Method of forming Cu pillar bump with non-metal sidewall spacer and metal top cap

Information

  • Patent Grant
  • 9685372
  • Patent Number
    9,685,372
  • Date Filed
    Thursday, April 23, 2015
    9 years ago
  • Date Issued
    Tuesday, June 20, 2017
    7 years ago
Abstract
A method of forming an integrated circuit device includes forming a conductive element over a substrate, wherein the conductive element is over an under bump metallurgy (UBM) layer, and the UBM layer comprises a first UBM layer and a second UBM layer over the first UBM layer. The method further includes etching the second UBM layer to expose a portion of the first UBM layer beyond a periphery of the conductive element. The method further includes forming a protection layer over sidewalls of the conductive element, over sidewalls of the second UBM layer and over a top surface of the first UBM layer. The method further includes etching the first UBM layer to remove a portion of the first UBM layer. The method further includes forming a cap layer over a top surface of the conductive element.
Description
TECHNICAL FIELD

This disclosure relates to integrated circuit fabrication, and more particularly, to copper pillar bump structures in integrated circuit devices.


BACKGROUND

Modern integrated circuits are made up of literally millions of active devices, such as transistors and capacitors. These devices are initially isolated from each other, but are later interconnected together to form functional circuits. Typical interconnect structures include lateral interconnections, such as metal lines (wirings), and vertical interconnections, such as vias and contacts. Interconnections are increasingly determining the limits of performance and the density of modern integrated circuits. On top of the interconnect structures, bond pads are formed and exposed on the surface of the respective chip. Electrical connections are made through bond pads to connect the chip to a package substrate or another die. Bond pads can be used for wire bonding or flip-chip bonding.


Flip-chip packaging utilizes bumps to establish electrical contact between a chip's I/O pads and the substrate or lead frame of the package. Structurally, a bump actually contains the bump itself and a so-called under bump metallurgy (UBM) located between the bump and an I/O pad. An UBM generally contains an adhesion layer, a barrier layer and a wetting layer, arranged in that order, on the I/O pad. The bumps themselves, based on the material used, are classified as solder bumps, gold bumps, copper pillar bumps and bumps with mixed metals. Recently, copper pillar bump technology has been proposed. Instead of using a solder bump, the electronic component is connected to a substrate by means of a copper pillar bump, which achieves finer pitch with minimum probability of bump bridging, reduces the capacitance load for the circuits, and allows the electronic component to perform at higher frequencies.


Cu pillar bump flip-chip assembly has the following advantages: (1) better thermal/electric performance, (2) higher current carrying capacity, (3) better resistance to electromigration, thus longer bump life, (4) minimizing molding voids—more consistence gaps between Cu pillar bumps. Also, a lower cost substrate is possible by using Cu-pillar controlled solder spreading, eliminating lead-free teardrop design. Current process employs a photoresist layer with an opening, and forms a Cu pillar capped with a metal layer cap within the opening of the photoresist layer. However, the formation of the metal layer cap often leads to defects before and/or after the photoresist stripping process. In one approach using an electroless/immersion metal deposition process, photoresist leaching may occur since the immersion medium directly contacts the photoresist layer, causing delamination of photoresist, and bath contamination and poor top coverage. In another approach of using of an electroplating metal process, the photoresist residue is observed on the substrate after stripping the photoresist layer.


In addition, copper has a tendency to be oxidized during the manufacturing process. Oxidized copper pillars may lead to poor adhesion of an electronic component to a substrate. The poor adhesion may cause serious reliability concerns due to high leakage currents. Oxidized copper pillars may also lead to underfill cracking along the interface of the underfill and the copper pillars. The cracks may propagate to the underlying low dielectric constant (low-K) dielectric layers or to the solder used to bond the copper pillars to the substrate. A sidewall protection layer is therefore needed to prevent copper oxidation, but the conventional method of processing the Cu pillar sidewall suffers from high process costs and interface delamination issues. Currently, an immersion tin (Sn) process is employed to provide a tin layer on the Cu pillar sidewalls, but there are still concerns regarding process costs, adhesion between Sn and underfill, and issues of solder wetting onto sidewalls, which is a challenge for fine pitch package technology in new generation chips.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1˜9 are cross-sectional views of a portion of a semiconductor device at various stages in an integrated circuit manufacturing process in accordance with an exemplary embodiment.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

This disclosure provides embodiments of processes of forming sidewall spacers and top caps for Cu pillar bump technology. The sidewall spacer, serving as a protection structure on the sidewalls of the Cu pillar bump, is formed by having at least one of several non-metal material layers, for example a dielectric material layer, a polymer material layer, or combinations thereof. The top cap, serving as a barrier structure on the top surface of the Cu pillar bump for preventing copper from diffusing into bonding material, includes at least one metal layer formed by electroless or immersion metal deposition process, for example an ENEPIG structure (a stack of an electroless nickel (Ni)/electroless palladium (Pd)/immersion gold (Au) layers), an ENEP structure (a stack of an electroless nickel (Ni)/electroless palladium (Pd) layers), and EN layer (an electroless nickel (Ni) layer), an ENIG structure (a stack of an electroless nickel (Ni)/immersion gold (Au) layers), or combinations thereof. As employed throughout this disclosure, the term “Cu pillar bump” refers to a bump structure comprising a conductive pillar (a post or a standoff) comprising copper or copper alloys. The Cu pillar bump may be applied directly on an electrical pad, a redistribution layer on a semiconductor chip for a flip chip assembly, or other similar applications.


Reference will now be made in detail to the present embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. In the drawings, the shape and thickness of one embodiment may be exaggerated for clarity and convenience. This description will be directed in particular to elements forming part of, or cooperating more directly with, an apparatus in accordance with the present disclosure. It is to be understood that elements not specifically shown or described may take various forms. Further, when a layer is referred to as being on another layer or “on” a substrate, it may be directly on the other layer or on the substrate, or intervening layers may also be present. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be appreciated that the following figures are not drawn to scale; rather, these figures are merely intended for illustration.



FIGS. 1˜9 are cross-sectional views of a portion of a semiconductor device at various stages in an integrated circuit manufacturing process in accordance with an exemplary embodiment.


With reference to FIG. 1, an exemplary semiconductor substrate 10 used for bump fabrication is employed in a semiconductor integrated circuit fabrication, and integrated circuits may be formed therein and/or thereupon. The semiconductor substrate 10 is defined to mean any construction comprising semiconductor materials, including, but is not limited to, bulk silicon, a semiconductor wafer, a silicon-on-insulator (SOI) substrate, or a silicon germanium substrate. Other semiconductor materials including group III, group IV, and group V elements may also be used. The substrate 10 may further comprise a plurality of isolation features (not shown), such as shallow trench isolation (STI) features or local oxidation of silicon (LOCOS) features. The isolation features may define and isolate the various microelectronic elements (not shown). Examples of the various microelectronic elements that may be formed in the substrate 10 include transistors (e.g., metal oxide semiconductor field effect transistors (MOSFET), complementary metal oxide semiconductor (CMOS) transistors, bipolar junction transistors (BJT), high voltage transistors, high frequency transistors, p-channel and/or n-channel field effect transistors (PFETs/NFETs), etc.); resistors; diodes; capacitors; inductors; fuses; or other suitable elements. Various processes are performed to form the various microelectronic elements including deposition, etching, implantation, photolithography, annealing, or other suitable processes. The microelectronic elements are interconnected to form the integrated circuit device, such as a logic device, memory device (e.g., static random access memory or SRAM), radio frequency (RF) device, input/output (I/O) device, system-on-chip (SoC) device, combinations thereof, or other suitable types of devices.


The semiconductor substrate 10 further includes inter-layer dielectric layers and a metallization structure overlying the integrated circuits. The inter-layer dielectric layers in the metallization structure include low-k dielectric materials, un-doped silicate glass (USG), silicon nitride, silicon oxynitride, or other commonly used materials. The dielectric constants (k value) of the low-k dielectric materials may be less than about 3.9, or less than about 2.8. Metal lines in the metallization structure may comprise copper or copper alloys. One skilled in the art will realize the formation details of the metallization structure. A pad region 12 is a top metallization layer formed in a top-level inter-layer dielectric layer, which is a portion of conductive routes and has an exposed surface treated by a planarization process, such as chemical mechanical polishing (CMP), if necessary. Suitable materials for the pad region may include, but are not limited to, for example, copper (Cu), aluminum (Al), AlCu, copper alloy, or other mobile conductive materials. The pad region is used in the bonding process to connect the integrated circuits in the respective chip to external features.



FIG. 1 also shows a passivation layer 14 formed overlying the semiconductor substrate 10 and exposing a portion of the pad region 12 for subsequent Cu pillar bump processes. The passivation layer 14 comprises a non-organic material selected from un-doped silicate glass (USG), silicon nitride, silicon oxynitride, silicon oxide, or combinations thereof. In some alternative embodiments, the passivation layer 14 comprises a polymer layer, such as an epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), or the like, although other relatively soft, often organic, dielectric materials can also be used.



FIG. 1 further shows the formation of an under-bump-metallurgy (UBM) layer 16 including a first UBM layer 18 and a second UBM layer 20 on the substrate 10. For example, the UBM layer 16 is formed on the exposed portion of the pad region 12, and extends over a portion of the passivation layer 14. In some embodiments, the first UBM layer 18, also referred to as a diffusion barrier layer or a glue layer, comprises titanium, tantalum, titanium nitride, tantalum nitride, or the like by physical vapor deposition (PVD) or sputtering. The first UBM layer 18 is deposited to a thickness of between about 500 and 2000 angstrom, and in some embodiment for example, to a thickness of about 1000 Angstrom. The second UBM layer 20 is a copper seed layer formed on the first UBM layer 18 by physical vapor deposition (PVD) or sputtering. The second UBM layer 20 may comprise copper alloys that include silver, chromium, nickel, tin, gold, or combinations thereof. The second UBM layer 20 is deposited to a thickness of between about 500 and 10000 angstrom, and in some embodiment for example, to a thickness of about 5000 Angstrom. In one embodiment, the UBM layer 16 includes a first UBM layer 18 formed of Ti and a second UBM layer 20 formed of Cu.



FIG. 1 further shows the formation a mask layer 22 on the UBM layer 16. The mask layer 22 is patterned to form opening 24 therein so as to expose a portion of the UBM layer 16 for Cu pillar bump formation. The mask layer 22 may be a dry film or a photoresist film, which may be patterned by lithography and/or etching processes.


With reference to FIG. 2, there is shown the formation of a conductive material with solder wettability in the opening 24. In an embodiment, a copper (Cu) layer 26 is formed in the opening 24 to contact the underlying UBM layer 16. As used throughout this disclosure, the term “copper (Cu) layer” is intended to include substantially a layer including pure elemental copper, copper containing unavoidable impurities, or copper alloys containing minor amounts of elements such as tantalum, indium, tin, zinc, manganese, chromium, titanium, germanium, strontium, platinum, magnesium, aluminum, or zirconium. The formation methods may include sputtering, printing, electro plating, electroless plating, or chemical vapor deposition (CVD) methods. For example, electro-chemical plating (ECP) is carried out to form the Cu layer 26. In an exemplary embodiment, the thickness of the Cu layer 26 is greater than 25 μm. In another exemplary embodiment, the thickness of the Cu layer 26 is greater than 40 μm. For example, the Cu layer 26 is about 40-50 μm thick, or about 40-70 μm thick, although the thickness may be greater or smaller.


With reference to FIG. 3, the process proceeds to remove the mask layer 22, thus the top surface 26a and sidewall surfaces 26b of the Cu layer 26 are exposed. The Cu layer 26 protruding from the UBM layer 16 is referred to as a Cu pillar 26 hereinafter. A portion of the second UBM layer 20 not covered by the Cu layer 26 is also exposed at this step. In the case the mask layer 22 is a dry film, it may be removed using an alkaline solution. If the mask layer 22 is formed of photoresist, it may be removed using acetone, n-methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), aminoethoxy ethanol, or the like.


Then as shown in FIG. 4, the exposed portion of the second UBM layer 20 is etched to expose a portion 18a of the underlying first UBM layer 18 not covered by the Cu pillar 26. In an exemplary embodiment, the step of removing a portion of the second UBM layer 20 is a dry etching or a wet etching. For example, an isotropic wet etching (often referred to as flash etching due to its short duration) using an ammonia-based acid is employed. Thus, underlying the Cu pillar 26, the patterned second UBM layer 20″ has exposed sidewall surfaces 20b.


With reference to FIG. 5, a protection layer 28 is formed on the resulting structure, for example by a blanket deposition. In some embodiments, the protection layer 28 is deposited to cover the top surface 20a and the sidewall surfaces 20b of the Cu pillar 20, the sidewall surfaces 20b of the patterned second UBM layer 20″, and the exposed portion 18a of the first UBM layer 18. The protection layer 28 is a non-metal material layer, for example a dielectric material layer, a polymer material layer, or combinations thereof. The protection layer 28 may comprise a single material layer or a multi-layered structure. The protection layer 28 is between about 500 Angstroms to about 10000 Angstroms thick. In one embodiment, the protection layer 28 is a dielectric material layer formed of silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, alternating layers of silicon oxide and silicon nitride, or combinations thereof by using any of a variety of deposition techniques, including thermal oxidation, low-pressure chemical vapor deposition (LPCVD), atmospheric-pressure chemical vapor deposition (APCVD), or plasma-enhanced chemical vapor deposition (PECVD). In one embodiment, the protection layer 28 is a polymer material layer comprising a polymer, such as an epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), or the like, although other relatively soft, often organic, dielectric materials can also be used. The polymer material layer is soft, and hence has the function of reducing inherent stresses on respective portions of the substrate. In addition, the polymer layer is easily formed to a thickness of tens of microns.


Next, referring to FIG. 6, certain regions of the protection layer 28 are removed to form a sidewall spacer 28a, leaving the portion along the sidewall surfaces 26b and 20b but not the portion overlying the top surface 26a of the Cu pillar 26. In some embodiments, the sidewall spacer 28a is also referred to as a sidewall protection structure 28a. The sidewall spacer 28a extends to land on a surface region 18a″ of the exposed portion 18a. Advances in lithography and masking techniques and dry etch processes, such as Reactive Ion Etching (RIE) or other plasma etching processes, allow production of the sidewall spacer 28a.


In FIG. 7, a portion of the first UBM layer 18 is then etched using the created structure 28a as the mask, exposing the underlying passivation layer 14. A dry etching process, such as standard RIE procedures, using Cl2/BCl3 as an etchant, is used to etch the first UBM layer 18. The dry etching process removes most part of the exposed portion 18a, except for the surface region 18a″ adjacent to the sidewall surface 20b of the patterned second UBM layer 20″ and covered by the sidewall spacer 28a. Since the surface region 18a″ extends outwardly from the sidewall surface 20b of the patterned second UBM layer 20″, the area of the patterned first UBM layer 18″ is greater than the area of the patterned second UBM layer 20″. However, during the dry etching process, some of the sidewall spacer 28b are also removed from the upper portion 26b1 of the sidewall surface 26b of the Cu pillar 26, causing the upper portion 26b1 of the sidewall surface 26b being exposed at this step. The exposed upper portion 26b1 has a length L between 2˜8 μm.


In order to protect the exposed upper portion 26b1 and cap the top surface 26a of the Cu pillar 26, the process proceeds to the formation of a top cap on the Cu pillar 26. As shown in FIG. 8, a cap layer 30 is formed on the top surface 26a, and extends to cover the exposed upper portion 26b1 of the sidewall surface 26b. The cap layer 30 could act as a barrier layer to prevent copper in the Cu pillar from diffusing into bonding material, such as solder alloy, that is used to bond the substrate 10 to external features. The prevention of copper diffusion increases the reliability and bonding strength of the package. The cap layer 30 may include nickel (Ni), tin, tin-lead (SnPb), gold (Au), silver, palladium (Pd), indium (In), nickel-palladium-gold (NiPdAu), nickel-gold (NiAu), Ni-base alloy, Au-base alloy, or Pd-base alloy, other similar materials, or alloy by electroless plating process or immersion plating process. The cap layer 30 has a thickness about 0.1-10 μm. In one embodiment, the cap layer 30 is a triple-layer structure including an electroless Ni layer, an electroless Pd layer, and an immersion Au layer, which is also known as an ENEPIG scheme. In one embodiment, the cap layer 30 is a dual-layer structure including an electroless Ni layer and an electroless Pd layer, named an ENEP scheme. In one embodiment, the cap layer 30 is a single-layer structure including an electroless Ni layer, which is also known as an EN scheme. In one embodiment, the cap layer 30 is a dual-layer structure including an electroless Ni layer and an immersion Au layer, which is also known as an ENIG scheme.


The completed bump structure 32 includes the Cu pillar 26, the patterned second UBM layer 20″, the patterned first UBM layer 18″, the sidewall spacer 28a, and the cap layer 30. The substrate 10 is then sawed and packaged onto a package substrate, or another die, with solder balls or Cu bumps mounted on a pad on the package substrate or the other die.



FIG. 9 is a cross-sectional diagram depicting an exemplary embodiment of a flip-chip assembly. The structure shown in FIG. 8 is flipped upside down and attached to another substrate 100 at the bottom. The substrate 100 may be a package substrate, board (e.g., a print circuit board (PCB)), or other suitable substrate. The bump structure 32 is coupled to the substrate 100 through various conductive attachment points, for example, a joint solder layer 102 on contact pads and/or conductive traces, to form a joint structure 104, which couples the two substrates 10 and 100. The joint solder layer 102 may be a eutectic solder material including alloys of tin, lead, silver, copper, nickel, bismuth, or combinations thereof. An exemplary coupling process includes a flux application, chip placement, reflowing of melting solder joints, and/or cleaning of flux residue. The integrated circuit substrate 10, the joint structure 104, and the other substrate 100 may be referred to as a packaging assembly 200, or in the present embodiment, a flip-chip packaging assembly.


The disclosure provides a sidewall spacer comprising a non-metal material on the lower sidewall portion of the Cu pillar to prevent the Cu pillar sidewall from oxidation and increase adhesion between the Cu pillar sidewall and a subsequently formed underfill material. Compared with the conventional immersion Sn method followed by an annealing process, the non-metal sidewall protection structure can adjust substrate stress, and prevent solder wetting to the Cu pillar around the perimeter of the UBM layer during the reflow process. This is applicable to fine pitch bump schemes. The disclosure also provides a top cap comprising a metal material on the top surface and the upper sidewall portion of the Cu pillar to prevent copper diffusion from the Cu pillar into the bonding material. Since the top cap process is performed by electroless or immersion plating technique after the sidewall spacer formation, those photoresist leaching and residue problems are alleviated, and the deposition alignment of the top cap on the top surface and the upper sidewall portion of the Cu pillar can be well controlled. Moreover, the use of ENEPIG, ENEP, EN, or ENIG scheme as the top cap of the Cu pillar bump can decrease the probability of bump collapse and increase the package reliability.


One aspect of this description relates to a method of forming an integrated circuit device. The method includes forming a conductive element over a substrate, wherein the conductive element is over an under bump metallurgy (UBM) layer, and the UBM layer comprises a first UBM layer and a second UBM layer over the first UBM layer. The method further includes etching the second UBM layer to expose a portion of the first UBM layer beyond a periphery of the conductive element. The method further includes forming a protection layer over sidewalls of the conductive element, over sidewalls of the second UBM layer and over a top surface of the first UBM layer. The method further includes etching the first UBM layer to remove a portion of the first UBM layer. The method further includes forming a cap layer over a top surface of the conductive element.


Another aspect of this description relates to a method of forming an integrated circuit device. The method includes plating a conductive element over a first substrate, wherein the conductive element is over an under bump metallurgy (UBM) layer, and the UBM layer comprises a first UBM layer and a second UBM layer over the first UBM layer. The method further includes depositing a protection layer over sidewalls of the conductive element, over sidewalls of the second UBM layer and over a top surface of the first UBM layer, wherein the protection layer exposes an upper portion of the sidewalls of the conductive element. The method further includes forming a cap layer over a top surface and the upper portion of the sidewalls of the conductive element. The method further includes bonding the conductive element to a second substrate using a solder layer, wherein the cap layer is between the conductive element and the solder layer.


Still another aspect of this description relates to a method of forming an integrated circuit device. The method includes plating a conductive element over a first substrate, wherein the conductive element is over an under bump metallurgy (UBM) layer, and the UBM layer comprises a first UBM layer and a second UBM layer over the first UBM layer. The method further includes depositing a protection layer over sidewalls of the conductive element, over sidewalls of the second UBM layer and over a top surface of the first UBM layer. The method further includes etching the first UBM layer using the protection layer as a mask, wherein etching the first UBM layer comprises removing the protection layer from an upper portion of the sidewalls of the conductive element. The method further includes forming a multi-layered cap layer over a top surface and the upper portion of the sidewalls of the conductive element. The method further includes bonding the conductive element to a second substrate using a solder layer, wherein the cap layer is between the conductive element and the solder layer.


In the preceding detailed description, the disclosure is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications, structures, processes, and changes may be made thereto without departing from the broader spirit and scope of the disclosure. The specification and drawings are, accordingly, to be regarded as illustrative and not restrictive. It is understood that the disclosure is capable of using various other combinations and environments and is capable of changes or modifications within the scope of the inventive concepts as expressed herein.

Claims
  • 1. A method of forming an integrated circuit device, the method comprising: forming a conductive element over a substrate, wherein the conductive element is over an under bump metallurgy (UBM) layer, and the UBM layer comprises a first UBM layer and a second UBM layer over the first UBM layer;etching the second UBM layer to expose a portion of the first UBM layer beyond a periphery of the conductive element;forming a protection layer over sidewalls of the conductive element, over sidewalls of the second UBM layer and directly contacting a top surface of the first UBM layer;etching the first UBM layer to remove a portion of the first UBM layer, wherein etching first UBM layer comprises removing the protection layer from an upper portion of the sidewalls of the conductive element; andforming a cap layer over a top surface of the conductive element.
  • 2. The method of claim 1, wherein forming the conductive element comprises: forming a mask layer over the UBM layer;patterning the mask layer to form an opening in the mask layer; andforming the conductive element in the opening.
  • 3. The method of claim 1, wherein the conductive element is formed by sputtering, printing, electro plating, electroless plating, electro-chemical plating or chemical vapor deposition.
  • 4. The method of claim 1, wherein etching the second UBM layer comprises a wet etching process.
  • 5. The method of claim 1, wherein forming the protection layer comprises forming the protection layer having a thickness ranging from about 500 angstroms to about 10,000 angstroms.
  • 6. The method of claim 1, wherein forming the protection layer comprises forming the protection layer comprising at least one layer of a dielectric material.
  • 7. The method of claim 1, further comprising etching the protection layer to expose the portion of the first UBM layer.
  • 8. The method of claim 7, wherein etching the protection layer comprises removing the protection layer from the top surface of the conductive element.
  • 9. The method of claim 1, wherein the first UBM layer is etched using a dry etching process.
  • 10. The method of claim 1, wherein forming the cap layer comprises forming the cap layer over the upper portion of the sidewalls of the conductive element.
  • 11. The method of claim 1, wherein removing the protection layer from the upper portion of the sidewalls comprises exposing the upper portion of the sidewalls of the conductive having a length ranging from about 2 microns (μm) to about 8 μm.
  • 12. The method of claim 1, further comprising bonding the conductive element to a second substrate.
  • 13. The method of claim 12, wherein bonding the conductive element to the second substrate comprises reflowing a solder layer between the conductive element and the second substrate, and the cap layer is between the conductive element and the solder layer.
  • 14. A method of forming an integrated circuit device, the method comprising: plating a conductive element over a first substrate, wherein the conductive element is over an under bump metallurgy (UBM) layer, and the UBM layer comprises a first UBM layer and a second UBM layer over the first UBM layer;depositing a protection layer over sidewalls of the conductive element, over sidewalls of the second UBM layer and over a top surface of the first UBM layer, wherein the protection layer exposes an upper portion of the sidewalls of the conductive element;forming a cap layer over a top surface and the upper portion of the sidewalls of the conductive element; andbonding the conductive element to a second substrate using a solder layer, wherein the cap layer is between the conductive element and the solder layer.
  • 15. The method of claim 14, wherein bonding the conductive element to the second substrate comprises bonding the conductive element to a contact pad or a conductive trace.
  • 16. The method of claim 14, wherein plating the conductive element comprises plating a copper-containing material.
  • 17. The method of claim 14, further comprising etching the first UBM layer using the protection layer over the sidewalls of the conductive element as a mask.
  • 18. The method of claim 14, wherein plating the conductive element comprises: forming a mask layer over a top surface of the second UBM layer;patterning the mask layer to form an opening; andplating the conductive element in the opening.
  • 19. A method of forming an integrated circuit device, the method comprising: plating a conductive element over a first substrate, wherein the conductive element is over an under bump metallurgy (UBM) layer, and the UBM layer comprises a first UBM layer and a second UBM layer over the first UBM layer;depositing a protection layer over sidewalls of the conductive element, over sidewalls of the second UBM layer and over a top surface of the first UBM layer;etching the first UBM layer using the protection layer as a mask, wherein etching the first UBM layer comprises removing the protection layer from an upper portion of the sidewalls of the conductive element;forming a multi-layered cap layer over a top surface and the upper portion of the sidewalls of the conductive element; andbonding the conductive element to a second substrate using a solder layer, wherein the cap layer is between the conductive element and the solder layer.
  • 20. The method of claim 19, wherein bonding the conductive element to the second substrate comprises bonding the conductive element to a contact pad or a conductive trace.
PRIORITY CLAIM

The present application is a divisional of U.S. application Ser. No. 12/792,002, filed Jun. 2, 2010, now U.S. Pat. No. 9,018,758, issued Apr. 28, 2015, which is incorporated herein by reference in its entirety. The present application is related to co-pending U.S. Ser. No. 12/730,411 filed on Mar. 24, 2010, which is expressly incorporated by reference herein in their entirety.

US Referenced Citations (158)
Number Name Date Kind
4380867 Antson Apr 1983 A
4720740 Clements et al. Jan 1988 A
4811082 Jacobs et al. Mar 1989 A
4990462 Sliwa, Jr. Feb 1991 A
5075253 Sliwa, Jr. Dec 1991 A
5134460 Brady et al. Jul 1992 A
5380681 Hsu Jan 1995 A
5391917 Gilmour et al. Feb 1995 A
5448114 Kondoh et al. Sep 1995 A
5466635 Lynch et al. Nov 1995 A
5510298 Redwine Apr 1996 A
5747881 Hosomi et al. May 1998 A
5767001 Bertagnolli et al. Jun 1998 A
5841133 Omi Nov 1998 A
5998292 Black et al. Dec 1999 A
6002177 Gaynes et al. Dec 1999 A
6184060 Siniaguine Feb 2001 B1
6187678 Gaynes et al. Feb 2001 B1
6191493 Yasunaga et al. Feb 2001 B1
6218281 Watanabe et al. Apr 2001 B1
6229216 Ma et al. May 2001 B1
6229220 Saitoh et al. May 2001 B1
6232563 Kim et al. May 2001 B1
6236115 Gaynes et al. May 2001 B1
6271059 Bertin et al. Aug 2001 B1
6279815 Correia et al. Aug 2001 B1
6322903 Siniaguine et al. Nov 2001 B1
6355501 Fung et al. Mar 2002 B1
6426556 Lin Jul 2002 B1
6434016 Zeng et al. Aug 2002 B2
6448168 Rao et al. Sep 2002 B1
6448661 Kim et al. Sep 2002 B1
6464895 Forat et al. Oct 2002 B2
6465892 Suga Oct 2002 B1
6472293 Suga Oct 2002 B1
6492198 Hwang Dec 2002 B2
6538333 Kong Mar 2003 B2
6562653 Ma et al. May 2003 B1
6570248 Ahn et al. May 2003 B1
6576381 Hirano et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6590295 Liao et al. Jul 2003 B1
6592019 Tung Jul 2003 B2
6596619 Wang et al. Jul 2003 B1
6599778 Pogge et al. Jul 2003 B2
6600222 Levardo Jul 2003 B1
6607938 Kwon et al. Aug 2003 B2
6639303 Siniaguine Oct 2003 B2
6661085 Kellar et al. Dec 2003 B2
6664129 Siniaguine Dec 2003 B2
6693361 Siniaguine et al. Feb 2004 B1
6731003 Joshi et al. May 2004 B2
6740582 Siniaguine May 2004 B2
6762076 Kim et al. Jul 2004 B2
6770958 Wang et al. Aug 2004 B2
6790748 Kim et al. Sep 2004 B2
6800930 Jackson et al. Oct 2004 B2
6818545 Lee et al. Nov 2004 B2
6828677 Yap et al. Dec 2004 B2
6841883 Farnworth et al. Jan 2005 B1
6853076 Datta et al. Feb 2005 B2
6869831 Cowens et al. Mar 2005 B2
6879041 Yamamoto et al. Apr 2005 B2
6882030 Siniaguine Apr 2005 B2
6887769 Kellar et al. May 2005 B2
6908565 Kim et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6917119 Lee et al. Jul 2005 B2
6924551 Rumer et al. Aug 2005 B2
6943067 Greenlaw Sep 2005 B2
6946384 Kloster et al. Sep 2005 B2
6958539 Lay et al. Oct 2005 B2
6962867 Jackson et al. Nov 2005 B2
6962872 Chudzik et al. Nov 2005 B2
6975016 Kellar et al. Dec 2005 B2
7008867 Lei Mar 2006 B2
7012333 Shimoyama et al. Mar 2006 B2
7030481 Chudzik et al. Apr 2006 B2
7037804 Kellar et al. May 2006 B2
7049170 Savastiouk et al. May 2006 B2
7056807 Kellar et al. Jun 2006 B2
7060601 Savastiouk et al. Jun 2006 B2
7064436 Ishiguri et al. Jun 2006 B2
7071546 Fey et al. Jul 2006 B2
7087538 Staines et al. Aug 2006 B2
7111149 Eilert Sep 2006 B2
7122912 Matsui Oct 2006 B2
7151009 Kim et al. Dec 2006 B2
7157787 Kim et al. Jan 2007 B2
7193308 Matsui Mar 2007 B2
7215033 Lee et al. May 2007 B2
7262495 Chen et al. Aug 2007 B2
7271497 Joshi et al. Sep 2007 B2
7276799 Lee et al. Oct 2007 B2
7279795 Periaman et al. Oct 2007 B2
7297574 Thomas et al. Nov 2007 B2
7307005 Kobrinsky et al. Dec 2007 B2
7317256 Williams et al. Jan 2008 B2
7320928 Kloster et al. Jan 2008 B2
7335972 Chanchani Feb 2008 B2
7345350 Sinha Mar 2008 B2
7355273 Jackson et al. Apr 2008 B2
7391112 Li et al. Jun 2008 B2
7402442 Condorelli et al. Jul 2008 B2
7402515 Arana et al. Jul 2008 B2
7410884 Ramanathan et al. Aug 2008 B2
7432592 Shi et al. Oct 2008 B2
7462942 Tan et al. Dec 2008 B2
7494845 Hwang et al. Feb 2009 B2
7501311 Tsai Mar 2009 B2
7528494 Furukawa et al. May 2009 B2
7531890 Kim May 2009 B2
7557597 Anderson et al. Jul 2009 B2
7566650 Lin et al. Jul 2009 B2
7576435 Chao Aug 2009 B2
7592246 Akram Sep 2009 B2
7648899 Banerji et al. Jan 2010 B1
7825511 Daubenspeck et al. Nov 2010 B2
7834450 Kang Nov 2010 B2
7928534 Hsu et al. Apr 2011 B2
20010000321 Takeda et al. Apr 2001 A1
20020014705 Ishio et al. Feb 2002 A1
20020033531 Matsushima et al. Mar 2002 A1
20030151140 Nishiyama et al. Aug 2003 A1
20030156969 Choi et al. Aug 2003 A1
20030216025 Lu et al. Nov 2003 A1
20040166661 Lei Aug 2004 A1
20050001324 Dunn et al. Jan 2005 A1
20050077624 Tan et al. Apr 2005 A1
20050179131 Homma Aug 2005 A1
20060017160 Huang Jan 2006 A1
20060043603 Ranade et al. Mar 2006 A1
20060166402 Lim et al. Jul 2006 A1
20060237842 Shindo Oct 2006 A1
20060278982 Solo Dec 2006 A1
20070023904 Salmon Feb 2007 A1
20070080451 Suh Apr 2007 A1
20070108606 Watanabe May 2007 A1
20070284684 Naito et al. Dec 2007 A1
20070287279 Daubenspeck et al. Dec 2007 A1
20080185716 Huang Aug 2008 A1
20080296764 Chang et al. Dec 2008 A1
20090011543 Karta et al. Jan 2009 A1
20090026608 Tsai et al. Jan 2009 A1
20090045511 Meyer et al. Feb 2009 A1
20090096109 Iwasaki Apr 2009 A1
20090098724 Yu Apr 2009 A1
20090130840 Wang et al. May 2009 A1
20090197114 Shih et al. Aug 2009 A1
20090233436 Kim Sep 2009 A1
20100090318 Hsu et al. Apr 2010 A1
20100109159 Ho et al. May 2010 A1
20100230810 Kang et al. Sep 2010 A1
20110101523 Hwang et al. May 2011 A1
20110101526 Hsiao et al. May 2011 A1
20110156256 Kang et al. Jun 2011 A1
20110227216 Tseng et al. Sep 2011 A1
20110281432 Farooq et al. Nov 2011 A1
Foreign Referenced Citations (5)
Number Date Country
1993335313 Dec 1993 JP
2000228420 Aug 2000 JP
464927 Nov 2001 TW
200303058 Aug 2003 TW
201019440 May 2010 TW
Non-Patent Literature Citations (10)
Entry
Kim, K. S., et al., “The Interface Formation and Adhesion of Metals (Cu, Ta, and Ti) and Low Dielectric Constant Polymer-Like Organic Thin Films Deposited by Plasma-Enhanced Chemical Vapor Deposition Using Para-Xylene Precursor”, Thin Solid Films 377-378 (2000), pp. 122-128.
Kim, K. J., et al., “Chemical Interaction, Adhesion and Diffusion Properties at the Interface of Cu and Plasma-Treated Thiophene-Based Plasma Polymer (ThioPP) Films”, Thin Solid Films 398-399 (2001), pp. 657-662.
Du, M., et al., “The Interface Formation of Copper and Low Dielectric Constant Fluoro-Polymer: Plasma Surface Modification and its Effect on Copper Diffusion”, Journal of Applied Physics, vol. 85, No. 3, Feb. 1, 1999, pp. 1496-1502.
Jiang, Liang-You, et al., “Reduced Copper Diffusion in Layered Silicate/Fluorinated Polyimide (6FDS-ODA) Nanocomposites”, Journal of Applied Polymer Science, vol. 92, 1422-1425 (2004).
U.S. Appl. No. 61/258,414, filed Nov. 5, 2009, Chien Ling Hwang, et al.
U.S. Appl. No. 61/238,749, filed Sep. 1, 2009, Chung-Shi Liu.
U.S. Appl. No. 61/258,393, filed Nov. 5, 2009, Chien Ling Hwang, et al.
U.S. Appl. No. 61/230,012, filed Jul. 30, 2009, Chung-Shi Liu, et al.
Chinese Office Action in Corresponding Application No. 201010546170.1 issued on Aug. 2, 2012.
Office Action dated Sep. 11, 2013 from corresponding application No. TW 099136673.
Related Publications (1)
Number Date Country
20150228533 A1 Aug 2015 US
Divisions (1)
Number Date Country
Parent 12792002 Jun 2010 US
Child 14694524 US