1. Field of the Invention
This invention relates generally to packaged semiconductor devices. More particularly, the invention pertains to flash memory devices having high memory density.
2. State of the Art
The use of semiconductor integrated circuit (IC) chips is widespread, in both commercial grade and specific high reliability applications. Continuing progress in the manufacture of IC chips has resulted in chips of greatly increased density, i.e., higher number of devices per footprint area of each chip. In addition, to produce increasingly complex electronic components, it is necessary to include a much greater number of IC chips on a substrate, e.g., a circuit board. One solution to this dilemma is to form a stack of chips on a substrate, creating what is known in the art as a multi-chip package.
The state of the art in vertically stacked multi-chip module (MCM) devices is illustrated by representative prior art devices shown in drawing
A representative example of a known multi-chip module semiconductor device 10, prior to packaging, is shown in drawing
A plurality of chips or dice 12A, 12B and 12C (identified as dice 12) are mounted in a pyramidal stack on a substrate 14. Each die is mounted with an adhesive material 16 to the next lower die or substrate and is electrically connected to the substrate 14 by bond wires 18 using known wire bonding methods. Variants of this multi-chip configuration are described in U.S. Pat. No. 5,422,435 to Takiar et al., Japan Patent 62-8534(A) to Tsukahara and Japan Patent 3-165550(A) to Yashiro. In each of these references, a pyramidal stack is formed of increasingly smaller chips or dice 12, in order to accommodate the placement of bond wires 18 on peripheral portions of each die 12. This configuration is not generally useful where dice of equal dimensions are to be placed in a multi-chip module (MCM), such as in a memory device.
In drawing
Depicted in drawing
Depicted in drawing
Each of the above stacking configurations requires that the dice be of differing sizes. This is mandated by the need to leave the bond pads of each die unobstructed for wire attachment.
There have been various configurations of MCM devices in which chips of equal dimensions are stacked. Several such configurations are shown in drawing
In one MCM device configuration shown in U.S. Pat. No. 5,973,403 to Wark and Japan Patent 5-13665(A) to Yamauchi, a flip-chip die 12A is electrically bonded to a substrate 14 by posts, solder bumps or balls 20 or other connectors, and a second chip, i.e., die 12B, is attached back-to-back to the flip-chip die 12A (with an intervening insulation layer 24) and connected by bond wires 18 to the substrate 14. This particular MCM device 10 is illustrated in drawing
In another form depicted in drawing
An MCM device 10 that combines various die configurations already described above in drawing
As shown in drawing
In drawing
Described in U.S. Pat. No. 5,291,061 to Ball is a similar stacked device 10 in which the thickness of the adhesive layers 16A, 16B and 16C is reduced, using a low-loop-profile wire-bonding operation.
As shown in drawing
There are various Runs of an MCM device in which separate enclosed units are first formed and then stacked. Examples are described in U.S. Pat. No. 5,434,745 to Shokrgozar et al. and U.S. Pat. No. 5,128,831 to Fox, III et al. A typical stacked device 10 of this construction is depicted in drawing
In another design of MCM package device 10 shown in drawing
In each of the above prior art configurations for forming MCM devices containing a stack of identically configured dice, various limitations and/or problems exist as indicated above. A new device design is needed in which a plurality of identical dice with bond pads along one edge or two edges may be readily stacked for parallel operation. The new design must provide a device requiring fewer manufacturing steps and providing high density with enhanced reliability.
In accordance with an embodiment, a semiconductor device is formed of two or more chips, i.e., dice, in which bond pads are located in areas along one or two edges of the active surface of each die. The device of the invention is particularly useful when configured to be formed of a stack of semiconductor dice that are substantially the same or similar in shape, size and bond pad arrangement. An example of this die configuration is a mass memory storage device with a row or rows of bond pads along one edge of the semiconductor die.
In a device of an embodiment, the dice are arranged in a stack in which each individual semiconductor die is positionally offset from the next lower semiconductor die, thus exposing the bond pads of each die for wire bonding or other conductor attachment. In some embodiments, a semiconductor die may overhang bond pads of an underlying semiconductor die, but the thickness of an intervening offset semiconductor die supporting the overhanging semiconductor die, together with two thin adhesive layers, provides sufficient “headroom” to accommodate the wire loop height. The thickness (Z-dimension) of adhesive layers may be minimized to reduce overall device height. Where bond pads are overhung by another die, wire bonding is successfully accomplished without the use of thick adhesive layers.
A substrate may be any body that supports the device, including, for example, a circuit board, a circuit card such as a multiple memory card, a lead frame or a tape automated bonding (TAB) tape. The bond pads of each die are exposed for rapid precise bond wiring to the substrate. In one embodiment, the apparatus is formed as a single stack of dice connected to a substrate whose reverse surface is configured for solder-ball bonding to another metalized surface.
In an embodiment, semiconductor dice having bond pads along one edge only need not be offset from each other in more than one direction. Semiconductor dice configured with bond pads along two adjacent edges are always offset from each other along two axes, i.e., in two directions. The offset exposes bond pads of a lower die to permit convenient wire bonding between each chip and a substrate.
Where the stack comprises more than two semiconductor dice, the offset of each semiconductor die may be positive or negative along both axes. The stack may include a reversal in the direction of offset. In this case, the die underlying the die having an offset direction change must also be rotated in orientation about a central Z-axis. The active surface of the semiconductor die may be rotated to place the bond pads adjacent a different location of the substrate. Such rotation may comprise zero, 90, 180 or 270 degrees in a clockwise or counter-clockwise direction.
Packaging of the device may use conventional processes for enclosing the semiconductor dice and conductors in a plastic, metal or ceramic encapsulant.
Some embodiments of the invention having up to four or more semiconductor dice provide complete exposure of all bond pads.
Use of this design provides adequate space for wire-bonding the bond pads that underlie die edges of a higher semiconductor die, because the spacer consists not of a thick adhesive layer, but an intervening die or a piece of silicon or similar material substantially the same size as the semiconductor die. In some instances, inoperative semiconductor dice may be used in the stack between operative semiconductor dice located on either side thereof. The designs of the stack and the substrate are coordinated to provide an easily formed device that may, for example, have a high memory density, minimal height, short bond wires, small footprint, and high speed and responsiveness. In one embodiment, the package is particularly useful as a high speed multi-die mass storage flash memory device with a high memory density.
A new stacked multiple chip device formed of a plurality of offset Z-stacked, i.e., vertically stacked semiconductor dice, together with a method of production thereof are provided by the invention. Some devices of the invention may be classified as stacked multi-chip modules (MCM). Semiconductor dice that are particularly usefully stacked in this construction are those having conductive bond pads along one edge, or alternatively along two adjacent edges of the active surface. In addition, a particular embodiment will be described that utilizes elongated, i.e., semiconductor dice having bond pads along opposing distal edges of a nonsquare elongated active surface. Although the device is particularly adapted to dice of the same surface dimensions and similar bond pad layout, a stack of dice may be formed in accordance with this invention that includes one or more semiconductor dice of a differing configuration at either end of the stack, or interposed therein. The stack of semiconductor dice is physically attached to a substrate, in which the substrate may comprise, for example, a printed circuit board (PCB), a memory card, a lead frame, tape automated bonding (TAB) tape or other substrate. Additionally, similar shaped dummy dice of silicon and the like may be used as spacers between semiconductor dice in the stack.
In the figures and this description, semiconductor dice and any spacers in general will be denoted by the numeral 60, and a letter suffix i.e., A, B, C, etc. will be used to identify a particular semiconductor die or spacer or the like of a stack. Numerals identifying bond pads, bond wires, etc., that relate to a particular semiconductor die will carry the same suffix.
In this description, bond wires will be described as being connected between a semiconductor die and a substrate. It is to be understood that the wires are bonded to bond pads on the semiconductor die and to conductive members such as metallization or a lead frame, which may constitute all or part of the substrate. The device may also include semiconductor die-to-semiconductor die bonds.
With reference to the drawings of drawing
Semiconductor die 60A is shown attached to a substrate 70 by adhesive layer 78. The adhesive layer 78 may be any adhesive capable of bonding a reverse surface 72 of a semiconductor die 60 to the active surface 52 of another semiconductor die or to a top side 66 of a substrate 70. Semiconductor die 60B is stacked on top of semiconductor die 60A and joined to it by thin adhesive layer 78. Semiconductor die 60B is offset from semiconductor die 60A along Y-axis 76 a distance 82, which exposes the field 55 of bond pads 54A. The offset distance 82 may be the shortest distance that permits reliable use of a wire bonding tool, not shown, to bond conductors such as bond wires 62 to the bond pads 54A. Thus, bond pads 54A, 54B are joined by fine metal bond wires 62 or other conductive members to conductive, e.g., metallization areas 58 on the top side 66 of substrate 70. If so dictated by the design of the device 50, certain bond pads 54A and 54B may also be conductively connected to each other, i.e., on the same semiconductor die 60A or 60B, or from semiconductor die 60A to semiconductor die 60B.
In these figures, the substrate 70 is pictured as a circuit board or memory card substrate or multimedia card substrate, for example. This example is shown with solder balls 64 on its reverse side 68 although other configurations of electrical connections may be used.
A controlled thickness thermoplastic or other type of adhesive may be used in adhesive layers 78 to join the semiconductor dice 60A and 60B to each other, and semiconductor die 60A to the substrate 70.
The bond pads 54A and 54B of semiconductor dice 60A and 60B, respectively, are joined to metallization or other conductive areas 58 on the substrate 70 by thin bond wires 62. Typically, the bond wires 62 have a diameter of about 0.001 inch and are formed of a metal such as aluminum or gold, or alloys thereof. The preferred method of bonding the bond wires 62 to the bond pads is known as ultrasonic ball bonding, which forms a low-loop wire bond that is less than the Z-dimension of a semiconductor die 60. Likewise, in a preferred method, ultrasonic “wedge” bonds of wire are formed at the substrate metallization area 58.
In general, semiconductor devices are encapsulated in a protective package to protect the die surfaces, metallization and wires from damage. As depicted in drawing
A stack 61 of two or more offset semiconductor dice 60 may also be formed on a lead frame 94, as depicted in an example in drawing
In the embodiment of drawing
As shown in drawing
Depicted in drawing
As will be evident, a variety of offset stacking configurations is available when using semiconductor dice 60 with bond pads 54 along one edge 56. Depicted in drawing
For the sake of clarity, drawing
As shown in drawing
The embodiment of drawing
Illustrated in drawing
Illustrated in drawing
As illustrated in drawing
As shown in drawing
Alternatively, as shown in drawing
Where the bond pads 54 of a semiconductor die 60 are overhung by a portion of another semiconductor die, those bond pads 54 may be wire-bonded to the substrate 70 prior to mounting the overhanging die in the stack 61. Using the configuration illustrated in drawing
Turning now to drawing
The stacked offset multiple die device 50 of this invention may have any form of substrate 70 known in the art. For example, the substrate 70 may be a metalized lead frame as already shown in drawing
Turning now to drawing
As shown in drawing
Additional semiconductor dice 60 may be mounted atop semiconductor die 60B. These semiconductor dice may be mounted in the same sequence, using a substrate 70 configured with metallization on two sides only of the stack 61. Alternatively, subsequent semiconductor dice 60C, . . . may be mounted atop semiconductor die 60B having the same pattern of offset, i.e., along both the X-axis 74 and Y-axis 76, but rotated 180 degrees relative to semiconductor dice 60A and 60B. As a result, wire bonds will be made to the substrate 70 on four sides of stack 61.
A further embodiment of the invention is illustrated in drawing
As described herein, the invention provides a stacked multiple semiconductor die device or package of higher electronic density, in which individual die of similar size, different size, or the same size are offset from each other in the stack, enabling electrical attachment, e.g., wire bonding between the semiconductor dice and a substrate. Thus, the overall height of the stack of semiconductor dice, and the package formed therefrom, is minimal. Multiples of the stacked multiple die package may be combined in a large mass storage flash memory apparatus, for example.
The various embodiments of stacked offset multiple semiconductor die devices that are shown and described herein are exemplary and not limiting. It is understood that other configurations may include additional elements, for example, such elements including additional semiconductor dice and lead frames, heat sinks, dielectric layers, packaging, etc., as known in the art.
It is apparent to those skilled in the art that various changes and modifications may be made in the packaging methods and products of the invention as disclosed herein without departing from the spirit and scope of the invention as defined in the following claims.
This application is a continuation of U.S. patent application Ser. No. 11/599,223, filed Nov. 13, 2006, now U.S. Pat. No. 7,704,794, issued May 20, 2008, which application is a divisional of U.S. patent application Ser. No. 10/933,059, filed Sep. 1, 2004, now U.S. Pat. No. 7,375,419, issued May 20, 2008, which is a continuation of application Ser. No. 09/886,593, filed Jun. 21, 2001, now U.S. Pat. No. 6,900,528, issued May 31, 2005, the disclosures of each of the previously referenced U.S. patent applications and patents are hereby incorporated herein by this reference in their entirety. This application is a continuation of U.S. patent application Ser.
Number | Name | Date | Kind |
---|---|---|---|
5012323 | Farnworth | Apr 1991 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5147815 | Casto | Sep 1992 | A |
5291061 | Ball | Mar 1994 | A |
5323060 | Fogal et al. | Jun 1994 | A |
5399898 | Rostoker | Mar 1995 | A |
5422435 | Takiar et al. | Jun 1995 | A |
5434745 | Shokrgozar et al. | Jul 1995 | A |
5478781 | Bertin et al. | Dec 1995 | A |
5483024 | Russell et al. | Jan 1996 | A |
5530287 | Currie et al. | Jun 1996 | A |
5585668 | Burns | Dec 1996 | A |
5585675 | Knopf | Dec 1996 | A |
5635010 | Pepe et al. | Jun 1997 | A |
5689135 | Ball | Nov 1997 | A |
5723906 | Rush | Mar 1998 | A |
5793108 | Nakanishi et al. | Aug 1998 | A |
5807762 | Akram et al. | Sep 1998 | A |
5899705 | Akram | May 1999 | A |
5952725 | Ball | Sep 1999 | A |
5963794 | Fogal et al. | Oct 1999 | A |
5973403 | Wark | Oct 1999 | A |
5998864 | Khandros et al. | Dec 1999 | A |
6051878 | Akram et al. | Apr 2000 | A |
6051886 | Fogal et al. | Apr 2000 | A |
6252305 | Lin et al. | Jun 2001 | B1 |
6359340 | Lin et al. | Mar 2002 | B1 |
6376904 | Haba et al. | Apr 2002 | B1 |
6376914 | Kovats et al. | Apr 2002 | B2 |
6461897 | Lin et al. | Oct 2002 | B2 |
6552423 | Song et al. | Apr 2003 | B2 |
6580035 | Chung | Jun 2003 | B1 |
6621155 | Perino et al. | Sep 2003 | B1 |
6784019 | Huang | Aug 2004 | B2 |
6885106 | Damberg et al. | Apr 2005 | B1 |
6900528 | Mess et al. | May 2005 | B2 |
7262506 | Mess et al. | Aug 2007 | B2 |
7375419 | Mess et al. | May 2008 | B2 |
20010015485 | Song et al. | Aug 2001 | A1 |
20030137042 | Mess et al. | Jul 2003 | A1 |
20070065987 | Mess et al. | Mar 2007 | A1 |
20080001266 | Yu et al. | Jan 2008 | A1 |
20080001303 | Yu et al. | Jan 2008 | A1 |
20080296748 | Haba et al. | Dec 2008 | A1 |
20080303131 | McElrea et al. | Dec 2008 | A1 |
20090065948 | Wang | Mar 2009 | A1 |
20090140440 | Liu et al. | Jun 2009 | A1 |
20090286356 | Mess et al. | Nov 2009 | A1 |
20100055836 | Yu et al. | Mar 2010 | A1 |
20100193930 | Lee | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
56158467 | Dec 1981 | JP |
628534 | Jan 1987 | JP |
63104343 | May 1988 | JP |
3165550 | Jul 1991 | JP |
513665 | Jan 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20100148331 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10933059 | Sep 2004 | US |
Child | 11599223 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11599223 | Nov 2006 | US |
Child | 12710115 | US | |
Parent | 09886593 | Jun 2001 | US |
Child | 10933059 | US |