1. Field of the Invention
This application relates generally to the deposition of silicon-containing materials, and more particularly to chemical vapor deposition of silicon-containing films over mixed substrates.
2. Description of the Related Art
A variety of methods are used in the semiconductor manufacturing industry to deposit materials onto surfaces. For example, one of the most widely used methods is chemical vapor deposition (“CVD”), in which atoms or molecules contained in a vapor deposit on a surface and build up to form a film. Deposition of silicon-containing (“Si-containing”) materials using conventional silicon sources and deposition methods is believed to proceed in several distinct stages, see Peter Van Zant, “Microchip Fabrication,” 4th Ed., McGraw Hill, New York, (2000), pp. 364-365. Nucleation, the first stage, is very important and is greatly affected by the nature and quality of the substrate surface. Nucleation occurs as the first few atoms or molecules deposit onto the surface and form nuclei. During the second stage, the isolated nuclei form small islands that grow into larger islands. In the third stage, the growing islands begin coalescing into a continuous film. At this point, the film typically has a thickness of a few hundred angstroms and is known as a “transition” film. It generally has chemical and physical properties that are different from the thicker bulk film that begins to grow after the transition film is formed.
Deposition processes are usually designed to produce a particular type of bulk film morphology, e.g., epitaxial, polycrystalline or amorphous. When using conventional silicon sources and deposition processes, nucleation is very important and critically dependent on substrate quality. For example, attempting to grow a single-crystal film on a wafer with islands of unremoved oxide will result in regions of polysilicon in the bulk film. Because of these nucleation issues, deposition of thin film Si-containing materials with similar physical properties onto substrates having two or more different types of surfaces using conventional silicon sources and deposition methods is often problematic.
For example, silicon tetrachloride (SiCl4), silane (SiH4), and dichlorosilane (SiH2Cl2) are the most widely used silicon sources in the semiconductor manufacturing industry for depositing Si-containing films, see Peter Van Zant, “Microchip Fabrication,” 4th Ed., McGraw Hill, New York, (2000), p 380-382. However, deposition using these conventional silicon sources is generally difficult to control over mixed substrates, such as surfaces containing both single crystal silicon and silicon dioxide. Control is difficult because the morphology and thickness of the resulting Si-containing film depend on both the deposition temperature and the morphology of the underlying substrate. Other deposition parameters, including total reactor pressure, reactant partial pressure and reactant flow rate can also strongly influence the quality of depositions over mixed substrates.
For example,
In theory, the deposition parameters could be adjusted to improve the film formation over the oxide surface, but in practice this is rarely an option because such an adjustment would be likely to negatively impact the desired epitaxial film quality. In many cases, the desired performance characteristics of the resulting semiconductor device dictate the thickness, morphology, temperature of deposition and allowable deposition rate of the Si-containing film that is deposited over the epitaxial surface. The needed thickness and morphology, in turn, dictate the deposition conditions for the film. This is especially the case for heteroepitaxial films that are strained on single crystal silicon substrates. Therefore, the manufacturer generally has little freedom to adjust the conditions to alter the characteristics of the film over the oxide surface. Similar problems are also encountered in situations involving other mixed substrates.
In the past, manufacturers have approached such problems through the use of selective deposition or additional masking and/or process steps. For example, U.S. Pat. No. 6,235,568 notes that one is presently unable to selectively deposit a silicon film onto p-type and n-type silicon surfaces at the same time. U.S. Pat. No. 6,235,568 purports to provide a solution to this problem by carrying out a pre-deposition low energy blanket ion implantation step. The stated purpose of this additional step is to make the surfaces appear the same to a subsequent deposition process.
However, additional process steps are generally undesirable because they may increase expense, contamination and/or complication. The ability to deposit satisfactory mixed morphology Si-containing films over mixed substrates would satisfy a long-felt need and represent a significant advance in the art of semiconductor manufacturing.
Methods have now been discovered that utilize trisilane to deposit high quality Si-containing films over a variety of substrates. In accordance with one aspect of the invention, a deposition method is provided, comprising:
In accordance with another aspect of the invention, a high-rate deposition method is provided, comprising:
In another aspect of the invention, a method for making a base structure for a heterojunction bioplar transistor (HBT) is provided, comprising:
In another preferred embodiment, a method for reducing the number of steps in a semiconductor device manufacturing process is provided, comprising:
These and other aspects of the invention will be better understood in view of the preferred embodiments, described in greater detail below.
Deposition processes have now been discovered that are much less sensitive to nucleation phenomena. These processes employ trisilane (H3SiSiH2SiH3) to enable the deposition of high quality Si-containing films over mixed substrates.
As used herein, a “mixed substrate” is a substrate that has two or more different types of surfaces. There are various ways that surfaces can be different from each other. For example, the surfaces can be made from different elements such as copper or silicon, or from different metals, such as copper or aluminum, or from different Si-containing materials, such as silicon or silicon dioxide. Even if the materials are made from the same element, the surfaces can be different if the morphologies of the surfaces are different. The electrical properties of surfaces can also make them different from each other. In the illustrated examples, silicon-containing layers are simultaneously formed over conductive semiconductive materials and dielectrics. Examples of dielectric materials include silicon dioxide, silicon nitride, metal oxide, and metal silicate.
The processes described herein are useful for depositing Si-containing films on a variety of mixed substrates, but are particularly useful for substrates having mixed surface morphologies. Such a mixed substrate comprises a first surface having a first surface morphology and a second surface having a second surface morphology. In this context, “surface morphology” refers to the crystalline structure of the substrate surface. Amorphous and crystalline are examples of different morphologies. Polycrystalline morphology is a crystalline structure that consists of a disorderly arrangement of orderly crystals and thus has an intermediate degree of order. The atoms in a polycrystalline material have long range order within each of the crystals, but the crystals themselves lack long range order with respect to one another. Single crystal morphology is a crystalline structure that has a high degree of order. Epitaxial films are characterized by a crystal structure and orientation that is identical to the substrate upon which they are grown. The atoms in these materials are arranged in a lattice-like structure that persists over relatively long distances (on an atomic scale). Amorphous morphology is a non-crystalline structure having a low degree of order because the atoms lack a definite periodic arrangement. Other morphologies include microcrystalline and mixtures of amorphous and crystalline material.
Specific examples of mixed substrates are shown in
Under the CVD conditions taught herein, the delivery of trisilane to the surface of a mixed substrate results in the formation of a Si-containing film. Preferably, delivery of the trisilane to the mixed or patterned substrate surface is accomplished by introducing the trisilane to a suitable chamber having the mixed substrate disposed therein. By establishing CVD conditions in the chamber and supplying trisilane to the mixed substrate surface, a high quality Si-containing film can be deposited onto the mixed substrate over the various surface types. Deposition may be suitably conducted according to the various CVD methods known to those skilled in the art, but the greatest benefits are obtained when deposition is conducted according to the CVD methods taught herein. The disclosed methods may be suitably practiced by employing CVD, including plasma-enhanced chemical vapor deposition (PECVD) or thermal CVD, utilizing gaseous trisilane to deposit a Si-containing film onto a mixed substrate contained within a CVD chamber. Thermal CVD is preferred.
Thermal CVD is preferably conducted at a substrate temperature of about 400° C. or greater, more preferably about 450° C. or greater, even more preferably about 500° C. or greater. Preferably, deposition takes place at a temperature of about 750° C. or less, more preferably about 725° C. or less, most preferably about 700° C. or less. The substrate can be heated by a variety of manners known in the art. Those skilled in the art can adjust these temperature ranges to take into account the realities of actual manufacturing, e.g., preservation of thermal budget, deposition rate, etc. Preferred deposition temperatures thus depend on the desired application, but are typically in the range of about 400° C. to about 750° C., preferably about 425° C. to about 725° C., more preferably about 450° C. to about 700° C.
Trisilane is preferably introduced to the chamber in the form of a gas or as a component of a feed gas. The total pressure in the CVD chamber is preferably in the range of about 0.001 torr to about 1000 torr, more preferably in the range of about 0.1 torr to about 850 torr, most preferably in the range of about 1 torr to about 760 torr. The partial pressure of trisilane is preferably in the range of about 0.0001% to about 100% of the total pressure, more preferably about 0.001% to about 50% of the total pressure. The feed gas can include a gas or gases other than trisilane, such as inert carrier gases. Hydrogen and nitrogen are preferred carrier gases for the methods described herein. Preferably, trisilane is introduced to the chamber by way of a bubbler used with a carrier gas to entrain trisilane vapor, more preferably a temperature controlled bubbler.
A suitable manifold may be used to supply feed gas(es) to the CVD chamber. In the illustrated embodiments, the gas flow in the CVD chamber is horizontal, most preferably the chamber is a single-wafer, single pass, laminar horizontal gas flow reactor, preferably radiantly heated. Suitable reactors of this type are commercially available, and preferred models include the Epsilon™ series of single wafer reactors commercially available from ASM America, Inc. of Phoenix, Ariz. While the methods described herein can also be employed in alternative reactors, such as a showerhead arrangement, benefits in increased uniformity and deposition rates have been found particularly effective in the horizontal, single-pass laminar gas flow arrangement of the Epsilon™ chambers, employing a rotating substrate, particularly with low process gas residence times. CVD may be conducted by introducing plasma products (in situ or downstream of a remote plasma generator) to the chamber, but thermal CVD is preferred.
The feed gas may also contain other materials known by those skilled in the art to be useful for doping or alloying Si-containing films, as desired. Preferably the gas further comprises of one or more precursors selected from the group consisting of germanium source, carbon source, boron source, gallium source, indium source, arsenic source, phosphorous source, antimony source, nitrogen source and oxygen source. Specific examples of such sources include: silane, disilane and tetrasilane as silicon sources; germane, digermane and trigermane as germanium sources; NF3, ammonia, hydrazine and atomic nitrogen as nitrogen sources; various hydrocarbons, e.g., methane, ethane, propane, etc. as carbon sources; monosilylmethane, disilylmethane, trisilylmethane, and tetrasilylmethane as sources of both carbon and silicon; N2O and NO2 as sources of both nitrogen and oxygen; and various dopant precursors as sources of dopants such as antimony, arsenic, boron, gallium, indium and phosphorous.
Incorporation of dopants into Si-containing films by CVD using trisilane is preferably accomplished by in situ doping using dopant precursors. Precursors for electrical dopants include diborane, deuterated diborane, phosphine, arsenic vapor, and arsine. Silylphosphines [(H3Si)3-xPRx] and silylarsines [(H3Si)3-xAsRx] where x=0-2 and Rx=H and/or D are preferred precursors for phosphorous and arsenic dopants. SbH3 and trimethylindium are preferred sources of antimony and indium, respectively. Such dopant precursors are useful for the preparation of preferred films as described below, preferably boron-, phosphorous-, antimony-, indium-, and arsenic-doped silicon, SiC, SiGe and SiGeC films and alloys. As used herein, “SiC”, “SiGe”, and “SiGeC” represent materials that contain the indicated elements in various proportions. For example, “SiGe” is a material that comprises silicon, germanium and, optionally, other elements, e.g., dopants. “SiC”, “SiGe”, and “SiGeC” are not chemical stoichiometric formulas per se and thus are not limited to materials that contain particular ratios of the indicated elements.
The amount of dopant precursor in the feed gas may be adjusted to provide the desired level of dopant in the Si-containing film. Typical concentrations in the feed gas can be in the range of about 1 part per billion (ppb) to about 1% by weight based on total feed gas weight, although higher or lower amounts are sometimes preferred in order to achieve the desired property in the resulting film. In the preferred Epsilon™ series of single wafer reactors, dilute mixtures of dopant precursor in a carrier gas can be delivered to the reactor via a mass flow controller with set points ranging from about 10 to about 200 standard cubic centimeters per minute (sccm), depending on desired dopant concentration and dopant gas concentration. The dilute mixture is preferably further diluted by mixing with trisilane and any suitable carrier gas. Since typical total flow rates for deposition in the preferred Epsilon™ series reactors often range from about 20 standard liters per minute (slm) to about 180 slm, the concentration of the dopant precursor used in such a method is small relative to total flow.
Deposition of the Si-containing films described herein is preferably conducted at a rate of about 5 Å per minute or higher, more preferably about 10 Å per minute or higher, most preferably about 20 Å per minute or higher. A preferred embodiment provides a high rate deposition method in which trisilane is delivered to the mixed substrate surface at a delivery rate of at least about 0.001 milligram per minute per square centimeter of the substrate surface, more preferably at least about 0.003 milligram per minute per square centimeter of the substrate surface. Under CVD conditions, preferably at a deposition temperature in the range of about 450° C. to about 700° C., practice of this embodiment results in relatively fast deposition of the Si-containing material (as compared to other silicon sources), preferably at a rate of about 10 Å per minute or higher, more preferably about 25 Å per minute or higher, most preferably about 50 Å per minute or higher. Preferably, a germanium source is also delivered to the surface along with the trisilane to thereby deposit a SiGe-containing material as the Si-containing material.
In a preferred embodiment, a mixed-morphology Si-containing film is deposited onto the mixed substrate. A “mixed-morphology,” as used herein, film is a film that comprises two or more different morphologies in different lateral regions of the substrate.
The morphologies of the mixed-morphology film depend on the deposition temperature, pressure, reactant partial pressure(s) and reactant flow rates and the surface morphologies of the underlying substrate. Using trisilane, silicon-containing materials capable of forming single crystal films tend to form over properly prepared single crystal surfaces, whereas non-single crystal films tend to form over non-single crystalline surfaces. Epitaxial film formation is favored for silicon-containing materials capable of forming pseudomorphic structures when the underlying single crystal surface has been properly treated, e.g., by ex-situ wet etching of any oxide layers followed by in situ cleaning and/or hydrogen bake steps, and when the growth conditions support such film growth. Such treatment methods are known to those skilled in the art, see Peter Van Zant, “Microchip Fabrication,” 4th Ed., McGraw Hill, New York, (2000), pp. 385. Polycrystalline and amorphous film formation is favored over amorphous and polycrystalline surfaces and over single crystal surfaces that have not been treated to enable epitaxial film growth. Amorphous film formation is favored over amorphous and polycrystalline substrate surfaces at low temperatures, while polycrystalline films tend to form over amorphous and polycrystalline surfaces at relatively high deposition temperatures.
In the illustrated embodiment shown in
Trisilane is preferably delivered to the mixed substrate surface for a period of time and at a delivery rate that is effective to form a Si-containing film having the desired thickness. Film thickness over a particular surface can range from about 10 Å to about 10 microns or even more, depending on the application. Preferably, the thickness of the Si-containing film over any particular surface is in the range of about 50 Å to about 5,000 Å, more preferably about 250 Å to about 2,500 Å.
For a mixed substrate comprising a first surface having a first surface morphology and a second surface having a second surface morphology, the Si-containing film deposited onto this mixed substrate preferably has a thickness T1 over the first surface and a thickness T2 over the second surface such that T1:T2 is in the range of about 10:1 to about 1:10, more preferably about 5:1 to about 1:5, even more preferably about 2.:1 to about 1:2, and most preferably about 1.3:1 to about 1:1.3. Surprisingly, trisilane deposition under the CVD conditions described herein tends to produce a Si-containing film having a thickness that is approximately proportional to deposition time and relatively independent of underlying surface morphology. More particularly, trisilane enables rapid nucleation and smooth film formation over dielectric surfaces, as compared to conventional silicon precursors. Compare
In a preferred embodiment, the Si-containing film is a buffer layer having a thickness of about 1,000 Å or less, preferably a thickness in the range of about 10 Å to about 500 Å, more preferably in the range of about 50 Å to about 300 Å. In this context, a “buffer layer” is a Si-containing film that is deposited onto a substrate for the purpose of facilitating the deposition of a subsequent layer or protecting an underlying layer. When the buffer layer is used for the purpose of facilitating nucleation, it may also be referred to as a nucleation layer. The thickness ranges described above refer to deposition over the entire mixed substrate, e.g., over both the crystalline and amorphous surfaces.
For example, the Si-containing film 210 in
For the purpose of describing the buffer layer 210 in
In addition to achieving deposition per se over both types of surfaces, it is also usually desirable for the deposited film to have a uniform elemental composition over both surfaces. For example, the relative amounts of silicon and germanium in the overlying film 280 are preferably relatively constant across the film, over both the region 240 and the region 260. However, in addition to the problem of different deposition rates over the two underlying surfaces, the composition of the deposited film also tends to vary when using conventional silicon and germanium sources. For example, when silane and germane are used to deposit a SiGe film directly onto a mixed substrate, both the thickness and the composition of the resulting film varies considerably over underlying mixed surfaces.
Use of a buffer layer is particularly helpful in situations such as this, where the film being deposited contains two or more elements, because deposition onto a buffer layer preferably produces a film that is more uniform in both thickness and composition. Even using conventional sources of silicon and germanium for depositing over the buffer layer 210 in
In a preferred embodiment, trisilane is used in a method for making a base structure for a bipolar transistor. The method for making the base structure comprises providing a substrate surface that comprises an active area and an insulator and supplying trisilane to the substrate surface under conditions effective to deposit a silicon-containing film onto the substrate over both the active area and the insulator.
In a preferred embodiment, the Si-containing film is deposited onto the mixed substrate in the form of a SiGe-containing film, preferably a SiGe or a SiGeC film, comprising from about 0.1 atomic % to about 80 atomic % germanium, preferably about 1 atomic % to about 60 atomic %. The SiGe-containing film is preferably deposited by simultaneously introducing a germanium source and trisilane to the chamber, more preferably by using a mixture of trisilane and a germanium source. The SiGe-containing film may be deposited onto a buffer layer as described above, preferably onto a silicon or doped silicon buffer layer, or directly onto the mixed substrate. More preferably, the germanium source is germane or digermane. The relative proportions of elements in the film, e.g., silicon, germanium, carbon, dopants, etc., are preferably controlled by varying the feed gas composition as discussed above. The germanium concentration may be constant through the thickness of the film or a graded film can be produced by varying the concentration of the germanium source in the feed gas during the deposition.
A preferred gas mixture for the deposition of SiGe comprises a hydrogen carrier gas, germane or digermane as the germanium source, and trisilane. The weight ratio of trisilane to germanium source in the feed gas is preferably in the range of about 10:90 to about 99:1, more preferably about 20:80 to about 95:5. To achieve preferred high rate deposition as described above, the germanium source is preferably delivered to the mixed substrate at a delivery rate of at least about 0.001 milligrams per minute per square centimeter of the mixed substrate surface, more preferably at least about 0.003 milligrams per minute per square centimeter of the mixed substrate surface. The delivery rate of the germanium source is preferably adjusted in concert with the delivery rate of trisilane to achieve the desired deposition rate and film composition. Preferably, the delivery rate of the germanium source is varied to produce a graded germanium concentration SiGe or SiGeC film.
Preferably, the surface morphology and composition of at least one surface of the underlying mixed substrate is effective to allow strained heteroepitaxial growth of SiGe films thereon. A “heteroepitaxial” deposited layer is an epitaxial film that has a different composition than the single crystal substrate onto which it is deposited. A deposited epitaxial layer is “strained” when it is constrained to have a lattice structure in at least two dimensions that is the same as that of the underlying single crystal substrate, but different from its inherent lattice constant. Lattice strain is present because the atoms depart from the positions that they would normally occupy in the lattice structure of the free-standing, bulk material when the film deposits in such a way that its lattice structure matches that of the underlying single crystal substrate.
CVD using trisilane and a germanium source enables the formation of Si-containing films such as SiGe or SiGeC over mixed substrates.
A gas comprising hydrogen (carrier gas) and a mixture of trisilane and germane is delivered to the oxide surface 330 and active area surface 340 under CVD conditions. In an alternate embodiment (not shown in
An additional Si-containing cap layer can be deposited onto the Si-containing layer. Preferably, the deposition of the cap layer is carried out using trisilane in the manner described herein for the deposition of Si-containing films. For example, in the embodiment illustrated in
The composition and thickness of the deposited Si-containing film is preferably relatively uniform. More preferably, the silicon content varies throughout the volume of the film by about 20% or less, more preferably by about 10% or less, most preferably by about 2% or less, based on the average composition. Film composition is preferably determined using Secondary Ion Mass Spectrometry (SIMS). For example, in the illustrated embodiment, the SiGe film 350 has a silicon content of about 88% in the non-epitaxial region 360 over the amorphous surface 330 and a silicon content of about 92% in the epitaxial region 370 over the single-crystal surface 340. Thus, as compared to the average silicon content in the SiGe film 350 of about 90%, the silicon content in the illustrated embodiment varies throughout the volume of the film by about 2%. Preferably, the thickness of the deposited film varies across the surface of the film by about 50% or less, more preferably by about 25% or less, most preferably by about 10% or less, based on the average thickness. Film thickness is preferably determined by cross-sectioning a sample of the film and measuring the thickness by electron microscopy. For example, in the illustrated embodiment, the film 350 has a thickness of about 2400 Å in the region 360 over the amorphous surface 330 and a thickness of about 2600 Å in the region 370 over the single-crystal surface 340. Thus, as compared to the average film thickness for the film 350 of 2500 Å, the thickness in the illustrated embodiment varies across the surface of the film by about 4% (±100 Å), based on the average thickness.
Reference is now made to
A first-deposited film 410 is an optional buffer layer that is preferably deposited over the single crystal surface 408 and field isolation regions 404 using trisilane at a deposition temperature in the range of about 580° C. to about 700° C. to a preferred thickness of about 500 Å or less. The buffer layer is optionally n-doped using a dopant precursor, preferably in situ. In they illustrated embodiment, the buffer layer 410 is a 50 Å arsenic-doped mixed morphology film having an epitaxial region 412 over the single-crystal surface 408 and polycrystalline regions 414 over the field isolation regions 404. It is deposited by CVD using trisilane and a small amount of trisilylarsine as a dopant precursor at a deposition temperature of about 600° C. The buffer layer 410 is used to facilitate subsequent deposition during fabrication and the epitaxial region 412 functions as part of the collector in the resulting device.
A second film 416 is a p+ SiGe layer that is deposited onto the buffer layer 410 using a mixture of trisilane and a germanium source with a small amount of p dopant precursor, preferably by CVD at a temperature in the range of about 580° C. to about 700° C. The SiGe film 416 has an epitaxial region 420 over the single-crystal surface 408 and polycrystalline or amorphous regions 418 over the field isolation regions 404, corresponding to the immediately underlying epitaxial region 412 and the non-epitaxial regions 414 of the silicon buffer layer 410, respectively. The buffer layer 410 (if used) more preferably has a thickness of about 100 Å or less and facilitates simultaneous deposition of the epitaxial region 420 and the polycrystalline or amorphous regions 418 without a separate masking step. Preferably, the SiGe layer 416 contains about 1×1016 to about 5×1022 atoms/cm3 of a p dopant. Boron is a preferred p dopant and diborane is a preferred dopant precursor.
The epitaxial region 420 of the SiGe layer 416 is a heteroepitaxial layer and accordingly is compressively strained, i.e., it has a bulk lattice constant that does not exactly match that of the underlying epitaxial silicon region 412. To provide increased device performance, it is usually advantageous to have a relatively high germanium content in the SiGe layer. However, greater amounts of germanium increase the amount of strain. As the thickness of the SiGe layer increases above a certain thickness, called the critical thickness, the formation of misfit dislocations at the film/substrate interface becomes energetically favorable. Such dislocations lead to reduced carrier mobility, current leakage, reduced device performance and even device failure.
For example, SiGe containing about 10% germanium has a critical thickness of about 300 Å for an equilibrium (stable) strained film and about 2,000 Å for a metastable, strained film on Si<100>. When the SiGe layer is thinner than about 500 Å, higher concentrations of germanium can be utilized because they can be incorporated without causing the formation of misfit dislocations. For a germanium content of about 50%, the critical thickness is about 100 Å for a metastable, compressively strained film on Si<100>. When the SiGe layer is thicker than about 1,000 Å, lower concentrations of germanium are typically preferred in order to reduce the risk of device malfunction due to formation of misfit dislocations. The SiGe layer 416 preferably contains germanium in an amount in the range of from about 5 atomic % to about 50 atomic %, more preferably about 10 atomic % to about 30 atomic %, and the thickness is preferably in the range of about 100 Å to about 1,500 Å. The germanium concentration and thickness are preferably adjusted in concert to produce a strained structure while avoiding misfit dislocations in the as-deposited structures.
In the illustrated embodiment, the epitaxial region 420 of the SiGe layer 416 is compressively strained. The epitaxial region 420 of the SiGe layer 416 contains about 10 atomic % germanium and about 1×1019 atoms/cm3 of boron, and is deposited using trisilane and germane (about 15:1 by volume, respectively) with a small amount of diborane as dopant precursor. The resulting boron-doped SiGe layer 416 is a mixed morphology film having a thickness of about 1,000 Å. The epitaxial region 420 of the SiGe layer 416 functions as a base in the resulting device.
A third film 422 is a doped silicon cap layer that is deposited onto the film 416 by CVD using trisilane and, optionally, a small amount of a p dopant precursor at a deposition temperature in the range of about 580° C. to about 650° C. The resulting p-doped cap layer 422 preferably has a thickness in the range of about 300 Å to about 1,000 Å. The film 422 is also a mixed morphology film having an epitaxial region 424 over the single-crystal surface 408 and polycrystalline regions 426 over the field isolation regions 404. In the illustrated embodiment, the film 422 is doped with boron using diborane as an in situ dopant precursor to achieve a dopant level in the range of about 1×1017 to about 1×1020 atoms/cm3. It is deposited at a deposition temperature of about 600° C. and has a thickness of about 500 Å.
The cap layer 422 helps to maintain the metastable strain of the SiGe layer during subsequent processing steps and facilitates the formation of the emitter-base junction at the desired depth within the structure. When trisilane is used as the silicon source, greater compositional uniformity across the surface of the substrate is preferably achieved. Thus, the amount of p dopant in the polycrystalline regions 418 and 426 is preferably about the same as the level of p dopant in the epitaxial base region 420. Additional layers, e.g., an emitter, may be deposited onto the structure shown in
It is apparent from the foregoing that the number of steps in a semiconductor manufacturing process can be advantageously reduced by replacing a conventional silicon source with trisilane. For example, the step of depositing a buffer layer 414 can be omitted when trisilane is used to deposit SiGe directly onto both surfaces instead of a silicon source such as silane, disilane, dichlorosilane, trichlorosilane or tetrachlorosilane. Moreover, with or without the buffer layer 414 of the preferred embodiments, trisilane facilitates deposition over heterogeneous surfaces in one step; in contrast, the use of a conventional silicon source in a process (see
Thus, in a preferred embodiment, a method is provided for reducing the number of steps in a semiconductor device manufacturing process. Preferably, this method comprises identifying a semiconductor device manufacturing process that comprises depositing a first silicon-containing film onto a first surface using a first silicon source and, in a separate step, depositing a second silicon-containing film onto a second surface using a second silicon source, wherein the surfaces are different. The preferred method further comprises modifying the identified semiconductor device manufacturing process by replacing the first and second silicon sources with trisilane and depositing a silicon-containing film onto the first surface and the second surface in the same step. Preferably, the first and/or second silicon source is silane, the first surface is a single-crystal surface, and the second surface is amorphous or polycrystalline.
In a preferred embodiment, the semiconductor device manufacturing process is modified by eliminating a masking step. Masking steps are conventionally employed to obtain deposition over heterogeneous surfaces. For example, in the process flow illustrated in
A series of masking and etching steps are used to replace the undesired polycrystalline morphology in the region 550 with the desired epitaxial morphology. Using known photolithography techniques, a photoresist mask 560 is formed and patterned as illustrated in
The processes of the preferred embodiments involve the use of trisilane to deposit a Si-containing film over both surfaces of a mixed substrate in a single step, thus eliminating masking, etching, and separate deposition steps of
A substrate was provided consisting of a 1500 Å SiO2 (“oxide”) coating deposited onto a Si(100) wafer. The substrate was patterned to remove about 20% of the oxide coating to expose the underlying Si(100) wafer, thus creating a mixed substrate having a single-crystal surface and an amorphous oxide surface. The mixed substrate was then etched in a solution of dilute hydrofluoric acid, rinsed and dried. The mixed substrate was then loaded into an Epsilon E2500™ reactor system and subjected to a hydrogen bake at 900° C. at atmospheric pressure under a flow of 80 slm of ultra-pure hydrogen for 2 minutes. The mixed substrate was then allowed to reach thermal equilibrium at 600° C. at 40 Torr pressure under a flow of 20 slm of ultra-pure hydrogen gas. The steps of etching, drying, rinsing, and baking rendered the single crystal surface active for epitaxial film growth.
Pure hydrogen gas was then passed through liquid trisilane (maintained at room temperature using a water bath around the bubbler containing the trisilane) in order to deliver trisilane vapor to the heated substrate. The hydrogen/trisilane mixture, along with a flow of 90 sccm (inject) of trisilylarsine (100 ppm, 90 sccm mixed with 2 slm ultra-pure hydrogen) and 20 slm ultra-pure hydrogen, was then introduced into the reactor at a flow rate of 90 sccm for 15 seconds. A continuous, arsenic-doped, amorphous silicon film having a thickness of about 50 Å was deposited on the exposed oxide. A high crystal quality, arsenic-doped epitaxial silicon film having a thickness of about 45 Å was simultaneously deposited on the exposed Si<100> active areas. The trisilylarsine flow was then terminated. This deposition served as a buffer layer.
A graded-germanium concentration, boron doped film was then deposited in several sequential, uninterrupted steps using a trisilane/hydrogen flow rate of 25 sccm. First, germane (1.5% in ultra-pure H2) was introduced into the reactor using a flow ramped from 0 sccm to 30 sccm over 45 seconds. Second, the germane flow was held constant at 30 sccm for 30 seconds. Third, the flow was changed to 20 sccm for 30 seconds. Fourth, the flow was changed to 15 sccm for 10 seconds while a flow of 90 sccm (inject) of diborane (100 ppm, 90 sccm mixed with 2 slm ultra-pure hydrogen) was also introduced into the reactor. Fifth, the diborane flow was held constant and the germane flow was reduced to 10 sccm for 30 seconds. A continuous, smooth, highly uniform amorphous silicon germanium film, partially doped with boron, having a total thickness of 1,000 Å was deposited on the amorphous silicon layer deposited in the first step. A high crystal quality, heteroepitaxial SiGe film having a total thickness of 1,100 Å, partially doped with boron, was deposited on the epitaxial silicon film deposited in the first step.
A boron-doped silicon cap layer was then deposited by maintaining the diborane flow, terminating the germane flow and increasing the trisilane/hydrogen flow rate to 90 sccm for 150 seconds. A continuous, smooth, boron-doped amorphous silicon film having a thickness of 490 Å was deposited on the amorphous SiGe layer deposited during the second deposition sequence. A high crystal quality, heteroepitaxial, boron-doped silicon film having a thickness of 475 Å was deposited on the heteroepitaxial SiGe layer deposited during the second deposition sequence. All of the film physical properties for all of the layers were highly uniform with respect to thickness and elemental concentration uniformity across the entire surface.
This example illustrates the use of trisilane in an isothermal, isobaric deposition process to deposit a Si(As)/SiGe(B)/Si(B) filmstack on a patterned dielectric substrate, similar to the structure shown in
A Si-containing film was deposited onto a SiO2 substrate (without a nucleation layer) at a temperature of 600° C. using silane and germane as precursors. The surface roughness of the resulting SiGe film (as measured by atomic force microscopy) was 226 Å for a 10 micron×10 micron scan area. Scanning electron microscopy (SEM) of the SiGe film revealed pyramidal, faceted grains indicative of an island-type deposition, as demonstrated in the SEM micrographs shown in
A Si-containing film was deposited at 600° C. as described in Example 2, but trisilane and germane were used in place of silane and germane as precursors. The surface roughness of the resulting SiGe film (as measured by atomic force microscopy) was 18.4 Å for a 10 micron×10 micron scan area. SEM of the SiGe film revealed a much more uniform surface, as demonstrated in the SEM micrographs shown in
A series of Si-containing films were deposited onto a SiO2 substrate (without a nucleation layer) at a pressure of 40 torr using trisilane and germane. The trisilane flow rate was constant at 77 sccm (hydrogen carrier, bubbler) for the examples of Table 1. Germane flow (10% germane, 90% H2) and deposition temperature were varied as shown in Table 1. Germanium concentration (atomic %) and thickness of the resulting SiGe films were determined by RBS, and surface roughness was determined by atomic force microscopy (AFM). The results shown in Table 1 demonstrate that highly uniform films can be prepared over a range of temperatures and flow rate conditions, particularly over a range of germane concentration, and further illustrate the relative insensitivity of deposition to surface morphology when trisilane is used.
It will be appreciated by those skilled in the art that various omissions, additions and variations may be made to the compositions and processes described above without departing from the scope of the invention, and all such modifications and changes are intended to fall within the scope of the invention, as defined by the appended claims.
This application is a divisional of U.S. application Ser. No. 10/918,547, filed Aug. 12, 2004, which is a continuation of U.S. application Ser. No. 10/074,633, filed Feb. 11, 2002, now U.S. Pat. No. 6,900,115, issued May 31, 2005, which claims priority to U.S. Provisional Application No. 60/268,337, filed Feb. 12, 2001; U.S. Provisional Application No. 60/279,256, filed Mar. 27, 2001; U.S. Provisional Application No. 60/311,609, filed Aug. 9, 2001; U.S. Provisional Application No. 60/323,649, filed Sep. 19, 2001; U.S. Provisional Application No. 60/332,696, filed Nov. 13, 2001; U.S. Provisional Application No. 60/333,724, filed Nov. 28, 2001; and U.S. Provisional Application No. 60/340,454, filed Dec. 7, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3900597 | Chruma et al. | Aug 1975 | A |
4118539 | Hirai et al. | Oct 1978 | A |
4200666 | Reinberg | Apr 1980 | A |
4217374 | Ovshinsky et al. | Aug 1980 | A |
4237150 | Wiesmann | Dec 1980 | A |
4363828 | Brodsky et al. | Dec 1982 | A |
4379020 | Glaeser et al. | Apr 1983 | A |
4444812 | Gutsche | Apr 1984 | A |
4452875 | Ogawa et al. | Jun 1984 | A |
4481229 | Suzuki et al. | Nov 1984 | A |
4495218 | Azuma et al. | Jan 1985 | A |
4557794 | McGinn et al. | Dec 1985 | A |
4578142 | Corboy, Jr. et al. | Mar 1986 | A |
4585671 | Kitagawa et al. | Apr 1986 | A |
4592933 | Meyerson et al. | Jun 1986 | A |
4615762 | Jastrzebski et al. | Oct 1986 | A |
4631804 | Roy | Dec 1986 | A |
4634605 | Wiesmann | Jan 1987 | A |
4684542 | Jasinski et al. | Aug 1987 | A |
4695331 | Ramaprasad | Sep 1987 | A |
4707197 | Hensel et al. | Nov 1987 | A |
4720395 | Foster | Jan 1988 | A |
4737379 | Hudgens et al. | Apr 1988 | A |
4745088 | Inoue et al. | May 1988 | A |
4755481 | Faraone | Jul 1988 | A |
4854263 | Chang et al. | Aug 1989 | A |
4871416 | Fukuda | Oct 1989 | A |
4891092 | Jastrzebski | Jan 1990 | A |
4894352 | Lane et al. | Jan 1990 | A |
4933206 | Cox | Jun 1990 | A |
4963506 | Liaw et al. | Oct 1990 | A |
4966861 | Mieno et al. | Oct 1990 | A |
4992299 | Hochberg et al. | Feb 1991 | A |
5037666 | Mori | Aug 1991 | A |
5080933 | Grupen-Shemansky et al. | Jan 1992 | A |
5082696 | Sharp | Jan 1992 | A |
5091761 | Hiraiwa et al. | Feb 1992 | A |
5110757 | Arst et al. | May 1992 | A |
5112773 | Tuttle | May 1992 | A |
5192714 | Suguro et al. | Mar 1993 | A |
5194398 | Miyachi et al. | Mar 1993 | A |
5198387 | Tang | Mar 1993 | A |
5214002 | Hayashi et al. | May 1993 | A |
5227329 | Kobayashi et al. | Jul 1993 | A |
5231056 | Sandhu | Jul 1993 | A |
5234609 | Kashida et al. | Aug 1993 | A |
5242847 | Ozturk et al. | Sep 1993 | A |
5250452 | Ozturk et al. | Oct 1993 | A |
5324684 | Kermani et al. | Jun 1994 | A |
5326649 | Kashida et al. | Jul 1994 | A |
5356821 | Naruse et al. | Oct 1994 | A |
5385863 | Tatsumi et al. | Jan 1995 | A |
5389398 | Suzuki et al. | Feb 1995 | A |
5389570 | Shiozawa | Feb 1995 | A |
5453858 | Yamazaki | Sep 1995 | A |
5461250 | Burghartz et al. | Oct 1995 | A |
5471330 | Sarma | Nov 1995 | A |
5504704 | Sato et al. | Apr 1996 | A |
5508067 | Sato et al. | Apr 1996 | A |
5510146 | Miyasaka | Apr 1996 | A |
5540785 | Dennard et al. | Jul 1996 | A |
5563093 | Koda et al. | Oct 1996 | A |
5587344 | Ishikawa | Dec 1996 | A |
5591494 | Sato et al. | Jan 1997 | A |
5607724 | Beinglass et al. | Mar 1997 | A |
5614257 | Beinglass et al. | Mar 1997 | A |
5616754 | Cruse et al. | Apr 1997 | A |
5648293 | Hayama et al. | Jul 1997 | A |
5654237 | Suguro et al. | Aug 1997 | A |
5656531 | Thakur et al. | Aug 1997 | A |
5677236 | Saitoh et al. | Oct 1997 | A |
5695819 | Beinglass et al. | Dec 1997 | A |
5698771 | Shields et al. | Dec 1997 | A |
5700520 | Beinglass et al. | Dec 1997 | A |
5731238 | Cavins et al. | Mar 1998 | A |
5763021 | Young et al. | Jun 1998 | A |
5786027 | Rolfson | Jul 1998 | A |
5789030 | Rolfson | Aug 1998 | A |
5837580 | Thakur et al. | Nov 1998 | A |
5849601 | Yamazaki | Dec 1998 | A |
5863598 | Venkatesan et al. | Jan 1999 | A |
5869389 | Ping et al. | Feb 1999 | A |
5874129 | Beinglass et al. | Feb 1999 | A |
5876797 | Beinglass et al. | Mar 1999 | A |
5879970 | Shiota et al. | Mar 1999 | A |
5885869 | Turner et al. | Mar 1999 | A |
5893949 | King et al. | Apr 1999 | A |
5930106 | DeBoer et al. | Jul 1999 | A |
5959326 | Aiso et al. | Sep 1999 | A |
5998289 | Sagnes | Dec 1999 | A |
6013922 | Ueda et al. | Jan 2000 | A |
6027705 | Kitsuno et al. | Feb 2000 | A |
6027975 | Hergenrother et al. | Feb 2000 | A |
6083810 | Obeng et al. | Jul 2000 | A |
6090666 | Ueda et al. | Jul 2000 | A |
6103600 | Ueda et al. | Aug 2000 | A |
6107147 | Kim et al. | Aug 2000 | A |
6121081 | Thakur et al. | Sep 2000 | A |
6153541 | Yao et al. | Nov 2000 | A |
6159828 | Ping et al. | Dec 2000 | A |
6161498 | Toraguchi et al. | Dec 2000 | A |
6162667 | Funai et al. | Dec 2000 | A |
6171662 | Nakao | Jan 2001 | B1 |
6197669 | Twu et al. | Mar 2001 | B1 |
6197694 | Beinglass | Mar 2001 | B1 |
6210988 | Howe et al. | Apr 2001 | B1 |
6228181 | Yamamoto et al. | May 2001 | B1 |
6235568 | Murthy et al. | May 2001 | B1 |
6252284 | Muller et al. | Jun 2001 | B1 |
6252295 | Cote et al. | Jun 2001 | B1 |
6274463 | Chaiken | Aug 2001 | B1 |
6281559 | Yu et al. | Aug 2001 | B1 |
6284583 | Saido et al. | Sep 2001 | B1 |
6319782 | Nakabayashi et al. | Nov 2001 | B1 |
6326064 | Denison et al. | Dec 2001 | B1 |
6326311 | Ueda et al. | Dec 2001 | B1 |
6346732 | Mizushima et al. | Feb 2002 | B1 |
6365465 | Chan et al. | Apr 2002 | B1 |
6365479 | U'Ren | Apr 2002 | B1 |
6372559 | Crowder et al. | Apr 2002 | B1 |
6373112 | Murthy et al. | Apr 2002 | B1 |
6385020 | Shin et al. | May 2002 | B1 |
6444512 | Madhukar et al. | Sep 2002 | B1 |
6455892 | Okuno et al. | Sep 2002 | B1 |
6465045 | Heuer et al. | Oct 2002 | B1 |
6610361 | Heuer et al. | Aug 2003 | B1 |
6613695 | Pomarede et al. | Sep 2003 | B2 |
6709512 | Yamoto et al. | Mar 2004 | B2 |
6716751 | Todd | Apr 2004 | B2 |
6743738 | Todd | Jun 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6900115 | Todd | May 2005 | B2 |
6958253 | Todd | Oct 2005 | B2 |
6962859 | Todd et al. | Nov 2005 | B2 |
7005160 | Todd | Feb 2006 | B2 |
7026219 | Pomarede et al. | Apr 2006 | B2 |
7186582 | Todd | Mar 2007 | B2 |
7186630 | Todd | Mar 2007 | B2 |
7273799 | Todd | Sep 2007 | B2 |
7285500 | Todd | Oct 2007 | B2 |
20020011612 | Heida | Jan 2002 | A1 |
20020016084 | Todd | Feb 2002 | A1 |
20020036290 | Inaba et al. | Mar 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020168868 | Todd | Nov 2002 | A1 |
20020173130 | Pomerede et al. | Nov 2002 | A1 |
20040115953 | Yamazaki et al. | Jun 2004 | A1 |
20050064684 | Todd et al. | Mar 2005 | A1 |
20050233529 | Pomarede et al. | Oct 2005 | A1 |
20060130743 | Brabant et al. | Jun 2006 | A1 |
20070102790 | Todd | May 2007 | A1 |
20070117359 | Todd | May 2007 | A1 |
20080073645 | Todd et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
0368651 | May 1990 | EP |
0486047 | May 1992 | EP |
0747974 | Nov 1996 | EP |
1065728 | Mar 2001 | EP |
2332564 | Jun 1999 | GB |
57209810 | Dec 1982 | JP |
59078918 | May 1984 | JP |
59078919 | May 1984 | JP |
1985-015967 | Jan 1985 | JP |
60043485 | Mar 1985 | JP |
S60-43485 | Mar 1985 | JP |
61153277 | Jul 1986 | JP |
1986-194823 | Aug 1986 | JP |
62076612 | Apr 1987 | JP |
63003414 | Jan 1988 | JP |
63003463 | Jan 1988 | JP |
1988-051680 | Mar 1988 | JP |
01217956 | Aug 1989 | JP |
01268064 | Oct 1989 | JP |
02155225 | Jun 1990 | JP |
H 02-155225 | Jun 1990 | JP |
03091239 | Apr 1991 | JP |
H3-91239 | Apr 1991 | JP |
03185817 | Aug 1991 | JP |
03187215 | Aug 1991 | JP |
H3-185817 | Aug 1991 | JP |
H3-187215 | Aug 1991 | JP |
03292741 | Dec 1991 | JP |
04323834 | Nov 1992 | JP |
05021378 | Jan 1993 | JP |
05062911 | Mar 1993 | JP |
H5-62911 | Mar 1993 | JP |
1993-275335 | Oct 1993 | JP |
1993-087171 | Dec 1993 | JP |
1994-013313 | Jan 1994 | JP |
1994-310493 | Nov 1994 | JP |
1995-037823 | Feb 1995 | JP |
1995-131007 | May 1995 | JP |
07249618 | Sep 1995 | JP |
1996-078335 | Mar 1996 | JP |
1996-148427 | Jun 1996 | JP |
08242006 | Sep 1996 | JP |
1996-298333 | Nov 1996 | JP |
1997-153633 | Jun 1997 | JP |
1997-260293 | Oct 1997 | JP |
10-203895 | Aug 1998 | JP |
10-308503 | Nov 1998 | JP |
1998-321860 | Dec 1998 | JP |
1999-087341 | Mar 1999 | JP |
1999-238809 | Aug 1999 | JP |
1999-326958 | Nov 1999 | JP |
11317530 | Nov 1999 | JP |
2000-232219 | Aug 2000 | JP |
2000-323420 | Nov 2000 | JP |
2000-340512 | Dec 2000 | JP |
2000-340684 | Dec 2000 | JP |
2001-007301 | Jan 2001 | JP |
2001-015736 | Jan 2001 | JP |
1999-029923 | Apr 1999 | KR |
10-0209856 | Jul 1999 | KR |
WO 9935311 | Jul 1999 | WO |
WO 0003425 | Jan 2000 | WO |
WO 0013227 | Mar 2000 | WO |
WO 02064853 | Aug 2002 | WO |
WO 02065508 | Aug 2002 | WO |
WO 02065516 | Aug 2002 | WO |
WO 02065517 | Aug 2002 | WO |
WO 02065525 | Aug 2002 | WO |
WO 02080244 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080014725 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
60268337 | Feb 2001 | US | |
60279256 | Mar 2001 | US | |
60311609 | Aug 2001 | US | |
60323649 | Sep 2001 | US | |
60332696 | Nov 2001 | US | |
60333724 | Nov 2001 | US | |
60340454 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10918547 | Aug 2004 | US |
Child | 11843552 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10074633 | Feb 2002 | US |
Child | 10918547 | US |