The invention relates to electronic packaging in general, and more particularly, to a partially patterned lead frame and a method for making and using the same. The partially patterned lead frame is stronger and more stable than conventional lead frames. The sturdiness of the partially patterned lead frame improves the process of manufacturing lead frame packages and enhances the overall reliability of the end product. The lead frame also offers a high degree of flexibility for device integration and increased functionality.
In making electronic packages that use lead frames, there are several process steps that subject the lead frames to mechanical and thermal stresses. The finer geometries of current lead frames and the ever-increasing integration of circuits on semiconductor chips have resulted in processing that places even greater stress on the lead frames. Finely configured lead frames often resemble very delicate embroidery, or stencil-like metal structures that tend to bend, break, disfigure and deform easily. (See
Conventional lead frames generally lack structural rigidity. The finger-like portions of lead frames can be quite flimsy and difficult to hold in position. This leads to handling flaws, damage and distortion in assembly processes and complicated wire bonding situations. Consequently, bond parameters have to be optimized to compensate for lead frame bouncing during the bonding process. A failure to optimize the bonding parameters to compensate for the mechanical instability of the lead frame can result in poor bond adhesion, and hence poor quality and poor reliability of the bond.
The large metal plate portions of a typical lead frame extend from a central portion, known as the chip receiving area, also known as a chip-pad. The chip is usually attached to the receiving area with the backside down, and the front side is positioned face up with terminals located peripherally on the perimeter of the chip, or over the surface of the chip in the form of an array. The receiving area typically has dimensions of about 5 mm×5 mm, and the leads extending outwardly from the chip-pad area have typical dimensions of about 10 mm long×1 mm wide×0.2 mm thick. The lead frame is typically held down by a vacuum chuck and mechanical clamps. The chuck and clamps must be refitted for lead frames of different sizes and shapes. The present invention alleviates this problem.
The prior art has not shown any lead frames that can withstand the stresses encountered in current semiconductor packaging processes and that can be manufactures in a cost effective manner. The present invention achieves this objective by providing a partially patterned lead frame that not only improves the manufacturability of the lead frame itself, but also improves the integrity and reliability of the electronic packages that are formed therefrom. The present invention also addresses a continued need for increased device complexity, such as high I/O counts, multi-chip design, system in package, and flexibility on routing, that conventional lead frames are unable to offer.
One aspect of the invention provides for a method of forming electronic packages. The method comprises forming a block of partially etched lead frames having selectively pre-plated top and bottom surfaces. The lead frames comprise webbed portions and are separated from each other by street portions.
A first set of chips is attached to the chip pad areas on the lead frames. For convenience, the area of a lead frame which supports an integrated chip (IC), or to which an IC chip is affixed, will be referred to a chip pad area or a chip receiving area, whether this area is for wire-bonded chips, flip-chips, or any other kind of chips known in the art. These first set of chips may be back-bonded to chip receiving areas using an adhesive, resin, or other material which is compatible with both components. For example, the back-bonding may be accomplished using an epoxy resin, non-conductive epoxy, tape, or solder paste. Other suitable materials are known in the art.
A second set of chips is then die-stacked onto the tops of the corresponding first set of chips. After the second set of chips is die-stacked onto the tops of the first set of chips, one or more further sets of chips may be die-stacked onto the top of the second set of chip, thereby providing packages composed of two, three, or more chips stacked on top of each other. In certain embodiments of the invention, not all of the chips from the first set of chips may have chips die-stacked on top of them. In such embodiments, the lead frame will have one or more single (unstacked) chips and one or more sets of die-stacked chips.
Electrical connections are formed between the terminals of each of the first chips and the electrical lead portions of the corresponding lead frame. The electrical lead portions are electrically separated from the chip pad area. Electrical connections are also formed to the second or additional set of chips. The electrical connections may be formed all at the same time after the chips have been die-stacked on the lead frame. Alternatively, the first set of chips may be attached and electrically connected to the lead frames, and subsequently the second or additional sets of chips may be die-stacked to the tops of the first set of chips and electrically connected to the lead frame.
After the chips are die-stacked onto the lead frames and electrically connected to the lead frames, the lead frames are then encapsulated by applying an encapsulant material over the lead frames and the street portions separating the lead frames. After encapsulation, the bottom surface of the lead frames is back-patterned to remove webbed portions and the street portions. Back-patterning can be performed by any convenient method, such as by etching.
If a pre-plating material is applied to the bottom of the lead frame, for example, functioning as a photoresist, this pre-plating material may be removed after back-patterning.
Isolated patterns can be formed on the bottom of the lead frames after back-patterning. These isolated patterns can be plated or coated with a material to protect its surface. Examples of suitable materials include electroless Ni/immersion Au, immersion Sn, an organic surface protectant (OSP), and other solderable materials. This finishing or plating step facilitates provides additional stability to the back surface of the chip package and can allow for improved connectivity to the computer board, socket, or other location where the chip package is placed.
The encapsulant material disposed over the street portions is singulated to form individual chip scale packages for use in various applications in the semiconductor industry. Singulation may be accomplished using any convenient means available for separating the individual chip packages. In one embodiment, singulation may be performed by slicing the encapsulant using a saw or abrasive water jet.
Another aspect of the present invention provides for a lead frame comprising a chip pad area and leads and having alterations. Alterations may be considered as elements located on structural features of the lead frame which provide for an increased surface area when compared to lead frames which do not have alterations. The alterations facilitate retention of an encapsulant material which is applied over the lead frames prior to singulation. The alterations may be of any form, such as notches on the electrical leads of the lead frame.
Each of the second set of chips may be the same size or a different size as the corresponding first chip. In addition, the first set of chips attached to the lead frames do not need to be all identical, and thus these first set of chips may include larger and smaller chips. Typically, the largest chip will be attached to the chip pad area and increasingly smaller chips will be die-stacked on top of this chip. In alternative embodiments, the largest chip will not be attached to the chip pad area but will be in the middle or on top of the die-stack chips. The die-stacked chips may also all be the same size.
The second and additional set of chips may be stacked and bonded to corresponding first chips using any convenient means known in the art to bond chips to one another. For example, the chips may be stacked using a non-conductive epoxy or an insulating material such as a tape to prevent interference or electrical movement between or among the chips. In another embodiment, the second set of chips may be affixed to corresponding first chips using a tape, conductive adhesive or a conductive epoxy.
The first set of chips is electrically connected to the lead frame using known techniques. For example, the chips can be connected to the lead frame using wire-bonding techniques or using flip-chip technology.
The set of first chips may be electrically connected to the lead frame before the second set of chips are die-stacked onto the first chip. Alternatively, the first set of chips may be electrically connected to the lead frame after the second or additional set of chips are die-stacked onto the corresponding first set of chips. The step of forming electrical connections may be accomplished by connecting the terminals on the chip to the end portions of the electrical leads extending to the chip area. The electrical connections may be formed using any convenient or appropriate technique. For example, if the chips are wire-bonded chips, the connections can be formed using wire-bonding techniques such as thermasonic bonding. Flip-chips will generally be electrically connected to the lead frame using flip-chip techniques. Combinations of wire-bonding and flip-chip techniques are also within the scope of the invention. When flip-chips are attached directly to the lead frame, the corresponding leads may be plated or unplated.
The second set of chip receives power to perform calculations or other functions. This second set of chips may be electrically connected to corresponding first chips, to the lead frame, or to both. The connections which are made between the various chips and the lead frame will depend upon the specific situation at hand and particular electronic package formed.
The type of chips used in the invention will also depend upon the specific circumstances. For example, the chips may be wire-bonded chips, flip-chips, or any other kind of chips which are suitable for use in electronic chip packages. In one embodiment, the first set of chips comprises flip-chips or wire-bonded chips or both, and the second and any subsequent sets of chips comprise wire-bonded chips. Any of the chips may also comprise a semiconductor device.
The electronic packages formed by the die-stacked chips in accordance with the invention will have a particular height after encapsulation and singulation. In order to reduce the height of the electronic packages, the chip pad area may be recessed to reduce the height of the obtained package. That is, the chip pad on the lead frame area may be formed with a lowered interior so as to allow chips to fit inside this area and thereby provide chips with a lowered height.
The electronic packages formed according to the disclosed method are strong and stable. To provide for further reliability of the package during stress conditions and manufacturing, alterations may be used to increase the retention of the encapsulant. The alterations may be located along the periphery of the chip pad, leads, or both.
Selective pre-plating of the bottom lead frame may be used to define the bottom features of the lead frame. This selective pre-plating may provide a similar pattern on both top and bottom surfaces of the lead frame. The selective pre-plating may be accomplished using any convenient materials. In one embodiment, a NiPdAu or silver alloy is used to pre-plate the lead frame.
After encapsulation, the die-stacked chips will be surrounded by a solid encapsulant to prevent movement or weakening of the electrical connections between the chips and the lead frame. The entire set of stacked chips may be covered by an encapsulant. Alternatively, a portion of the topmost chip, such as a back or top surface, may remain exposed after encapsulation. For example, the surface of the topmost chip may be exposed through the encapsulant and the remaining portion of the chip embedded in the encapsulant. In this manner, the amount of encapsulant may be reduced without dramatically affecting the stability of the final package. In addition, if the top or back surface of the top-most chip contains identifying information, the package can be formed such that this information is not covered by the encapsulant and is readily viewable by the user.
As previously stated, the chips and die-stacked chips are electrically attached to the lead frame in order to provide power to the chips. In addition to chips such as flip-chips or wire-bonded chips, other elements may be connected to the lead frame. These additional elements may be structural elements which provide an increased support or stability to the package. The additional elements may also be electrical elements which support the functions of the chips or the chip packages. Examples of such additional elements are passive components, isolated pads, power rings, ground rings, and routings. Any combination of these and other structural or electrical elements in the chip package is within the scope of the present invention.
The encapsulant material may be any kind of substance which can be applied to the die-stacked chips and which solidifies to form a durable solid. In one embodiment, the encapsulant may be a liquid resin which surrounds the chips and hardens to yield the chips. An example of an encapsulant is an epoxy resin. The encapsulant will normally be a non-conducting substance to prevent electrical signals inside the encapsulated material from crossing from one chip to another.
When the additional elements comprise electrical elements, these elements may be electrically connected directly or indirectly to the lead frame. These additional elements may also be electrically connected to one or more chips in the package, and such embodiments will depend upon the specific chip scale package being formed.
The lead frames may be formed using production techniques known in the art. For example, the lead frames may be formed using chemical etching, stamping, or coining techniques.
The lead frames may be coated or partly coated with a film of a material, such as an electrical conducting material. The film can provide for an increased electrical throughput between the lead frame and the chips which are attached to the lead frame compared to a lead frame without such a film. In one embodiment, the film is formed from copper or a copper alloy. The thickness of the film is generally not critical, although the film will have to be sufficiently thick to have mechanical stability. In one embodiment, the thickness of the film is greater than or equal to about 0.05 mm.
Another aspect of the invention provides for a lead frame comprising a chip pad area and leads. The lead frame has alterations which provide for an increased retention of an encapsulant material covering the lead frame. Chips will usually be attached to the chip pad area and electrically connected to the leads.
The alterations may be structurally designed and configured to provide an increased surface area for retention of an encapsulant. The alterations may take any type of form which provides for an increased retention of the encapsulant. For example, the alterations may be in the shape of a cavity, depression, or notch which is located on the lead frame or on a portion of the lead frame. The alterations may also be present on the leads to which electrical connections to the chips are formed.
The alterations may be on any portion of the lead frames. For example, the alterations may be on the periphery of the chip pad area or on the leads, or on both. The alterations may also be in the form of a roughening of the periphery of the chip pad area, the lead, or both.
In addition to providing alterations for improved retention of the encapsulant, the surface of the lead frame may be roughened to provide for an increased surface area. The roughened surface will facilitate adhesion of the encapsulant to the surface of the lead frame.
A clip can optionally be used in place of wire bonding to increase the flow of power to the chip and thereby improve the performance of the chip.
It will be apparent from the above that the partially etched lead frame provides unity of structure and the attendant rigidity and strength to withstand the stress and strain of various manufacturing processes in the making of electronic packages. It is because of these unique mechanical properties that a partially etched lead frame package can also withstand connection to the next level of packaging, which previously has not been possible with conventional plastic packages.
a is a diagram of a conventional lead frame with leads and a chip-pad area, according to prior art.
b is a diagram of the conventional lead frame of
a is a cross-sectional view of a wire-bonded and leaded (with leads) near-chip scale package (CSP), showing connection to the next level of packaging by means of leads, according to prior art.
b is a cross-sectional view of a wire-bonded and leadless (with no leads) near-CSP, showing connection to the next level of packaging by means of solder bumps or balls, according to prior art.
c is a cross-sectional view of a flip-chip and leaded near-CSP, showing connection to the next level of packaging by means of leads, according to prior art.
d is a cross-sectional view of a flip-chip and leadless near-CSP, showing connection to the next level of packaging by means of solder balls, according to prior art.
a is a top view of a stencil-like lead frame showing the wire-bonded connection of a back-bonded chip to the leads of the lead frame, according to prior art.
b is a top view of a stencil-like lead frame showing the connection of a flipped chip to the leads of the lead frame through a solder reflow process, according to prior art.
a is a top view showing a matrix of partially patterned lead frames according to the present invention.
b and 6c show progressively enlarged top views of the lead frames in the matrix shown in 6a.
a is a cross-sectional view of the partially patterned metal film of
b is an enlarged view of the joint between the chip and the chip pad showing the attachment comprising epoxy or solder, according to the present invention.
a is a top view of one of the singulated packages of
b is a cross-sectional view of the area between the chip-pad and one of the contacts showing the use of a “lip” on the vertical surfaces that come into contact with the molding material in order to provide anchoring and prevent delamination, according to the present invention.
c is a cross-sectional view of the area between the chip-pad and one of the contacts showing the use of different shapes of cavities on the vertical surfaces that come into contact with the molding material in order to provide anchoring and prevent delamination, according to the present invention.
a-13f are diagrams of various cavities that can be used to provide anchoring means for molding material on the vertical surfaces shown in
a is a diagram showing the top, side and bottom views of a package with a peripheral I/O configuration, according to the present invention.
b is a diagram showing the top, side and bottom views of a package with an array configuration of I/O pads, according to the present invention.
a is a top view of one of the singulated packages of
b is an enlarged cross-sectional view of the area between the flip chip and the connection to the next level packaging showing the two end connections of a lead, according to the present invention.
a and 24b show a cross-sectional view and a bottom view of two near chip size partially patterned packages that have been singulated, and then provided with ball grid array connectors for connection to the next level of packaging to form an ELGA-type package, according to the present invention.
a and 25b show another embodiment of the present invention where packages of
a and 26b are perspective and cross-sectional views of an embodiment of the invention wherein a plurality of chips are die-stacked to form a semiconductor package.
a-27c are perspective and cross-sectional views of an embodiment of the invention wherein the chip pad is recessed to allow for improved die stacking and for a reduction in the package height.
a and 28b show perspective views of lead frames having a recessed chip pad area and die-stacked chips according to an embodiment of the present invention.
a-29c show perspective views of lead frames having alterations according to an aspect of the present invention in the form of chip pad locking features.
a-30d illustrate top and side views of several types of electrical leads having alterations according to several embodiments of an aspect of the present invention.
a-31b illustrate top and side views of electrical leads according to another embodiment of the present invention, in which the surfaces of the lead frames or leads have been roughened.
a-32e illustrate perspective views of several types of alterations provided on electrical leads in accordance with another aspect of the present invention.
a-33b illustrate an aspect of embodiment of the invention wherein a clip is used in place of wire bonding to improve the power capability of the chip.
The present invention will now be described with reference to the Figures, wherein like numeral refer to like elements.
More specifically,
Forming a lead frame typically involves cutting through the strip of metal, like cutting a stencil, and then working with very fine finger-like leads. In order to hold down such a delicate structure in place, a vacuum chuck may be used. Conventional vacuum chucks, however, typically are not adapted to provide suction for such delicate devices and the lead frame must usually be clamped down peripherally. Any rigging used for this purpose must be refitted from one type and size of lead frame to another. The instant invention, however, alleviates this refitting step. Because the bottom surface of the partially patterned lead frame is solid and continuous, a conventional vacuum chuck can easily hold the lead frame in place during processing. Furthermore, one size strip of metal that can accommodate the various industrial lead frames can be used universally in the manufacture of the lead frames. The subsequent process steps of chip attach and wire bonding can be accomplished with much less stress and strain on the lead frame to be formed. Lead frames with much finer geometries can easily be fabricated because the leads are held together by the web-like structures and are not separated from each other until the very final step.
Forming of the various patterns on the lead frame can be accomplished in a number of ways. One approach can be stamping/coining the pattern into the metal. Other approaches may include chemical or electrochemical milling and electrical discharge machining (EDM). On the other hand, photolithographic patterning, which is a mainstay of semiconductor manufacturing, is preferred. In the present invention, metal strip (100) shown in
At the next step, the pre-plated front side (110) is photolithographically patterned to form areas corresponding to chip-pad (115) and electrical contacts (113) surrounding the chip-pad area. An electrical contact (113) can be characterized as the end portion of a lead that is connected to the chip-pad area (115) through a first region of intermediate recessed portions that forms the web-like structure. These intermediate recessed web-like portions are removed at a later time when metal film (100) is etched from the back so that the end portions and the chip-pad portions will be isolated from each other. The areas comprising a chip-pad (115) and the surrounding contacts (113) are sometimes referred to as chip sites. A plurality of chip sites can be formed on a continuous roll of copper sheet sprocketed to a spool to easily automate the forming of lead frames comprising one or more chip sites.
The pattern shown for the two chip sites illustrated in
As shown in
In one embodiment, the partial patterning can vary from 25% to 90% of the thickness of the film. The partial patterning, however, may be virtually any percentage of the thickness of the film and the amount of partial etching can be determined by considering various factors affecting the manufacturability parameters, including flexibility, rigidity, and thermal thickness (or thermal conductance). The lateral dimensions of lead contact areas (113) and chip-pad areas (115) can be determined based on the degree of miniaturization desired for given chip sizes and wire bonds or other connecting media that may be used for interlevel or intralevel connections in a given package or between packages at the next level of packaging. It is especially noted that manufacturability concerns for fine features and dimensional stability of the lead frame are of lesser significance now by virtue of the web-like structure of the finger-like leads.
As shown in
In
As shown in
As a final step, the encapsulant (170) over the street portions (136) between the lead frames is singulated to form two individual packages as shown in
A top view of a singulated ELP is shown in
The solderable pre-plated surface (120) on the underside of the package if not stripped can now be used for several purposes. First, direct external access to the back (125) of chip-pad (140) provides an additional heat path for cooling. Second, contacts (123) within the footprint of the near-chip size package (CSP) make it possible to mount tightly spaced packages at the next level of packaging, and hence increase performance for the same area.
Another aspect of the present invention provides a means for lessening the possibility of delamination between the molding material and the surfaces to which it should adhere. This is accomplished by half-etching the edges around the chip-pad and the contact areas to form a ledge or a “lip”, such as referenced by numeral (105) in
The method of the present invention may be used to form a wide variety of packages, such as an array type of a lead frame for an electronic package. A top view of an array type package (400) is shown in
The second embodiment shown in the drawings 16-24b discloses a method of forming a partially patterned VFQFP-N type lead frame, which is especially suitable for mass producing FC electronic packages. The lead frame made to accommodate the flip-chip will, hereafter, is referred to as FCL to distinguish it from conventional lead frames. This is because, unlike conventional lead frames, FCLs are sturdier and much more adaptable to automated manufacturing lines, as described below.
FCLs are also web-like structures in contrast to the conventional all-purpose punched through, stencil-like lead frames. The front side of a web-like FCL has recessed sections, including partially patterned leads, while the back side is solid and flat. This provides mechanical rigidity to perform without distortion or deformation during the manufacturing processes. After the completion of the chip attach and hermetic sealing of the package, the backside is etched to isolate the lead contacts from each other. Removing the pre-plating, or re-plating with other solderable material, can be accomplished by electroless or immersion processes. Subsequently, the resultant encapsulated package is singulated without having to cut into any additional metal. Thus, it will be apparent that FCLs with much finer geometries, such as with VFQFP-N packages, can easily be fabricated inasmuch as the leads are held together by the web-like, or webbed structures and not totally separated from each other until the very final step of singulation.
Like the already disclosed partially patterned lead frame of the first embodiment, the FCL of the second embodiment is also formed from a sheet of metal, preferably copper film as shown in
The pattern shown for the two chip sites illustrated in
Flip-chip (FC) (130′) is then flipped over so that terminals (135′) on the front side of the chip rest on one end portion of the leads as shown in
After chip joining, the chips, along with the partially patterned leads on the front side of the original metal film, are then hermetically encapsulated in a molding material, for example, by a resin, as shown in
Leads (113′) can now readily be isolated from one another by patterning through the back side of the package in alignment with the pattern that was partially etched from the front side at the beginning of the process. The back etching continues until the molding material is reached. This is shown in
As a final step, the package of
The same techniques as disclosed before may be used to prevent the delamination of the encapsulant from the surfaces of the FCL, namely, by incorporating the irregularly shaped cavities of
The method of the invention may be used to form a wide variety of packages, such as an array type of a partially patterned lead frame where an area array of solder bumps can be chip joined simultaneously on to the lead frame with the chip flipped over, similar to the method disclosed herein with a peripheral set of solder bumps. Also, an array of partially patterned lead frames themselves can be formed simultaneously, and then FC joined also simultaneously, followed by singulation of the array into a multiplicity of separate VFQFP-N type packages. Also, each resulting CSP can then be provided with solder bumps, pads, or other electrical connections underneath the package for array type joining on to the next level of packaging to form an etched lead frame package with ball grid array, or ELGA-type package shown in
Because the partial etching method of forming any one of the ELP, ELPF or ELGA packages provides robustness during the various manufacturing steps, other forms of electronic packages are also possible. One such form comprises wire bonding of the lead frame packages of the present invention to the next level of packaging. Ultrasonic bonding techniques cannot be used on conventional lead frames because of the fragility of the leads themselves, unless they are attached to a solid base to provide stability and strength. In contrast, the partially etched lead frames are stable by virtue of their webbed structure. The un-etched and pre-plated bottom surface (120′) of partially patterned lead frame provides solid bonding areas, or posts, to effectively apply ultrasonic energy for aluminum wire wedge bonding on blocks or strips of ELPs, or ELPFs. In accordance with another aspect of the present invention, therefore, aluminum wires (121) are ultrasonically attached to the bottom surface of a block or strip of partially etched lead frames as shown in
The invention promotes a number of additional advantages in the manufacturing process for electronic packages. For example, after the back etching and prior to singulation, a block of packages will inherently be ready for strip testing while the packages are still arranged in the block. This provides a significant advantage as compared to handling the packages as individual units. Strip testing the packages while they are arranged in a block improves the reliability of the test.
The invention also enables a manufacturer to produce packages having dual or triple rows of staggered leads that can multiply I/O capacity of a given package. The flat continuous bottom surface of the lead frames enables the use of universal assembly equipment, which does not need refitting for each application, and which is completely flexible for automation. For example, processing between 2×2 through 12×12 package blocks does not require any mechanical change. In addition, the invention easily facilitates the construction of packages having a “stand off” for each foot (for example, at 2 mils between the bottom of the molded body at the surface of the foot). The stand off provides additional advantages when the chip packages are to be connected to the next level of packaging, such as a board.
a and 26b illustrate an embodiment of an aspect of the invention wherein two chips (505, 510) are die-stacked on a chip pad (515) of a lead frame (500). The lower chip (505), that is, the chip affixed to the chip pad receiving area (515), is electrically connected to the inner set (520) of electrical leads surrounding the chip pad area (515). The upper chip (510), the chip affixed to the top of the lower chip (505), is electrically connected to the outermost set (525) of leads surrounding the chip pad area (515). The chips are encapsulated with an encapsulant (530) which protects the chips and wires from damage. Although the chips (505, 510) in
a-27c illustrate an embodiment of the invention wherein the chip pad area (550) is recessed to allow for improved die stacking and for a reduction in the package height. In
Although in
a and 28b are perspective views of lead frames embodying several aspects of the invention.
a shows the lead frame (600) as having three chip pad areas (610, 615, 620) for wire-bonded chips and one chip pad area (605) for a flip-chip. Two of the three chip pad areas (615, 620) for wire-bonded chips are not recessed and the remaining chip pad area (610) is recessed. These chip pad areas (610, 615, 620) comprise alterations (645) in the form of locking areas shaped as a “T” on the outer perimeter of the chip pad area. These locking features provide additional surface area for an encapsulant (650) to adhere, and offer a means for retaining the encapsulant without sideways movement of the encapsulant.
In
In
The lead frame (600) in
The chips can be die-stacked one by one on the chip pad area and then electrically connected to the lead frame before the next chip is die-stacked and electrically connected. Alternatively, all the chips can be die-stacked and then the entire die-stacked set of chips can be electrically connected to the lead frame. In another embodiment, the chips may be die-stacked separately from the chip pad area, and then the entire die-stacked set of chips may be attached and electrically connected to the lead frame.
a-29c show embodiments of various types of alterations which may be applied to the chip pad area. In
Although the alterations or locking features (705, 710, 715) in
In
a-31b show top and side view of several embodiments of electrical leads having alterations.
a-32f illustrate perspective views of the embodiments of
a-33b illustrate cross-sectional views of an aspect of a further embodiment of the invention wherein a clip (925) is used in place of wire bonding to provide power to the chip scale package (935) and thereby improve its power capability.
In
The top surface of the uppermost chips (907 and 910) are electrically connected one or more electrical leads (917) on the lead frame (900) by a clip (925). The clips (925) are bonded to the tops of the chips after the chips have been attached to the lead frames. Any convenient means can be used to bond the clips to the chips. In the examples illustrated in
The stacked chips are subsequently covered by an encapsulant and after singulation yield chip scale packages (935) in accordance with the present invention.
While the invention has been particularly shown and described with reference to particular embodiments, those skilled in the art will understand that various changes in form and details may be made without departing from the spirit and scope of the invention.
This application is a continuation-in-part of both (a) application Ser. No. 11/197,944, filed Aug. 4, 2005 now U.S. Pat. No. 7,622,332, which is a continuation of application Ser. No. 10/916,093, filed Aug. 10, 2004 now U.S. Pat. No. 7,129,116; and (b) the aforementioned application Ser. No. 10/916,093. application Ser. No. 10/916,093 is a continuation of application Ser. No. 10/134,882, filed Apr. 29, 2002, now U.S. Pat. No. 6,812,552. All of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4038488 | Lin | Jul 1977 | A |
4368168 | Slepcevic | Jan 1983 | A |
5656550 | Tsuji et al. | Aug 1997 | A |
5703407 | Hori | Dec 1997 | A |
5767574 | Kim et al. | Jun 1998 | A |
5847458 | Nakamura et al. | Dec 1998 | A |
5896651 | Hawthorne | Apr 1999 | A |
5936303 | Nishi | Aug 1999 | A |
6001671 | Fjelstad | Dec 1999 | A |
6054755 | Takamichi et al. | Apr 2000 | A |
6093584 | Fjelstad | Jul 2000 | A |
6143981 | Glenn | Nov 2000 | A |
6232650 | Fujisawa et al. | May 2001 | B1 |
6238952 | Lin | May 2001 | B1 |
6291274 | Oida et al. | Sep 2001 | B1 |
6294830 | Fjelstad | Sep 2001 | B1 |
6316727 | Liu | Nov 2001 | B1 |
6348399 | Lin | Feb 2002 | B1 |
6355199 | Briar et al. | Mar 2002 | B1 |
6373140 | Onodera et al. | Apr 2002 | B1 |
6451627 | Coffman | Sep 2002 | B1 |
6498099 | McLellan et al. | Dec 2002 | B1 |
6534849 | Gang | Mar 2003 | B1 |
6545364 | Sakamoto et al. | Apr 2003 | B2 |
6576539 | Lin | Jun 2003 | B1 |
6585905 | Fan et al. | Jul 2003 | B1 |
6635957 | Kwan et al. | Oct 2003 | B2 |
6657293 | Fumihira | Dec 2003 | B1 |
6798121 | Nakatani et al. | Sep 2004 | B2 |
6821821 | Fjelstad | Nov 2004 | B2 |
6856235 | Fjelstad | Feb 2005 | B2 |
6872661 | Kwan et al. | Mar 2005 | B1 |
6906423 | Asakawa et al. | Jun 2005 | B1 |
6933594 | McLellan et al. | Aug 2005 | B2 |
6989294 | McLellan et al. | Jan 2006 | B1 |
6995460 | McLellan et al. | Feb 2006 | B1 |
7144800 | Mostafazadeh et al. | Dec 2006 | B2 |
7342303 | Berry et al. | Mar 2008 | B1 |
7451539 | Morris et al. | Nov 2008 | B2 |
7576415 | Cha et al. | Aug 2009 | B2 |
20010020546 | Eldridge et al. | Sep 2001 | A1 |
20010045625 | Sakamoto et al. | Nov 2001 | A1 |
20010045640 | Oida et al. | Nov 2001 | A1 |
20010050370 | Sakamoto et al. | Dec 2001 | A1 |
20010052600 | Sakamoto et al. | Dec 2001 | A1 |
20020027010 | Glenn | Mar 2002 | A1 |
20020041019 | Gang | Apr 2002 | A1 |
20020053745 | Lin | May 2002 | A1 |
20020089053 | Liu et al. | Jul 2002 | A1 |
20020105069 | Kawahara et al. | Aug 2002 | A1 |
20020159242 | Nakatani et al. | Oct 2002 | A1 |
20030127711 | Kawai | Jul 2003 | A1 |
20030170922 | Sakamoto et al. | Sep 2003 | A1 |
20090230523 | Chien et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
977251 | Feb 2000 | EP |
1162669 | Dec 2001 | EP |
1189272 | Mar 2002 | EP |
61-237458 | Oct 1986 | JP |
11-150213 | Jun 1999 | JP |
11-186294 | Jul 1999 | JP |
11-195742 | Oct 1999 | JP |
2000-150760 | May 2000 | JP |
2000-188309 | Jul 2000 | JP |
2001-127199 | May 2001 | JP |
2002-76245 | Mar 2002 | JP |
2002-76246 | Mar 2002 | JP |
2001-0008926 | Feb 2001 | KR |
464053 | Nov 2001 | TW |
WO-03-103038 | Dec 2003 | WO |
WO-2004-064144 | Jul 2004 | WO |
WO-2004-030030 | Aug 2004 | WO |
WO-2008-057770 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20070052076 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10916093 | Aug 2004 | US |
Child | 11197944 | US | |
Parent | 10134882 | Apr 2002 | US |
Child | 10916093 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11197944 | Aug 2005 | US |
Child | 11553664 | US |