In the trend of smaller package and higher input/output (TO) counts, a finer pitch is needed for a flip-chip bump on trace (BOT) package. The finer pitch requirement causes bump dimensions to shrink. As such, the area of metal/solder interface (metal bump) and solder/trace joint interface also decreases. So, electromigration (EM) resistance at both “bump-to-trace” and “trace-to-bump” sites get worse due to higher current density.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative and do not limit the scope of the disclosure.
The present disclosure will be described with respect to preferred embodiments in a specific context, namely a bump structure for a bump on trace (BOT) assembly. The concepts in the disclosure may also apply, however, to other semiconductor structures or circuits.
Referring now to
In an embodiment, the contact element 12 is an aluminum (Al) pad. As shown in
In an embodiment, an insulating layer 28 is disposed between the contact element 12 and the integrated circuit 26. In an embodiment, the insulating layer 28 comprises an extremely low-k (ELK) dielectric. In an embodiment, a passivation layer 30 overlies the integrated circuit 26 (and/or the insulating layer 28). As shown in
Still referring to
Still referring to
As shown in
Still referring to
In an embodiment, a ratio of a cross sectional area of the intermetallic compounds 24 to a cross sectional area of the solder joint 22 is greater than about forty percent (40%). In other words, the area occupied by the two spaced-apart portions of intermetallic compounds 24 in
The desired ratio of intermetallic compounds 24 to solder joint 22 may be obtained by, for example, decreasing a vertical height of the solder joint 22. The desired ratio may also be achieved by increasing the thermal budget during die attach to generate more of the intermetallic compounds 24 relative to the solder joint 22. Those skilled in the art will recognize that the ratio may be obtained by manipulating other process parameters or dimensions as well.
By maintaining the ratio of the intermetallic compounds 24 to the solder joint 22 in excess of forty percent, the electromigration (EM) resistance of the BOT device 10 is increased. This is due to the lower diffusivity of the combination of the intermetallic compounds 24 and the solder joint 22 relative to the diffusivity of the solder joint 22 alone in conventional BOT devices. Indeed, the lower diffusivity of the intermetallic compounds 24/solder joint 22 combination in
In an embodiment, an additional metal layer or material (not shown) is included in the conglomeration 34. For example, the additional metal layer or material may be disposed between the metal bump 16 and the solder joint 22 and/or the intermetallic compounds 24. In such cases, the substrate trace 18 is coupled to the metal bump 16 through the solder joint 22, intermetallic compounds 24, and the additional metal. In an embodiment, the additional metal may be nickel (Ni) or another conductive material.
Referring now to
As shown in
Still referring to
One skilled in the art will recognize that the specific dimensions for the various widths and spacing discussed herein are matters of design choice and are dependent upon the particular technology node, and application employed.
In an embodiment, a photolithography process is used to shape the metal bump 16 as shown in
Referring now to
Referring now to
From the foregoing it should be recognized that embodiment BOT structure 10 provides advantageous features. For example, the BOT assembly 10 permits fine pitch configurations while still providing an increased electromigration resistance due to the conglomeration 34 of the solder joint 22 and the IMCs 24, which has lower diffusivity compared to only solder. Therefore, the time to electromigration failure is slower.
The following references are related to subject matter of the present application. Each of these references is incorporated herein by reference in its entirety:
An embodiment bump on trace (BOT) structure includes a contact element supported by an integrated circuit, an under bump metallurgy (UBM) feature electrically coupled to the contact element, a metal bump on the under bump metallurgy feature, and a substrate trace on a substrate, the substrate trace coupled to the metal bump through a solder joint and intermetallic compounds, a ratio of a first cross sectional area of the intermetallic compounds to a second cross sectional area of the solder joint greater than forty percent.
An embodiment bump on trace (BOT) structure including a contact element supported by an integrated circuit, an under bump metallurgy (UBM) feature electrically coupled to the contact element, a metal bump on the under bump metallurgy feature, a substrate trace on a substrate, intermetallic compounds on the metal bump and on the substrate trace, and a solder joint formed between the intermetallic compounds disposed on the metal bump and on the substrate trace, a ratio of a first cross sectional area of the intermetallic compounds to a second cross sectional area of the solder joint greater than forty percent.
An embodiment method of forming a bump on trace (BOT) structure includes forming a contact element over an integrated circuit, electrically coupling an under bump metallurgy (UBM) feature to the contact element, forming a metal bump on the under bump metallurgy feature, forming a substrate trace on a substrate, and coupling the substrate trace to the metal bump using a solder joint, wherein intermetallic compounds are formed between the substrate trace and the metal bump, a ratio of a first cross sectional area of the intermetallic compounds to a second cross sectional area of the solder joint greater than forty percent.
In an embodiment, a device is provided. The device includes a first substrate, a conductive pillar extending from a first surface of the first substrate. The device further includes a second substrate and a conductive trace extending along a second surface of the second substrate, the conductive trace having a uniform width, the conductive trace extending past a periphery of the conductive pillar in a plan view. A solder joint electrically couples the conductive pillar to the conductive trace, the solder joint being separated from the conductive trace and the conductive pillar by intermetallic compounds, a ratio of a first cross sectional area of the intermetallic compounds to a second cross sectional area of the solder joint greater than forty percent.
In another embodiment, a method is provided. The method includes forming a conductive pillar on a first substrate, forming a conductive trace over a surface of a second substrate, the conductive trace having a uniform width, and forming a solder joint interposed between the conductive pillar and the conductive trace. The solder joint is separated from the conductive trace and the conductive pillar by intermetallic compounds, a ratio of a first cross sectional area of the intermetallic compounds to a second cross sectional area of the solder joint greater than forty percent, and the conductive trace extending past a periphery of the conductive pillar in a plan view.
In another embodiment, a method is provided. The method includes forming a conductive pillar on a first substrate, the first substrate comprising a contact pad and an under bump metallurgy contacting the contact pad, the conductive pillar being formed on the under bump metallurgy. A conductive trace is formed over an uppermost surface of a second substrate. The method further includes forming a solder joint interposed between the conductive pillar and the conductive trace, the solder joint being separated from the conductive trace and the conductive pillar by intermetallic compounds, a ratio of a first cross sectional area of the intermetallic compounds to a second cross sectional area of the solder joint greater than forty percent, the conductive trace extending past a periphery of the conductive pillar in a plan view, a region of the conductive trace overlapping the solder joint in a plan view having a uniform width.
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application is a continuation application of U.S. application Ser. No. 13/712,722, filed on Dec. 12, 2012, entitled “Bump Structure and Method of Forming Same,” which claims the benefit of U.S. Provisional Application No. 61/707,442, filed on Sep. 28, 2012, entitled “Bump Structure and Method of Forming Same,” of U.S. Provisional Application No. 61/707,609, filed on Sep. 28, 2012, entitled “Interconnection Structure Method of Forming Same,” of U.S. Provisional Application No. 61/707,644, filed on Sep. 28, 2012, entitled “Metal Bump and Method of Manufacturing Same,” and of U.S. Provisional Application No. 61/702,624, filed on Sep. 18, 2012, entitled “Ladd Bump Structures and Methods of Making the Same,” which applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4258382 | Harris | Mar 1981 | A |
4536421 | Matsuzawa et al. | Aug 1985 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4830723 | Galvagni et al. | May 1989 | A |
4990462 | Sliwa, Jr. | Feb 1991 | A |
5075253 | Sliwa, Jr. | Dec 1991 | A |
5075965 | Carey et al. | Dec 1991 | A |
5130779 | Agarwala et al. | Jul 1992 | A |
5134460 | Brady et al. | Jul 1992 | A |
5277756 | Dion | Jan 1994 | A |
5334804 | Love et al. | Aug 1994 | A |
5380681 | Hsu | Jan 1995 | A |
5431328 | Chang et al. | Jul 1995 | A |
5440239 | Zappella et al. | Aug 1995 | A |
5470787 | Greer | Nov 1995 | A |
5481133 | Hsu | Jan 1996 | A |
5492266 | Hoebener et al. | Feb 1996 | A |
5508561 | Tago et al. | Apr 1996 | A |
5542601 | Fallon et al. | Aug 1996 | A |
5565379 | Baba | Oct 1996 | A |
5587337 | Idaka | Dec 1996 | A |
5680187 | Nagayama et al. | Oct 1997 | A |
5743006 | Beratan | Apr 1998 | A |
5790377 | Schreiber et al. | Aug 1998 | A |
5796591 | Dalal et al. | Aug 1998 | A |
5816478 | Kaskoun et al. | Oct 1998 | A |
5889326 | Tanaka | Mar 1999 | A |
5922496 | Dalal et al. | Jul 1999 | A |
5977599 | Adrian | Nov 1999 | A |
6002172 | Desai et al. | Dec 1999 | A |
6002177 | Gaynes et al. | Dec 1999 | A |
6025650 | Tsuji et al. | Feb 2000 | A |
6051273 | Dalal et al. | Apr 2000 | A |
6082610 | Shangguan et al. | Jul 2000 | A |
6091141 | Heo | Jul 2000 | A |
6099935 | Brearley et al. | Aug 2000 | A |
6130476 | LaFontaine, Jr. et al. | Oct 2000 | A |
6137184 | Ikegami | Oct 2000 | A |
6181010 | Nozawa | Jan 2001 | B1 |
6187678 | Gaynes et al. | Feb 2001 | B1 |
6229216 | Ma et al. | May 2001 | B1 |
6229220 | Saitoh et al. | May 2001 | B1 |
6236115 | Gaynes et al. | May 2001 | B1 |
6249051 | Chang et al. | Jun 2001 | B1 |
6250541 | Shangguan et al. | Jun 2001 | B1 |
6259159 | Dalal et al. | Jul 2001 | B1 |
6271059 | Benin et al. | Aug 2001 | B1 |
6279815 | Correia et al. | Aug 2001 | B1 |
6291891 | Higashi et al. | Sep 2001 | B1 |
6336262 | Dalal et al. | Jan 2002 | B1 |
6344234 | Dalal et al. | Feb 2002 | B1 |
6346469 | Greer | Feb 2002 | B1 |
6355501 | Fung et al. | Mar 2002 | B1 |
6358847 | Li | Mar 2002 | B1 |
6388322 | Goossen et al. | May 2002 | B1 |
6424037 | Ho et al. | Jul 2002 | B1 |
6426556 | Lin | Jul 2002 | B1 |
6434016 | Zeng et al. | Aug 2002 | B2 |
6448661 | Kim et al. | Sep 2002 | B1 |
6461895 | Liang et al. | Oct 2002 | B1 |
6469394 | Wong et al. | Oct 2002 | B1 |
6475897 | Hosaka | Nov 2002 | B1 |
6476503 | Imamura | Nov 2002 | B1 |
6492197 | Rinne | Dec 2002 | B1 |
6498308 | Sakamoto | Dec 2002 | B2 |
6562653 | Ma et al. | May 2003 | B1 |
6562657 | Lin | May 2003 | B1 |
6570248 | Ahn et al. | May 2003 | B1 |
6573598 | Ohuchi et al. | Jun 2003 | B2 |
6578754 | Tung | Jun 2003 | B1 |
6583846 | Yanagawa et al. | Jun 2003 | B1 |
6592019 | Tung | Jul 2003 | B2 |
6592657 | Lee et al. | Jul 2003 | B2 |
6600222 | Levardo | Jul 2003 | B1 |
6607938 | Kwon et al. | Aug 2003 | B2 |
6661085 | Kellar et al. | Dec 2003 | B2 |
6713844 | Tatsuta | Mar 2004 | B2 |
6731003 | Joshi et al. | May 2004 | B2 |
6762076 | Kim et al. | Jul 2004 | B2 |
6790748 | Kim et al. | Sep 2004 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908565 | Kim et al. | Jun 2005 | B2 |
6908785 | Kim | Jun 2005 | B2 |
6924551 | Rumer et al. | Aug 2005 | B2 |
6940169 | Jin et al. | Sep 2005 | B2 |
6940178 | Kweon et al. | Sep 2005 | B2 |
6943067 | Greenlaw | Sep 2005 | B2 |
6946384 | Kloster et al. | Sep 2005 | B2 |
6972490 | Chang et al. | Dec 2005 | B2 |
6975016 | Kellar et al. | Dec 2005 | B2 |
6998216 | He et al. | Feb 2006 | B2 |
7037804 | Kellar et al. | May 2006 | B2 |
7056807 | Kellar et al. | Jun 2006 | B2 |
7087538 | Staines et al. | Aug 2006 | B2 |
7135766 | Costa et al. | Nov 2006 | B1 |
7151009 | Kim et al. | Dec 2006 | B2 |
7157787 | Kim et al. | Jan 2007 | B2 |
7192803 | Lin et al. | Mar 2007 | B1 |
7215033 | Lee et al. | May 2007 | B2 |
7245023 | Lin | Jul 2007 | B1 |
7251484 | Aslanian | Jul 2007 | B2 |
7271483 | Lin et al. | Sep 2007 | B2 |
7271484 | Reiss et al. | Sep 2007 | B2 |
7276799 | Lee et al. | Oct 2007 | B2 |
7279795 | Periaman et al. | Oct 2007 | B2 |
7307005 | Kobrinsky et al. | Dec 2007 | B2 |
7317256 | William et al. | Jan 2008 | B2 |
7320928 | Kloster et al. | Jan 2008 | B2 |
7345350 | Sinha | Mar 2008 | B2 |
7382049 | Ho et al. | Jun 2008 | B2 |
7402442 | Condorelli et al. | Jul 2008 | B2 |
7402508 | Kaneko | Jul 2008 | B2 |
7402515 | Arana et al. | Jul 2008 | B2 |
7410884 | Ramanathan et al. | Aug 2008 | B2 |
7432592 | Shi et al. | Oct 2008 | B2 |
7459785 | Daubenspeck et al. | Dec 2008 | B2 |
7470996 | Yoneyama et al. | Dec 2008 | B2 |
7494845 | Hwang et al. | Feb 2009 | B2 |
7495179 | Kubota et al. | Feb 2009 | B2 |
7528494 | Furukawa et al. | May 2009 | B2 |
7531890 | Kim | May 2009 | B2 |
7554201 | Kang et al. | Jun 2009 | B2 |
7557597 | Anderson et al. | Jul 2009 | B2 |
7569935 | Fan | Aug 2009 | B1 |
7576435 | Chao | Aug 2009 | B2 |
7659631 | Kamins et al. | Feb 2010 | B2 |
7714235 | Pedersen et al. | May 2010 | B1 |
7804177 | Lu et al. | Sep 2010 | B2 |
7834450 | Kang | Nov 2010 | B2 |
7939939 | Zeng et al. | May 2011 | B1 |
7946331 | Trezza et al. | May 2011 | B2 |
8026128 | Pendse | Sep 2011 | B2 |
8076232 | Pendse | Dec 2011 | B2 |
8093729 | Trezza | Jan 2012 | B2 |
8120175 | Farooq et al. | Feb 2012 | B2 |
8130475 | Kawamori et al. | Mar 2012 | B2 |
8158489 | Huang et al. | Apr 2012 | B2 |
8207604 | Haba et al. | Jun 2012 | B2 |
8232640 | Tomoda et al. | Jul 2012 | B2 |
8258055 | Hwang et al. | Sep 2012 | B2 |
8313213 | Lin et al. | Nov 2012 | B2 |
8367939 | Ishido | Feb 2013 | B2 |
8435881 | Choi et al. | May 2013 | B2 |
8576368 | Kim et al. | Nov 2013 | B2 |
8823166 | Lin et al. | Sep 2014 | B2 |
9105530 | Lin et al. | Aug 2015 | B2 |
9355980 | Chen et al. | May 2016 | B2 |
9583687 | Hwang | Feb 2017 | B2 |
20010013423 | Dalal et al. | Aug 2001 | A1 |
20010038147 | Higashi et al. | Nov 2001 | A1 |
20020033412 | Tung | Mar 2002 | A1 |
20020084528 | Kim et al. | Jul 2002 | A1 |
20020100974 | Uchiyama | Aug 2002 | A1 |
20020106832 | Hotchkiss et al. | Aug 2002 | A1 |
20020197811 | Sato | Dec 2002 | A1 |
20030049886 | Salmon | Mar 2003 | A1 |
20030092219 | Ouchi et al. | May 2003 | A1 |
20030094963 | Fang | May 2003 | A1 |
20030166331 | Tong et al. | Sep 2003 | A1 |
20030216025 | Lu et al. | Nov 2003 | A1 |
20030218250 | Kung et al. | Nov 2003 | A1 |
20030233133 | Greenberg et al. | Dec 2003 | A1 |
20040004284 | Lee et al. | Jan 2004 | A1 |
20040140538 | Harvey | Jul 2004 | A1 |
20040159944 | Datta et al. | Aug 2004 | A1 |
20040166661 | Lei | Aug 2004 | A1 |
20040212098 | Pendse | Oct 2004 | A1 |
20040251546 | Lee et al. | Dec 2004 | A1 |
20050017376 | Tsai | Jan 2005 | A1 |
20050062153 | Saito et al. | Mar 2005 | A1 |
20050158900 | Lee et al. | Jul 2005 | A1 |
20050212114 | Kawano et al. | Sep 2005 | A1 |
20050224991 | Yeo | Oct 2005 | A1 |
20050253264 | Aiba et al. | Nov 2005 | A1 |
20050277283 | Lin et al. | Dec 2005 | A1 |
20060012024 | Lin et al. | Jan 2006 | A1 |
20060017160 | Huang | Jan 2006 | A1 |
20060038303 | Sterrett et al. | Feb 2006 | A1 |
20060051954 | Lin et al. | Mar 2006 | A1 |
20060055032 | Chang et al. | Mar 2006 | A1 |
20060209245 | Mun et al. | Sep 2006 | A1 |
20060223313 | Yoon et al. | Oct 2006 | A1 |
20060279881 | Sato | Dec 2006 | A1 |
20060292824 | Beyne | Dec 2006 | A1 |
20070001280 | Hua | Jan 2007 | A1 |
20070012337 | Hillman et al. | Jan 2007 | A1 |
20070018294 | Sutardja | Jan 2007 | A1 |
20070020906 | Chiu | Jan 2007 | A1 |
20070023483 | Yoneyama et al. | Feb 2007 | A1 |
20070045840 | Varnau | Mar 2007 | A1 |
20070057022 | Mogami et al. | Mar 2007 | A1 |
20070114663 | Brown et al. | May 2007 | A1 |
20070200234 | Gerber et al. | Aug 2007 | A1 |
20080003402 | Haba et al. | Jan 2008 | A1 |
20080003715 | Lee et al. | Jan 2008 | A1 |
20080023850 | Lu et al. | Jan 2008 | A1 |
20080087998 | Kamins et al. | Apr 2008 | A1 |
20080128911 | Koyama | Jun 2008 | A1 |
20080150135 | Oyama et al. | Jun 2008 | A1 |
20080169544 | Tanaka et al. | Jul 2008 | A1 |
20080180376 | Kim et al. | Jul 2008 | A1 |
20080194095 | Daubenspeck et al. | Aug 2008 | A1 |
20080217047 | Hu | Sep 2008 | A1 |
20080218061 | Chao et al. | Sep 2008 | A1 |
20080277785 | Hwan et al. | Nov 2008 | A1 |
20090025215 | Murakami et al. | Jan 2009 | A1 |
20090042144 | Kitada et al. | Feb 2009 | A1 |
20090045499 | Kim et al. | Feb 2009 | A1 |
20090075469 | Furman et al. | Mar 2009 | A1 |
20090087143 | Jeon et al. | Apr 2009 | A1 |
20090096092 | Patel | Apr 2009 | A1 |
20090108443 | Jiang | Apr 2009 | A1 |
20090146316 | Jadhav et al. | Jun 2009 | A1 |
20090149016 | Park | Jun 2009 | A1 |
20090166861 | Lehr et al. | Jul 2009 | A1 |
20090174067 | Lin | Jul 2009 | A1 |
20090218702 | Beyne et al. | Sep 2009 | A1 |
20090233436 | Kim et al. | Sep 2009 | A1 |
20100007019 | Pendse | Jan 2010 | A1 |
20100044860 | Haba et al. | Feb 2010 | A1 |
20100052473 | Kimura et al. | Mar 2010 | A1 |
20100084763 | Yu | Apr 2010 | A1 |
20100141880 | Koito et al. | Jun 2010 | A1 |
20100193944 | Castro et al. | Aug 2010 | A1 |
20100200279 | Kariya et al. | Aug 2010 | A1 |
20100252926 | Kato et al. | Oct 2010 | A1 |
20100258950 | Li et al. | Oct 2010 | A1 |
20100270458 | Lake et al. | Oct 2010 | A1 |
20100276787 | Yu et al. | Nov 2010 | A1 |
20100314745 | Masumoto et al. | Dec 2010 | A1 |
20100327422 | Lee et al. | Dec 2010 | A1 |
20110001250 | Lin et al. | Jan 2011 | A1 |
20110024902 | Lin et al. | Feb 2011 | A1 |
20110038147 | Lin et al. | Feb 2011 | A1 |
20110074022 | Pendse | Mar 2011 | A1 |
20110084386 | Pendse | Apr 2011 | A1 |
20110101519 | Hsiao et al. | May 2011 | A1 |
20110101526 | Hsiao et al. | May 2011 | A1 |
20110169158 | Varanasi | Jul 2011 | A1 |
20110177686 | Zeng et al. | Jul 2011 | A1 |
20110186986 | Chuang et al. | Aug 2011 | A1 |
20110193220 | Kuo et al. | Aug 2011 | A1 |
20110227219 | Alvarado et al. | Sep 2011 | A1 |
20110244675 | Huang et al. | Oct 2011 | A1 |
20110248399 | Pendse | Oct 2011 | A1 |
20110260317 | Lu et al. | Oct 2011 | A1 |
20110285011 | Hwang et al. | Nov 2011 | A1 |
20110285023 | Shen et al. | Nov 2011 | A1 |
20120007230 | Hwang et al. | Jan 2012 | A1 |
20120007231 | Chang | Jan 2012 | A1 |
20120012997 | Shen et al. | Jan 2012 | A1 |
20120025365 | Haba | Feb 2012 | A1 |
20120040524 | Kuo et al. | Feb 2012 | A1 |
20120049346 | Lin et al. | Mar 2012 | A1 |
20120091577 | Hwang et al. | Apr 2012 | A1 |
20120098120 | Yu et al. | Apr 2012 | A1 |
20120098124 | Wu et al. | Apr 2012 | A1 |
20120146168 | Hsieh et al. | Jun 2012 | A1 |
20120223428 | Pendse | Sep 2012 | A1 |
20120306080 | Yu et al. | Dec 2012 | A1 |
20130026622 | Chuang et al. | Jan 2013 | A1 |
20130026629 | Nakano | Jan 2013 | A1 |
20130087920 | Jeng et al. | Apr 2013 | A1 |
20130093079 | Tu et al. | Apr 2013 | A1 |
20130181340 | Uehling et al. | Jul 2013 | A1 |
20130252418 | Arvin et al. | Sep 2013 | A1 |
20130270699 | Kuo et al. | Oct 2013 | A1 |
20130277830 | Yu et al. | Oct 2013 | A1 |
20130288473 | Chuang et al. | Oct 2013 | A1 |
20130341785 | Fu et al. | Dec 2013 | A1 |
20140048929 | Cha et al. | Feb 2014 | A1 |
20140054764 | Lu et al. | Feb 2014 | A1 |
20140054769 | Yoshida et al. | Feb 2014 | A1 |
20140054770 | Yoshida et al. | Feb 2014 | A1 |
20140061897 | Lin et al. | Mar 2014 | A1 |
20140061924 | Chen et al. | Mar 2014 | A1 |
20140077358 | Chen et al. | Mar 2014 | A1 |
20140077359 | Tsai et al. | Mar 2014 | A1 |
20140077360 | Lin et al. | Mar 2014 | A1 |
20140077365 | Lin et al. | Mar 2014 | A1 |
20140117533 | Lei et al. | May 2014 | A1 |
20140264890 | Breuer et al. | Sep 2014 | A1 |
20140346669 | Wang et al. | Nov 2014 | A1 |
20140353820 | Yu et al. | Dec 2014 | A1 |
20150091160 | Reber | Apr 2015 | A1 |
20150325542 | Lin et al. | Nov 2015 | A1 |
20160190090 | Yu | Jun 2016 | A1 |
20160254240 | Chen | Sep 2016 | A1 |
20160329293 | Cha et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
101080138 | Nov 2007 | CN |
101188219 | May 2008 | CN |
102254871 | Nov 2011 | CN |
102386158 | Mar 2012 | CN |
102468197 | May 2012 | CN |
1387402 | Feb 2004 | EP |
1020110002816 | Jan 2011 | KR |
1020110128532 | Nov 2011 | KR |
200826265 | Jun 2008 | TW |
200915452 | Apr 2009 | TW |
201143007 | Dec 2011 | TW |
2009140238 | Nov 2009 | WO |
Entry |
---|
Garrou, Phil, “IFTLE 58 Fine Pitch Microjoints, Cu Pillar Bump-on-Lead, Xillinx Interposer Reliability,” Solid State Technology, Insights for Electronic Manufacturing, Jul. 18, 2011, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20150357301 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61707442 | Sep 2012 | US | |
61707609 | Sep 2012 | US | |
61707644 | Sep 2012 | US | |
61702624 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13712722 | Dec 2012 | US |
Child | 14828147 | US |