jr. | Feb 1991 | A |
5075253 | Sliwa, Jr. | Dec 1991 | A |
5108950 | Wakabayashi et al. | Apr 1992 | A |
5380681 | Hsu | Jan 1995 | A |
5481133 | Hsu | Jan 1996 | A |
5545589 | Tomura et al. | Aug 1996 | A |
5686762 | Langley | Nov 1997 | A |
6002177 | Gaynes et al. | Dec 1999 | A |
6180505 | Uzoh | Jan 2001 | B1 |
6187678 | Gaynes et al. | Feb 2001 | B1 |
6229216 | Ma et al. | May 2001 | B1 |
6236115 | Gaynes et al. | May 2001 | B1 |
6271059 | Bertin et al. | Aug 2001 | B1 |
6279815 | Correia et al. | Aug 2001 | B1 |
6287950 | Wu et al. | Sep 2001 | B1 |
6355501 | Fung et al. | Mar 2002 | B1 |
6426556 | Lin | Jul 2002 | B1 |
6434016 | Zeng et al. | Aug 2002 | B2 |
6448661 | Kim et al. | Sep 2002 | B1 |
6461895 | Liang et al. | Oct 2002 | B1 |
6562653 | Ma et al. | May 2003 | B1 |
6570248 | Ahn et al. | May 2003 | B1 |
6600222 | Levardo | Jul 2003 | B1 |
6607938 | Kwon et al. | Aug 2003 | B2 |
6661085 | Kellar et al. | Dec 2003 | B2 |
6762076 | Kim et al. | Jul 2004 | B2 |
6790748 | Kim et al. | Sep 2004 | B2 |
6806578 | Howell et al. | Oct 2004 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908565 | Kim et al. | Jun 2005 | B2 |
6908785 | Kim | Jun 2005 | B2 |
6924551 | Rumer et al. | Aug 2005 | B2 |
6943067 | Greenlaw | Sep 2005 | B2 |
6946384 | Kloster et al. | Sep 2005 | B2 |
6975016 | Kellar et al. | Dec 2005 | B2 |
7037804 | Kellar et al. | May 2006 | B2 |
7056807 | Kellar et al. | Jun 2006 | B2 |
7087538 | Staines et al. | Aug 2006 | B2 |
7151009 | Kim et al. | Dec 2006 | B2 |
7157787 | Kim et al. | Jan 2007 | B2 |
7215033 | Lee et al. | May 2007 | B2 |
7276799 | Lee et al. | Oct 2007 | B2 |
7279795 | Periaman et al. | Oct 2007 | B2 |
7307005 | Kobrinsky et al. | Dec 2007 | B2 |
7317256 | Williams et al. | Jan 2008 | B2 |
7320928 | Kloster et al. | Jan 2008 | B2 |
7345350 | Sinha | Mar 2008 | B2 |
7402442 | Condorelli et al. | Jul 2008 | B2 |
7402515 | Arana et al. | Jul 2008 | B2 |
7410884 | Ramanathan et al. | Aug 2008 | B2 |
7432592 | Shi et al. | Oct 2008 | B2 |
7494845 | Hwang et al. | Feb 2009 | B2 |
7528494 | Furukawa et al. | May 2009 | B2 |
7531890 | Kim | May 2009 | B2 |
7557597 | Anderson et al. | Jul 2009 | B2 |
7560372 | Tomimori et al. | Jul 2009 | B2 |
7576435 | Chao | Aug 2009 | B2 |
7651886 | Wang | Jan 2010 | B2 |
7735713 | Kataoka et al. | Jun 2010 | B2 |
7834450 | Kang | Nov 2010 | B2 |
7923836 | Farooq et al. | Apr 2011 | B2 |
7952206 | Bachman et al. | May 2011 | B2 |
7973406 | Pendse | Jul 2011 | B2 |
8072070 | Lee et al. | Dec 2011 | B2 |
20020056741 | Shieh et al. | May 2002 | A1 |
20020102804 | Nagase et al. | Aug 2002 | A1 |
20020105076 | Lin | Aug 2002 | A1 |
20020125569 | Fukuda et al. | Sep 2002 | A1 |
20030001286 | Kajiwara et al. | Jan 2003 | A1 |
20030183033 | Peveler | Oct 2003 | A1 |
20030222353 | Yamada | Dec 2003 | A1 |
20040070042 | Lee et al. | Apr 2004 | A1 |
20040070079 | Huang et al. | Apr 2004 | A1 |
20050043872 | Heyn | Feb 2005 | A1 |
20050275422 | Luh et al. | Dec 2005 | A1 |
20060035453 | Kim | Feb 2006 | A1 |
20060125095 | Yuzawa | Jun 2006 | A1 |
20070020906 | Chiu et al. | Jan 2007 | A1 |
20070026631 | Lin et al. | Feb 2007 | A1 |
20070075243 | Kneeburg et al. | Apr 2007 | A1 |
20070087544 | Chang et al. | Apr 2007 | A1 |
20080284016 | Hang et al. | Nov 2008 | A1 |
20090032942 | Choi | Feb 2009 | A1 |
20090232336 | Pahl | Sep 2009 | A1 |
20100230810 | Kang et al. | Sep 2010 | A1 |
20100276803 | Higuchi | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
2008040326 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20160104685 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14521233 | Oct 2014 | US |
Child | 14976927 | US | |
Parent | 12789696 | May 2010 | US |
Child | 14521233 | US |