Not Applicable
Not Applicable
1. Field of the Invention
The present invention relates generally to integrated circuit chip package technology and, more particularly, to a semiconductor package wherein the conductive wires used to facilitate the electrical connection of a semiconductor die of the package to a leadframe or substrate thereof are exposed in a package body of the package to allow a mating semiconductor device or package to be mounted and electrically connected thereto.
2. Description of the Related Art
Semiconductor dies are conventionally enclosed in plastic packages that provide protection from hostile environments and enable electrical interconnection between the semiconductor die and an underlying substrate such as a printed circuit board (PCB) or motherboard. The elements of such a package include a metal leadframe, an integrated circuit or semiconductor die, bonding material to attach the semiconductor die to the leadframe, bond wires which electrically connect pads on the semiconductor die to individual leads of the leadframe, and a hard plastic encapsulant material which covers the other components and forms the exterior of the semiconductor package commonly referred to as the package body.
The leadframe is the central supporting structure of such a package, and is typically fabricated by chemically etching or mechanically stamping a metal strip. A portion of the leadframe is internal to the package, i.e., completely surrounded by the plastic encapsulant or package body. Portions of the leads of the leadframe extend externally from the package body or are partially exposed therein for use in electrically connecting the package to another component. In certain semiconductor packages, a portion of the die attach pad or die pad of the leadframe also remains exposed within the package body. In other semiconductor packages, the metal leadframe is substituted with a laminate substrate to which the semiconductor die is mounted and which includes pads or terminals for mimicking the functionality of the leads and establishing electrical communication with another device.
Once the semiconductor dies have been produced and encapsulated in the semiconductor packages described above, they may be used in a wide variety of electronic devices. The variety of electronic devices utilizing semiconductor packages has grown dramatically in recent years. These devices include cellular phones, portable computers, etc. Each of these devices typically includes a printed circuit board on which a significant number of such semiconductor packages are secured to provide multiple electronic functions. These electronic devices are typically manufactured in reduced sizes and at reduced costs, which results in increased consumer demand. Accordingly, not only are semiconductor dies highly integrated, but also semiconductor packages are highly miniaturized with an increased level of package mounting density.
Even though semiconductor packages have been miniaturized, space on a printed circuit board remains limited and precious. Thus, there is a need to find a semiconductor package design to maximize the number of semiconductor packages that may be integrated into an electronic device, yet minimize the space needed to accommodate these semiconductor packages. One method to minimize space needed to accommodate the semiconductor packages is to stack the semiconductor packages on top of each other, or to stack individual semiconductor devices or other devices within the package body of the semiconductor package. In general, three-dimensional stacked packaging is a field of system-in-package (SIP) technology where semiconductor die or package stacking is used to provide a higher volume density in the thickness direction for the stacked packaging. Such three-dimensional stacked packaging enables integration of a variety of devices, including flash memories, SRAM's, DRAM's, basebands, mixed signal devices, analog devices and logic devices, and is thus essential in reducing the size, weight and price of portable electronic/communication devices. A typical three-dimensional package stack is a stack of semiconductor packages, each of which includes electrode terminals on upper and lower surfaces thereof, in the direction of thickness. In one exemplary configuration, a substrate extends a predetermined length outside an encapsulant or package body, with solder balls being formed on upper and lower surfaces of the substrate, and the overlying semiconductor package being electrically interconnected to the underlying semiconductor package by the solder balls. In some cases, an interposer having interconnection patterns is interposed between the overlying and underlying semiconductor packages to form a stack of such semiconductor packages.
However, this and other existing stacking solutions possess certain deficiencies which detract from their overall utility. In this regard, the use of the extended substrate or the additional interposer often results in electrical paths of increased length in the package stack, thus deteriorating the electrical performance of the semiconductor packages therein. Additionally, when attempting to integrate a large number of devices such as memory chips into a vertical stack within a single semiconductor package, test yield loss typically becomes higher as more such devices are assembled in a single package. As a result, it becomes desirable to use multiple packages which each contain a subset of the memory chips or devices to be integrated vertically. Further, many semiconductor package stacking approaches result in excessive increases in the area and/or thickness or the package stack, and thus are not suitable for portable electronic/communication devices that are becoming gradually lighter in weight and smaller in size and thickness. The present invention addresses these and other deficiencies, and provides a three-dimensional packaging solution wherein the individual semiconductor package(s) of the stack is/are uniquely structured to have a reduced profile, thus effectively minimizing the overall stack height of a package stack assembled to include the same. These, as well as other features and attributes of the present invention will be discussed in more detail below.
In accordance with the present invention, there is provided multiple embodiments of a reduced profile stackable semiconductor package. The semiconductor package comprises a substrate having at least one semiconductor die attached thereto. The semiconductor die is also electrically connected to the substrate by a plurality of conductive wires. A package body defining opposed top and bottom surfaces and a side surface at least partially encapsulates the substrate, the conductive wires and the semiconductor die. The package body is formed such that at least portions of the conductive wires are exposed in the top surface thereof. The package body may include a groove formed in the top surface thereof, with at least portions of the conductive wires being exposed in the groove. In this instance, conductive material layers may be disposed within the groove and electrically connected to the exposed portions of respective ones of the conductive wires, with solder pads further bring electrically connected to respective ones of the conductive material layers and at least partially residing within the groove.
In accordance with another aspect of the present invention, there is provided various semiconductor devices or package stacks wherein two or more of the reduced profile semiconductor packages of the present invention are stacked upon and electrically connected to each other through the use of solder balls or an intervening interposer. A package stack may also be provided in accordance with the present invention comprising a reduced profile semiconductor package having a semiconductor device such as a semiconductor die stacked thereon and electrically connected thereto.
The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
Referring now to the drawings wherein the showings are for purposes of illustrating various embodiments of the present invention only, and not for purposes of limiting the same,
In addition to the die pad 121, the leadframe 120 of the semiconductor package 100 comprises a plurality of leads 122. The leads 122 are preferably segregated into multiple sets, each of which extends along and in spaced relation to a respective one of the peripheral edge segments defined by the die pad 121. As a result, in the semiconductor package 100, it is contemplated that the leads 122 will substantially circumvent the die pad 121. Like the die pad 121, the leads 122 of the leadframe 120 each define a generally planar first (top) surface and an opposed, generally planar second (bottom) surface. In the leadframe 120, the top surfaces of the die pad 121 and leads 122 preferably extend in generally co-planar relation to each other. Similarly, the bottom surfaces of the die pad 121 and leads 122 preferably extend in generally co-planar relation to each other. The bottom surfaces of the die pad 121 and leads 122 of the leadframe 120 may be mounted and electrically connected to an external device as will be described in more detail below. Also, the bottom surfaces of the leads 122 may be mounted and electrically connected to the solder pads of another semiconductor device for package stacking as will also be described in more detail below. Examples of suitable materials for the leadframe 120 include, but are not limited to, copper, copper alloy, nickel iron alloys, and equivalents thereof.
In addition to the leadframe 120, the semiconductor package 100 comprises a semiconductor die 110 which is mounted to the top surface of the die pad 121 of the leadframe 120. More particularly, the semiconductor die 110 defines a generally planar first (top) surface, and an opposed, generally planar (bottom) surface. The bottom surface of the semiconductor die 110 is attached to the top surface of the die pad 121 through the use of an adhesive layer 112 in the manner shown in
In the semiconductor package 100, the semiconductor die 110 is electrically connected to the leadframe 120 through the use of a plurality of conductive wires 130, 131. More particularly, as seen in
In the semiconductor package 100, the semiconductor die 110, and portions of the leadframe 120 and conductive wires 130, 131 are covered by an encapsulant material which ultimately hardens into a package body 140 of the semiconductor package 100. Examples of suitable materials for the encapsulant material used to form the package body 140 include, but are not limited to, epoxy molding compounds, no-flow underfill materials and equivalents thereof. The package body 140 defines a generally planar first (top) surface, an opposed, generally planar second (bottom) surface, and generally planar side surfaces which extend generally perpendicularly between the top and bottom surfaces thereof. In the semiconductor package 100, the bottom surfaces of the die pad 121 and leads 122 of the leadframe 120 are preferably exposed in and extend in substantially flush relation to the bottom surface of the package body 140. Additionally, as seen in
As seen in
In the semiconductor package 100, the groove 142 is partially lined with a plurality of conductive material layers 150, each of which is thinly formed in a prescribed region of the groove 142 as needed to facilitate the electrical connection thereof to a respective one of the conductive wires 130, and in particular to the exposed upper region 132 thereof. As seen in
It is contemplated that the conductive material used to form each of the layers 150 will comprise a conductive material that is highly adhesive to the encapsulant material used to form the package body 140. For example, the layers 150 may be formed of a material selected from conductive inks, conductive paste and equivalents thereof. In this regard, the layers 150 are adapted to serve as mediators of the package body 140 and the solder pads 160 since the solder pads 160 are not directly adhered to the package body 140. Another role for the layers 150 is to increase the electrical contact area between the wires 130 (which include the upper regions 132) and the solder pads 160 since the area of the upper regions 132 of the wires 130 exposed in the groove 142 is very small. That is, the layers 150 contribute to better interconnection between the upper regions 132 of the wires 130 and the solder pads 160. It is also contemplated that the solder pads 160 will be melt-adhered to respective ones of the layers 150 formed in the groove 142 to facilitate the electrical connection thereof to the conductive wires 130. As indicated above, the solder pads 160 protrude slightly upward from the top surface of the package body 140 to facilitate package stacking as described below. If desired, however, the solder pads 160 may lie in the same plane as the top surface of the package body 140, or may not protrude from the top surface thereof. The solder pads 160 may be made of a material selected from Sn—Pb, Sn—Ag—Cu, Sn—Ag—Bi—In, and equivalents thereof, though the present invention is not intended to be limited to any specific materials for the solder pads 160.
Referring now to
Referring now to
In the nest step S2 of the fabrication process for the semiconductor package 100, the semiconductor die 110 is attached to the top surface of the die pad 121 of the leadframe 120 through the use of the aforementioned adhesive layer 112 in the manner shown in
In the next step of the fabrication process for the semiconductor package 100, the semiconductor die 110, and in particular the contacts or terminals thereof, are electrically connected to the leads 122 alone or in combination with the die pad 121 through the use of the conductive wires 130 alone or in combination with the conductive wires 131, in the manner shown in
Referring now to
In the next step S5 of the fabrication process for the semiconductor package 100, a laser beam or a chemical etching solution is used to form the groove 142 at a predetermined depth into the generally planar top surface of the package body 140 as shown in
Referring now to
Referring now to
Referring now to
The sole distinction between the semiconductor packages 200, 100 lies in the substitution of the leadframe 120 described above in relation to the semiconductor package 100 with a substrate 220 in the semiconductor package 200. The substrate 220 preferably has a generally quadrangular configuration. The substrate 220 can be selected from common circuit boards (e.g., rigid circuit boards and flexible circuit boards) and equivalents thereof. In this regard, the present invention is not intended to be limited to any particular type of substrate 220. By way of example and not by way of limitation, the substrate 220 may include an insulating layer 221 having opposed, generally planar top and bottom surfaces. Disposed on the top surface is an electrically conductive pattern 222, while disposed on the bottom surface is an electrically conductive pattern 223. The conductive patterns 222, 223 are electrically interconnected to each other in a prescribed pattern or arrangement through the use of conductive vias 224 which extend through the insulation layer 221 in a direction generally perpendicularly between the top and bottom surfaces thereof. The conductive patterns 222, 223 may each be partially covered with a solder mask (not shown) for protection from the ambient environment.
The semiconductor package 200 further comprises a plurality of solder balls 260 which are electrically connected to prescribed portions of the conductive pattern 223 of the substrate 220. The solder balls 260 may be used to mount the semiconductor package 200 to an external device, or to solder pads of another semiconductor package or semiconductor device for package stacking, as will be described in more detail below. The solder balls 260 may be made of a material selected from Sn—Pb, Sn—Ag—Cu, Sn—Ag—Bi—In, and equivalents thereof, though the present invention is not intended to be limited to any particular material for the solder balls 260. In the semiconductor device 200, the groove 142 formed in the package body 140 is preferably positioned opposite to or above the solder balls 260.
Referring now to
Referring now to
The semiconductor device 401 further comprises a semiconductor die 410 which is mounted and electrically connected to the substrate 420. More particularly, the semiconductor die 410 defines opposed, generally planar top and bottom surfaces, with the bottom surface of the semiconductor die 410 being attached to the top surface of the substrate 420 through the use of an adhesive layer 412. Disposed on the top surface of the semiconductor die 410 is a plurality of conductive contacts or terminals which are electrically connected to prescribed portions of the conductive pattern 422 of the substrate 420 through the use of conductive wires 430. At least portions of the semiconductor die 410, substrate 420, and conductive wires 430 are covered by an encapsulant material which ultimately hardens into a package body 440 of the semiconductor device 401. A plurality of solder balls 450, which are identically configured to the above-described solder balls 260, are electrically connected to prescribed portions of the conductive pattern 423 of the substrate 420. As shown in
Referring now to
In the semiconductor device 500, prescribed portions of the conductive pattern 504 are abutted against and electrically connected to the solder pads 160 of the underlying semiconductor package 100 in the manner shown in
Referring now to
Referring now to
In the semiconductor package 700, the semiconductor die 110, and portions of the leadframe 120 and conductive wires 130, 131 are covered by an encapsulant material which ultimately hardens into a package body 740 of the semiconductor package 700. Examples of suitable materials for the encapsulant material used to form the package body 740 include, but are not limited to, epoxy molding compounds, no-flow underfill materials and equivalents thereof. The package body 740 defines a generally planar first (top) surface, an opposed, generally planar second (bottom) surface, and generally planar side surfaces which extend generally perpendicularly between the top and bottom surfaces thereof. In the semiconductor package 700, the bottom surfaces of the die pad 121 and leads 122 of the leadframe 120 are preferably exposed in and extend in substantially flush relation to the bottom surface of the package body 740. Additionally, as seen in
As seen in
Referring now to
Referring now to
In the nest step S2 of the fabrication process for the semiconductor package 700, the semiconductor die 110 is attached to the top surface of the die pad 121 of the leadframe 120 through the use of the aforementioned adhesive layer 112 in the manner shown in
In the next step of the fabrication process for the semiconductor package 700, the semiconductor die 110, and in particular the contacts or terminals thereof, are electrically connected to the leads 122 alone or in combination with the die pad 121 through the use of the conductive wires 130 alone or in combination with the conductive wires 131, in the manner shown in
Referring now to
In the next step S5 of the fabrication process for the semiconductor package 700 as shown in
Referring now to
Referring now to
The sole distinction between the semiconductor packages 800, 700 lies in the substitution of the leadframe 120 described above in relation to the semiconductor package 700 with the above-described substrate 220 in the semiconductor package 800. The structural attributes of the substrate 220 are described with particularly in relation to the aforementioned semiconductor package 200.
The semiconductor package 800 further comprises a plurality of the above-described solder balls 260 which are electrically connected to prescribed portions of the conductive pattern 223 of the substrate 220. The solder balls 260 may be used to mount the semiconductor package 800 to an external device, or to solder pads of another semiconductor package or semiconductor device for package stacking, as will be described in more detail below. In the semiconductor device 800, the layers 750 are preferably positioned opposite to or above respective ones of the solder balls 260 for package stacking.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In the semiconductor package 1300, the semiconductor die 110 is electrically connected to the conductive pads 1320 through the use of a plurality of conductive wires 130. More particularly, as seen in
In the semiconductor package 1300, the semiconductor die 110, and portions of the conductive pads 1320 and conductive wires 130 are covered by an encapsulant material which ultimately hardens into a package body 140 of the semiconductor package 1300. Examples of suitable materials for the encapsulant material used to form the package body 140 include, but are not limited to, epoxy molding compounds, no-flow underfill materials and equivalents thereof. The package body 140 defines a generally planar first (top) surface, an opposed, generally planar second (bottom) surface, and generally planar side surfaces which extend generally perpendicularly between the top and bottom surfaces thereof. In the semiconductor package 1300, the bottom surfaces of the semiconductor die 110 and the conductive pads 1320 are preferably exposed in and extend in substantially flush relation to the bottom surface of the package body 140.
As seen in
In the semiconductor package 1300, each groove 142 is partially lined with a plurality of conductive material layers 150, each of which is thinly formed in a prescribed region of the corresponding groove 142 as needed to facilitate the electrical connection thereof to a respective one of the conductive wires 130, and in particular to the exposed upper region 132 thereof. As seen in
It is contemplated that the layers 150 included in the semiconductor package 1300 may be fabricated from the same materials described above in relation to the layers 150 of the semiconductor package 100. Additionally, in the semiconductor package 1300, the layers 150 provide the same structural and functional advantages described above in relation to the layers 150 included in the semiconductor package 100. Further, the solder pads 160 electrically connected to respective ones of the layers 150 are preferably fabricated from the same materials described above in relation to the solder pads 160 included in the semiconductor package 100. Though not shown, it is contemplated that the semiconductor package 1300 may be fabricated to include only one of the inner and outer sets of the conductive pads 1320, and thus only a corresponding one of the grooves 142, rather than including the inner and outer sets of the conductive pads 1320 and the inner and outer grooves 142 as shown in
Referring now to
Referring now to
In the nest step S2 of the fabrication process for the semiconductor package 1300, the semiconductor die 110 is attached to the top surface of the substrate 1310 in the manner shown in
In the next step of the fabrication process for the semiconductor package 1300, the semiconductor die 110, and in particular the contacts or terminals thereof, are electrically connected to the conductive pads 1320 through the use of the conductive wires 130, in the manner shown in
Referring now to
In the next step S5 of the fabrication process for the semiconductor package 1300, a laser beam or a chemical etching solution is used to form the grooves 142 at predetermined depths into the generally planar top surface of the package body 140 as shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In the semiconductor package 1500, the semiconductor die 110, and portions of the conductive pads 1320 and conductive wires 130 are covered by an encapsulant material which ultimately hardens into a package body 140 of the semiconductor package 1500. Examples of suitable materials for the encapsulant material used to form the package body 140 include, but are not limited to, epoxy molding compounds, no-flow underfill materials and equivalents thereof. The package body 140 defines a generally planar first (top) surface, an opposed, generally planar second (bottom) surface, and generally planar side surfaces which extend generally perpendicularly between the top and bottom surfaces thereof. In the semiconductor package 1500, the bottom surfaces of the semiconductor die 110 and the conductive pads 1320 are preferably exposed in and extend in substantially flush relation to the bottom surface of the package body 140.
As seen in
Referring now to
Referring now to
In the nest step S2 of the fabrication process for the semiconductor package 1500, the semiconductor die 110 is attached to the top surface of the substrate 1310 in the manner shown in
In the next step of the fabrication process for the semiconductor package 1500, the semiconductor die 110, and in particular the contacts or terminals thereof, are electrically connected to the conductive pads 1320 through the use of the conductive wires 130, in the manner shown in
Referring now to
In the next step S5 of the fabrication process for the semiconductor package 1500 as shown in
Referring now to
Referring now to
Referring now to
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2596993 | Gookin | May 1952 | A |
3435815 | Forcier | Apr 1969 | A |
3734660 | Davies et al. | May 1973 | A |
3838984 | Crane et al. | Oct 1974 | A |
4054238 | Lloyd et al. | Oct 1977 | A |
4189342 | Kock | Feb 1980 | A |
4221925 | Finley et al. | Sep 1980 | A |
4258381 | Inaba | Mar 1981 | A |
4289922 | Devlin | Sep 1981 | A |
4301464 | Otsuki et al. | Nov 1981 | A |
4332537 | Slepcevic | Jun 1982 | A |
4417266 | Grabbe | Nov 1983 | A |
4451224 | Harding | May 1984 | A |
4530152 | Roche et al. | Jul 1985 | A |
4541003 | Otsuka et al. | Sep 1985 | A |
4646710 | Schmid et al. | Mar 1987 | A |
4707724 | Suzuki et al. | Nov 1987 | A |
4727633 | Herrick | Mar 1988 | A |
4737839 | Burt | Apr 1988 | A |
4756080 | Thorp, Jr. et al. | Jul 1988 | A |
4812896 | Rothgery et al. | Mar 1989 | A |
4862245 | Pashby et al. | Aug 1989 | A |
4862246 | Masuda et al. | Aug 1989 | A |
4907067 | Derryberry | Mar 1990 | A |
4920074 | Shimizu et al. | Apr 1990 | A |
4935803 | Kalfus et al. | Jun 1990 | A |
4942454 | Mori et al. | Jul 1990 | A |
4987475 | Schlesinger et al. | Jan 1991 | A |
5018003 | Yasunaga | May 1991 | A |
5029386 | Chao et al. | Jul 1991 | A |
5041902 | McShane | Aug 1991 | A |
5057900 | Yamazaki | Oct 1991 | A |
5059379 | Tsutsumi et al. | Oct 1991 | A |
5065223 | Matsuki et al. | Nov 1991 | A |
5070039 | Johnson et al. | Dec 1991 | A |
5087961 | Long et al. | Feb 1992 | A |
5091341 | Asada et al. | Feb 1992 | A |
5096852 | Hobson et al. | Mar 1992 | A |
5118298 | Murphy | Jun 1992 | A |
5122860 | Kikuchi et al. | Jun 1992 | A |
5134773 | LeMaire et al. | Aug 1992 | A |
5151039 | Murphy | Sep 1992 | A |
5157475 | Yamaguchi | Oct 1992 | A |
5157480 | McShane et al. | Oct 1992 | A |
5168368 | Gow, 3rd et al. | Dec 1992 | A |
5172213 | Zimmerman | Dec 1992 | A |
5172214 | Casto | Dec 1992 | A |
5175060 | Enomoto et al. | Dec 1992 | A |
5200362 | Lin et al. | Apr 1993 | A |
5200809 | Kwon | Apr 1993 | A |
5214845 | King et al. | Jun 1993 | A |
5216278 | Lin et al. | Jun 1993 | A |
5218231 | Kudo | Jun 1993 | A |
5221642 | Burns | Jun 1993 | A |
5250841 | Sloan et al. | Oct 1993 | A |
5252853 | Michii | Oct 1993 | A |
5258094 | Furui et al. | Nov 1993 | A |
5266834 | Nishi et al. | Nov 1993 | A |
5273938 | Lin et al. | Dec 1993 | A |
5277972 | Sakumoto et al. | Jan 1994 | A |
5278446 | Nagaraj et al. | Jan 1994 | A |
5279029 | Burns | Jan 1994 | A |
5281849 | Singh Deo et al. | Jan 1994 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5294897 | Notani et al. | Mar 1994 | A |
5327008 | Djennas et al. | Jul 1994 | A |
5332864 | Liang et al. | Jul 1994 | A |
5335771 | Murphy | Aug 1994 | A |
5336931 | Juskey et al. | Aug 1994 | A |
5343076 | Katayama et al. | Aug 1994 | A |
5358905 | Chiu | Oct 1994 | A |
5365106 | Watanabe | Nov 1994 | A |
5381042 | Lerner et al. | Jan 1995 | A |
5391439 | Tomita et al. | Feb 1995 | A |
5406124 | Morita et al. | Apr 1995 | A |
5410180 | Fujii et al. | Apr 1995 | A |
5414299 | Wang et al. | May 1995 | A |
5417905 | LeMaire et al. | May 1995 | A |
5424576 | Djennas et al. | Jun 1995 | A |
5428248 | Cha | Jun 1995 | A |
5435057 | Bindra et al. | Jul 1995 | A |
5444301 | Song et al. | Aug 1995 | A |
5452511 | Chang | Sep 1995 | A |
5454905 | Fogelson | Oct 1995 | A |
5467032 | Lee | Nov 1995 | A |
5474958 | Djennas et al. | Dec 1995 | A |
5484274 | Neu | Jan 1996 | A |
5493151 | Asada et al. | Feb 1996 | A |
5508556 | Lin | Apr 1996 | A |
5517056 | Bigler et al. | May 1996 | A |
5521429 | Aono et al. | May 1996 | A |
5528076 | Pavio | Jun 1996 | A |
5534467 | Rostoker | Jul 1996 | A |
5539251 | Iverson et al. | Jul 1996 | A |
5543657 | Diffenderfer et al. | Aug 1996 | A |
5544412 | Romero et al. | Aug 1996 | A |
5545923 | Barber | Aug 1996 | A |
5581122 | Chao et al. | Dec 1996 | A |
5592019 | Ueda et al. | Jan 1997 | A |
5592025 | Clark et al. | Jan 1997 | A |
5594274 | Suetaki | Jan 1997 | A |
5595934 | Kim | Jan 1997 | A |
5604376 | Hamburgen et al. | Feb 1997 | A |
5608265 | Kitano et al. | Mar 1997 | A |
5608267 | Mahulikar et al. | Mar 1997 | A |
5625222 | Yoneda et al. | Apr 1997 | A |
5633528 | Abbott et al. | May 1997 | A |
5637922 | Fillion et al. | Jun 1997 | A |
5639990 | Nishihara et al. | Jun 1997 | A |
5640047 | Nakashima | Jun 1997 | A |
5641997 | Ohta et al. | Jun 1997 | A |
5643433 | Fukase et al. | Jul 1997 | A |
5644169 | Chun | Jul 1997 | A |
5646831 | Manteghi | Jul 1997 | A |
5650663 | Parthasarathi | Jul 1997 | A |
5661088 | Tessier et al. | Aug 1997 | A |
5665996 | Williams et al. | Sep 1997 | A |
5673479 | Hawthorne | Oct 1997 | A |
5683806 | Sakumoto et al. | Nov 1997 | A |
5683943 | Yamada | Nov 1997 | A |
5689135 | Ball | Nov 1997 | A |
5696666 | Miles et al. | Dec 1997 | A |
5701034 | Marrs | Dec 1997 | A |
5703407 | Hori | Dec 1997 | A |
5710064 | Song et al. | Jan 1998 | A |
5723899 | Shin | Mar 1998 | A |
5724233 | Honda et al. | Mar 1998 | A |
5726493 | Yamashita | Mar 1998 | A |
5736432 | Mackessy | Apr 1998 | A |
5745984 | Cole, Jr. et al. | May 1998 | A |
5753532 | Sim | May 1998 | A |
5753977 | Kusaka et al. | May 1998 | A |
5766972 | Takahashi et al. | Jun 1998 | A |
5767566 | Suda | Jun 1998 | A |
5770888 | Song et al. | Jun 1998 | A |
5776798 | Quan et al. | Jul 1998 | A |
5783861 | Son | Jul 1998 | A |
5801440 | Chu et al. | Sep 1998 | A |
5814877 | Diffenderfer et al. | Sep 1998 | A |
5814881 | Alagaratnam et al. | Sep 1998 | A |
5814883 | Sawai et al. | Sep 1998 | A |
5814884 | Davis et al. | Sep 1998 | A |
5817540 | Wark | Oct 1998 | A |
5818105 | Kouda | Oct 1998 | A |
5821457 | Mosley et al. | Oct 1998 | A |
5821615 | Lee | Oct 1998 | A |
5834830 | Cho | Nov 1998 | A |
5835988 | Ishii | Nov 1998 | A |
5844306 | Fujita et al. | Dec 1998 | A |
5854511 | Shin et al. | Dec 1998 | A |
5854512 | Manteghi | Dec 1998 | A |
5856911 | Riley | Jan 1999 | A |
5859471 | Kuraishi et al. | Jan 1999 | A |
5866939 | Shin et al. | Feb 1999 | A |
5866942 | Suzuki et al. | Feb 1999 | A |
5871782 | Choi | Feb 1999 | A |
5874784 | Aoki et al. | Feb 1999 | A |
5877043 | Alcoe et al. | Mar 1999 | A |
5886397 | Ewer | Mar 1999 | A |
5973935 | Schoenfeld et al. | Oct 1999 | A |
5977630 | Woodworth et al. | Nov 1999 | A |
RE36773 | Nomi et al. | Jul 2000 | E |
6107679 | Noguchi | Aug 2000 | A |
6143981 | Glenn | Nov 2000 | A |
6150709 | Shin et al. | Nov 2000 | A |
6166430 | Yamaguchi | Dec 2000 | A |
6169329 | Farnworth et al. | Jan 2001 | B1 |
6177718 | Kozono | Jan 2001 | B1 |
6181002 | Juso et al. | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6184573 | Pu | Feb 2001 | B1 |
6194777 | Abbott et al. | Feb 2001 | B1 |
6197615 | Song et al. | Mar 2001 | B1 |
6198171 | Huang et al. | Mar 2001 | B1 |
6201186 | Daniels et al. | Mar 2001 | B1 |
6201292 | Yagi et al. | Mar 2001 | B1 |
6204554 | Ewer et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6208021 | Ohuchi et al. | Mar 2001 | B1 |
6208023 | Nakayama et al. | Mar 2001 | B1 |
6211462 | Carter, Jr. et al. | Apr 2001 | B1 |
6218731 | Huang et al. | Apr 2001 | B1 |
6222258 | Asano et al. | Apr 2001 | B1 |
6222259 | Park et al. | Apr 2001 | B1 |
6225146 | Yamaguchi et al. | May 2001 | B1 |
6229200 | McClellan et al. | May 2001 | B1 |
6229205 | Jeong et al. | May 2001 | B1 |
6238952 | Lin et al. | May 2001 | B1 |
6239367 | Hsuan et al. | May 2001 | B1 |
6239384 | Smith et al. | May 2001 | B1 |
6242281 | McClellan et al. | Jun 2001 | B1 |
6256200 | Lam et al. | Jul 2001 | B1 |
6258629 | Niones et al. | Jul 2001 | B1 |
6261864 | Jung et al. | Jul 2001 | B1 |
6281566 | Magni | Aug 2001 | B1 |
6281568 | Glenn et al. | Aug 2001 | B1 |
6282094 | Lo et al. | Aug 2001 | B1 |
6282095 | Houghton et al. | Aug 2001 | B1 |
6285075 | Combs et al. | Sep 2001 | B1 |
6291271 | Lee et al. | Sep 2001 | B1 |
6291273 | Miyaki et al. | Sep 2001 | B1 |
6294100 | Fan et al. | Sep 2001 | B1 |
6294830 | Fjelstad | Sep 2001 | B1 |
6295977 | Ripper et al. | Oct 2001 | B1 |
6297548 | Moden et al. | Oct 2001 | B1 |
6303984 | Corisis | Oct 2001 | B1 |
6303997 | Lee | Oct 2001 | B1 |
6306685 | Liu et al. | Oct 2001 | B1 |
6307272 | Takahashi et al. | Oct 2001 | B1 |
6309909 | Ohgiyama | Oct 2001 | B1 |
6316822 | Venkateshwaran et al. | Nov 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6323550 | Martin et al. | Nov 2001 | B1 |
6326243 | Suzuya et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326678 | Karnezos et al. | Dec 2001 | B1 |
6335564 | Pour | Jan 2002 | B1 |
6337510 | Chun-Jen et al. | Jan 2002 | B1 |
6339252 | Niones et al. | Jan 2002 | B1 |
6339255 | Shin | Jan 2002 | B1 |
6342730 | Jung et al. | Jan 2002 | B1 |
6348726 | Bayan et al. | Feb 2002 | B1 |
6355502 | Kang et al. | Mar 2002 | B1 |
6359221 | Yamada et al. | Mar 2002 | B1 |
6362525 | Rahim | Mar 2002 | B1 |
6369447 | Mori | Apr 2002 | B2 |
6369454 | Chung | Apr 2002 | B1 |
6373127 | Baudouin et al. | Apr 2002 | B1 |
6377464 | Hashemi et al. | Apr 2002 | B1 |
6380048 | Boon et al. | Apr 2002 | B1 |
6384472 | Huang | May 2002 | B1 |
6388336 | Venkateshwaran et al. | May 2002 | B1 |
6395578 | Shin et al. | May 2002 | B1 |
6399415 | Bayan et al. | Jun 2002 | B1 |
6400004 | Fan et al. | Jun 2002 | B1 |
6410979 | Abe | Jun 2002 | B2 |
6414385 | Huang et al. | Jul 2002 | B1 |
6420779 | Sharma et al. | Jul 2002 | B1 |
6421013 | Chung | Jul 2002 | B1 |
6423643 | Furuhata et al. | Jul 2002 | B1 |
6429508 | Gang | Aug 2002 | B1 |
6437429 | Su et al. | Aug 2002 | B1 |
6444499 | Swiss et al. | Sep 2002 | B1 |
6448633 | Yee et al. | Sep 2002 | B1 |
6452279 | Shimoda | Sep 2002 | B2 |
6459148 | Chun-Jen et al. | Oct 2002 | B1 |
6464121 | Reijinders | Oct 2002 | B2 |
6465883 | Olofsson | Oct 2002 | B2 |
6472735 | Isaak | Oct 2002 | B2 |
6475646 | Park et al. | Nov 2002 | B2 |
6476469 | Hung et al. | Nov 2002 | B2 |
6476474 | Hung | Nov 2002 | B1 |
6482680 | Khor et al. | Nov 2002 | B1 |
6483178 | Chuang | Nov 2002 | B1 |
6492718 | Ohmori | Dec 2002 | B2 |
6495909 | Jung et al. | Dec 2002 | B2 |
6498099 | McClellan et al. | Dec 2002 | B1 |
6498392 | Azuma | Dec 2002 | B2 |
6507096 | Gang | Jan 2003 | B2 |
6507120 | Lo et al. | Jan 2003 | B2 |
6518089 | Coyle | Feb 2003 | B2 |
6525942 | Huang et al. | Feb 2003 | B2 |
6528893 | Jung et al. | Mar 2003 | B2 |
6534849 | Gang | Mar 2003 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545345 | Glenn et al. | Apr 2003 | B1 |
6552421 | Kishimoto et al. | Apr 2003 | B2 |
6559525 | Huang | May 2003 | B2 |
6566168 | Gang | May 2003 | B2 |
6580161 | Kobayakawa | Jun 2003 | B2 |
6583503 | Akram et al. | Jun 2003 | B2 |
6585905 | Fan et al. | Jul 2003 | B1 |
6603196 | Lee et al. | Aug 2003 | B2 |
6624005 | DiCaprio et al. | Sep 2003 | B1 |
6627977 | Foster | Sep 2003 | B1 |
6646339 | Ku | Nov 2003 | B1 |
6667546 | Huang et al. | Dec 2003 | B2 |
6677663 | Ku et al. | Jan 2004 | B1 |
6686649 | Matthews et al. | Feb 2004 | B1 |
6696752 | Su et al. | Feb 2004 | B2 |
6700189 | Shibata | Mar 2004 | B2 |
6713375 | Shenoy | Mar 2004 | B2 |
6757178 | Okabe et al. | Jun 2004 | B2 |
6800936 | Kosemura et al. | Oct 2004 | B2 |
6812552 | Islam et al. | Nov 2004 | B2 |
6818973 | Foster | Nov 2004 | B1 |
6858919 | Seo et al. | Feb 2005 | B2 |
6867492 | Auburger et al. | Mar 2005 | B2 |
6876068 | Lee et al. | Apr 2005 | B1 |
6878571 | Isaak et al. | Apr 2005 | B2 |
6897552 | Nakao | May 2005 | B2 |
6927478 | Paek | Aug 2005 | B2 |
6967125 | Fee et al. | Nov 2005 | B2 |
6995459 | Lee et al. | Feb 2006 | B2 |
7002805 | Lee et al. | Feb 2006 | B2 |
7005327 | Kung et al. | Feb 2006 | B2 |
7015571 | Chang et al. | Mar 2006 | B2 |
7045396 | Crowley et al. | May 2006 | B2 |
7053469 | Koh et al. | May 2006 | B2 |
7075816 | Fee et al. | Jul 2006 | B2 |
7102209 | Bayan et al. | Sep 2006 | B1 |
7109572 | Fee et al. | Sep 2006 | B2 |
7185426 | Hiner | Mar 2007 | B1 |
7193298 | Hong et al. | Mar 2007 | B2 |
7211471 | Foster | May 2007 | B1 |
7242081 | Lee | Jul 2007 | B1 |
7245007 | Foster | Jul 2007 | B1 |
7253503 | Fusaro et al. | Aug 2007 | B1 |
7750465 | Hess et al. | Jul 2010 | B2 |
20010008305 | McClellan et al. | Jul 2001 | A1 |
20010014538 | Kwan et al. | Aug 2001 | A1 |
20020011654 | Kimura | Jan 2002 | A1 |
20020024122 | Jung et al. | Feb 2002 | A1 |
20020027297 | Ikenaga et al. | Mar 2002 | A1 |
20020038873 | Hiyoshi | Apr 2002 | A1 |
20020072147 | Sayanagi et al. | Jun 2002 | A1 |
20020111009 | Huang et al. | Aug 2002 | A1 |
20020140061 | Lee | Oct 2002 | A1 |
20020140068 | Lee et al. | Oct 2002 | A1 |
20020140081 | Chou et al. | Oct 2002 | A1 |
20020158318 | Chen | Oct 2002 | A1 |
20020163015 | Lee et al. | Nov 2002 | A1 |
20020167060 | Buijsman et al. | Nov 2002 | A1 |
20030006055 | Chien-Hung et al. | Jan 2003 | A1 |
20030030131 | Lee et al. | Feb 2003 | A1 |
20030059644 | Datta et al. | Mar 2003 | A1 |
20030064548 | Isaak | Apr 2003 | A1 |
20030073265 | Hu et al. | Apr 2003 | A1 |
20030102537 | McLellan et al. | Jun 2003 | A1 |
20030164554 | Fee et al. | Sep 2003 | A1 |
20030168719 | Cheng et al. | Sep 2003 | A1 |
20030198032 | Collander et al. | Oct 2003 | A1 |
20040027788 | Chiu et al. | Feb 2004 | A1 |
20040056277 | Karnezos | Mar 2004 | A1 |
20040061212 | Karnezos | Apr 2004 | A1 |
20040061213 | Karnezos | Apr 2004 | A1 |
20040063242 | Karnezos | Apr 2004 | A1 |
20040063246 | Karnezos | Apr 2004 | A1 |
20040065963 | Karnezos | Apr 2004 | A1 |
20040080025 | Kasahara et al. | Apr 2004 | A1 |
20040089926 | Hsu et al. | May 2004 | A1 |
20040164387 | Ikenaga et al. | Aug 2004 | A1 |
20040253803 | Tomono et al. | Dec 2004 | A1 |
20060087020 | Hirano et al. | Apr 2006 | A1 |
20060108676 | Punzalan et al. | May 2006 | A1 |
20060157843 | Hwang | Jul 2006 | A1 |
20060216868 | Yang et al. | Sep 2006 | A1 |
20060231939 | Kawabata et al. | Oct 2006 | A1 |
20070023202 | Shibata | Feb 2007 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
19734794 | Aug 1997 | DE |
0393997 | Oct 1990 | EP |
0459493 | Dec 1991 | EP |
0720225 | Mar 1996 | EP |
0720234 | Mar 1996 | EP |
0794572 | Oct 1997 | EP |
0844665 | May 1998 | EP |
0989608 | Mar 2000 | EP |
1032037 | Aug 2000 | EP |
55163868 | Dec 1980 | JP |
5745959 | Mar 1982 | JP |
58160096 | Aug 1983 | JP |
59208756 | Nov 1984 | JP |
59227143 | Dec 1984 | JP |
60010756 | Jan 1985 | JP |
60116239 | Aug 1985 | JP |
60195957 | Oct 1985 | JP |
60231349 | Nov 1985 | JP |
6139555 | Feb 1986 | JP |
61248541 | Nov 1986 | JP |
629639 | Jan 1987 | JP |
6333854 | Feb 1988 | JP |
63067762 | Mar 1988 | JP |
63188964 | Aug 1988 | JP |
63205935 | Aug 1988 | JP |
63233555 | Sep 1988 | JP |
63249345 | Oct 1988 | JP |
63289951 | Nov 1988 | JP |
63316470 | Dec 1988 | JP |
64054749 | Mar 1989 | JP |
1106456 | Apr 1989 | JP |
1175250 | Jul 1989 | JP |
1205544 | Aug 1989 | JP |
1251747 | Oct 1989 | JP |
2129948 | May 1990 | JP |
369248 | Jul 1991 | JP |
3177060 | Aug 1991 | JP |
3289162 | Dec 1991 | JP |
4098864 | Mar 1992 | JP |
5129473 | May 1993 | JP |
5166992 | Jul 1993 | JP |
5283460 | Oct 1993 | JP |
6061401 | Mar 1994 | JP |
692076 | Apr 1994 | JP |
6140563 | May 1994 | JP |
652333 | Sep 1994 | JP |
6252333 | Sep 1994 | JP |
6260532 | Sep 1994 | JP |
7297344 | Nov 1995 | JP |
7312405 | Nov 1995 | JP |
8064364 | Mar 1996 | JP |
8083877 | Mar 1996 | JP |
8125066 | May 1996 | JP |
964284 | Jun 1996 | JP |
8222682 | Aug 1996 | JP |
8306853 | Nov 1996 | JP |
98205 | Jan 1997 | JP |
98206 | Jan 1997 | JP |
98207 | Jan 1997 | JP |
992775 | Apr 1997 | JP |
9260568 | Oct 1997 | JP |
9293822 | Nov 1997 | JP |
10022447 | Jan 1998 | JP |
10199934 | Jul 1998 | JP |
10256240 | Sep 1998 | JP |
11307675 | Nov 1999 | JP |
2000150765 | May 2000 | JP |
20010600648 | Mar 2001 | JP |
2002519848 | Jul 2002 | JP |
200203497 | Aug 2002 | JP |
2003243595 | Aug 2003 | JP |
2004158753 | Jun 2004 | JP |
941979 | Jan 1994 | KR |
19940010938 | May 1994 | KR |
19950018924 | Jun 1995 | KR |
19950041844 | Nov 1995 | KR |
19950044554 | Nov 1995 | KR |
19950052621 | Dec 1995 | KR |
1996074111 | Dec 1996 | KR |
9772358 | Nov 1997 | KR |
100220154 | Jun 1999 | KR |
20000072714 | Dec 2000 | KR |
20000086238 | Dec 2000 | KR |
20020049944 | Jun 2002 | KR |
EP0936671 | Aug 1999 | WO |
9956316 | Nov 1999 | WO |
9967821 | Dec 1999 | WO |