The present invention relates to a semiconductor structure, and particularly, to an integrated crackstop structure.
In the manufacture of semiconductor devices, a plurality of integrated circuits are simultaneously prepared in a semiconductor wafer through the use of conventional photolithographic techniques. Thus, for example, a wafer may contain multiple separate integrated circuits which have been formed on the substantially planar surface area of the wafer according to conventional techniques. It is also convenient to provide a plurality of secondary devices such as contact pads, test monitor devices, and devices for measurement and alignment on the planar surface adjacent the outer perimeter of each integrated circuit or other semiconductor device. Each single integrated circuit is of relatively minute dimensions so that it is convenient to simultaneously form a plurality of them in a single wafer while marking the boundaries between the individual devices along perpendicular axes referred to as dicing lines or a kerf region. Since the dicing area is a region cut by a metal rotary blade, an element of an IC (hereinafter referred to as a function element) is not formed in this region, but a test element for testing the function element or an alignment mark for mask alignment is often formed there.
In accordance with techniques well known in the art, after a semiconductor wafer has been formed into interconnected semiconductor devices, the chips are tested to identify those which are satisfactory and those improperly formed or malfunctioning and unsatisfactory. As mentioned earlier, it is common practice to put test, measurement, alignment and die seal structures in the kerf region. After testing, adjacent satisfactory chips are left joined together while unsatisfactory chips are separated or the entire wafer is separated and the unsatisfactory chips are discarded. Separation (or dicing) may be performed by conventional techniques such as sawing or laser cutting along the dicing line.
One of the greatest problems of large scale integration is that of obtaining a high enough yield of devices from each wafer to be commercially profitable. As the number and complexity of devices per wafer increases, the yield often decreases proportionally. It is therefore highly desirable to minimize the number of devices that must be discarded as unsatisfactory.
One concern affecting yield is chip package interaction (CPI). A mismatch in the coefficient of thermal expansion between a chip and a laminate may lead to increased stress applied to the chip and result in mechanical damage to the chip. More specifically, the weaker high performance dielectric layers, for example lowK and UltralowK, are susceptible to such mechanical damage. This mechanical damage is detectable using Sonoscan imagery, and appears as a classic “white bump”, with the damage closely affiliated with the solder connection through which the breaking stress is transferred.
White-bump mitigating structural modifications are a subject of considerable interest in today's chip manufacturing environment. Chip package interaction structural modifications may include thicker layers of polymer final passivation material (for example PSPI), which may function as a stress buffer. However, polymer passivation materials tend to have high internal stress, causing wafer bow when applied in thick blanket films. Customized discontinuous structures, such as PSPI Islands or annular bump pads, must be used to reap the benefits of a thick PSPI layer while at the same time limiting wafer bow.
Independently of these concerns, with newer technology nodes, there is a move towards elimination of the industry-standard aluminum pad for cost reduction. The aluminum pad is typically replaced with a copper “plug” which fills the final via structure. Copper Plug formation processes are generally incompatible with the thick-PSPI CPI structures described above. Simultaneous with all of these concerns is the requirement to create a chip-edge crackstop structure that will prevent microcracks from propagating through the dielectric layers of the chip.
More specifically, the dicing operation used to cut a semiconductor wafer into individual chips often induces microcracks in both the semiconductor substrate and the dielectric layers on top. Microcracks occurring in silicon substrates propagate very rapidly and tend to lead to failures that show up in the initial testing described above. Microcracks in dielectric layers propagate more slowly and tend to lead to delayed failures—often after the device is put in service in the field. Failures in the field are particularly expensive and disruptive.
According to an embodiment of the invention, a method is provided. The method may include forming a first dielectric layer above a conductive pad and above a metallic structure, the conductive pad and the metallic structure are each located within an interconnect level above a substrate, forming a first opening and a second opening in the first dielectric layer, the first opening is aligned with and exposes the conductive pad and the second opening is aligned with and exposes the metallic structure, and forming a metallic liner on the conductive pad, on the metallic structure, and above the first dielectric layer. The method may further include forming a second dielectric layer above the metallic liner, and forming a third dielectric layer above the second dielectric layer, the third dielectric layer is thicker than either the first dielectric layer or the second dielectric layer.
According to another embodiment of the invention, a method is provided. The method may include forming a first dielectric layer above a conductive pad and above a metallic structure, the conductive pad and the metallic structure are each located within an interconnect level above a substrate, forming a first opening and a second opening in the first dielectric layer, the first opening is aligned with and exposes the conductive pad and the second opening is aligned with and exposes the metallic structure, and forming a metallic liner on the conductive pad, on the metallic structure, and above the first dielectric layer. The method may further include forming a second dielectric layer above the metallic liner, forming a third dielectric layer above the second dielectric layer, the third dielectric layer is thicker than either the first dielectric layer or the second dielectric layer, and patterning the third dielectric layer to create a third opening and a fourth opening, the third opening is aligned with and above the conductive pad and the fourth opening is located between the conductive pad and the metallic structure, the third dielectric layer remains above the metallic structure. The method may further include removing a portion of the second dielectric layer exposed in the third opening and the fourth opening to expose the metallic liner, forming a copper plug and a copper pedestal on a first portion of the metallic liner above the conductive pad, the copper plug is formed within the first opening in the third dielectric layer and the copper pedestal is formed on top of the copper plug, and removing a second portion of the metallic liner in the fourth opening to expose the first dielectric layer.
According to another embodiment of the invention, a structure is provided. The structure may include a metallic structure positioned within an interconnect level above a substrate, the metallic structure is adjacent to a kerf of the substrate, a first dielectric layer above the interconnect level, the first dielectric layer comprising an opening aligned with and above the metallic structure, and a metallic liner above the first dielectric layer, within the opening, and on the metallic feature. The structure may further include a second dielectric layer above the metallic liner, and a third dielectric layer above the second dielectric layer, the third dielectric layer is thicker than either the first dielectric layer or the second dielectric layer.
The following detailed description, given by way of example and not intended to limit the invention solely thereto, will best be appreciated in conjunction with the accompanying drawings, in which:
The drawings are not necessarily to scale. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention. In the drawings, like numbering represents like elements.
Detailed embodiments of the claimed structures and methods are disclosed herein; however, it can be understood that the disclosed embodiments are merely illustrative of the claimed structures and methods that may be embodied in various forms. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of this invention to those skilled in the art. In the description, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments.
The present invention relates to a semiconductor structure, and particularly, to an integrated crackstop structure. Integrating the fabrication of a crackstop structure into a bonding pad structure process flow may reduce failures and improve yield. One way to fabricate the crackstop structure alongside a bonding pad structure in the same process flow is described in detail below by referring to the accompanying drawings
Referring now to
The BEOL level 102 may include a plurality of dielectric layers (not shown) as well as one or more conductive pads 104 and a plurality of metal features 106 embedded as metallization in one or more of the plurality of dielectric layers. The dielectric layers may include any type of dielectric material used for insulating a semiconductor device known to a person of ordinary skill in the art including, for example, a silicon dioxide substrate, a fluorinated silicon dioxide substrate, a silicon glass substrate.
The conductive pad 104 and the metallic structure 106 may include any type of conductive material known to a person of ordinary skill in the art including, for example, copper, aluminum, or tungsten. In an embodiment of the invention, the metallic structure 106 may include multiple metal structures and may form the base of a crackstop feature. In an embodiment of the invention, the metallic structure 106 may have a height greater than a height of the conductive pad 104. For example, the metallic structure 106 may have a height greater than 50% of a thickness of the BEOL level 102. The conductive pad 104 and the metallic structure 106 may be formed within the BEOL level 102 using any forming process known to a person of ordinary skill in the art including, for example, a damascene process. An upper surface of the conductive pad 104 and an upper surface of the metallic structure 106 may be substantially flush with an upper surface of the BEOL level 102.
A first dielectric layer 108 may be formed above the BEOL level 102 and cover both the conductive pad 104 and the metallic structure 106. The first dielectric layer 108 may include any dielectric insulating material including, for example, an oxide, a nitride, or any combination thereof. The first dielectric 108 may be deposited on the BEOL level 102 using any technique known to a person of ordinary skill in the art including, for example, a chemical vapor deposition process.
It should be noted that the first dielectric layer 108, while only depicted as a single layer, may include a plurality of layers. Typically, in a multilayer dielectric structure at this level, the first dielectric layer 108 may consist of a thin copper capping layer of nitride or similar composition and have a thickness ranging from about 10 nm to about 100 nm. The first dielectric layer 108 in this case may include one or more layers of oxide and/or nitride dielectric with any/each of these layers having a thickness ranging from about 0.5 μm to 1.0 μm. The multiple layers of the first dielectric layer 108 may typically have a thickness ranging from about 1.0 μm to about 1.5 μm.
Referring now to
Referring now to
In an embodiment of the invention, the metallic liner 114 may have a thickness ranging from about 50 nm to about 1000 nm. The metallic liner 114 may be deposited over the first dielectric layer 108 using any deposition technique known to a person of ordinary skill in the art including, for example, a physical vapor deposition technique.
A second dielectric layer 116 may be formed above the metallic liner 114. The second dielectric layer 116 may include any dielectric insulating material including, for example, an oxide, a nitride, or any combination thereof. The second dielectric 116 may be deposited on the metallic liner 114 using any technique known to a person of ordinary skill in the art including, for example, a chemical vapor deposition process. It should be noted that the second dielectric layer 116, while only depicted as a single layer, may include a plurality of layers. The second dielectric layer 116 may have a thickness ranging from about 100 nm to about 1000 nm. In an embodiment of the invention, the second dielectric layer 116 may be made of a nitride and have a thickness of about 500 nm.
Referring now to
In the present embodiment, the seed layer 114b may be deposited above the barrier layer 114a. The seed layer 114b may include any metallic conductive material including, for example, copper. The seed layer 114b may have a thickness ranging from about 0.25 μm to about 3 μm. The seed layer 114b may be deposited above the barrier layer 114a using any deposition technique known to a person of ordinary skill in the art including, for example, a physical vapor deposition technique or a plating technique. It should be noted that although the seed layer 114b is illustrated in
Referring now to
After being deposited, the third dielectric layer 118 may be patterned using any photolithographic process known to a person of ordinary skill in the art. In the present case, the opening 120 may be aligned with the conductive pad 104. It should be noted that the metallic structure 106 in the crackstop region may remain completely covered by the dielectric layer 118.
Referring now to
Referring now to
Referring now to
Next, portions of the metallic liner 114 may be removed from within the field openings 122. The portions of the metallic liner 114 within the field openings 122 may be removed using any technique known to a person of ordinary skill in the art including, for example, a reactive ion etch (RIE) technique using a standard fluorine-containing RIE chemistry. In the present step, the third dielectric layer 118 may function as a mask, and the metallic liner 114 may be removed selective to the dielectric layer 118, the first dielectric layer 108, and the second dielectric layer 116. It should be noted that the metallic liner 114 may remain in the interconnect region.
Lastly, the solder bump 130 may be caused to reflow by heating the structure to a temperature greater than the reflow temperature of the chosen solder. In such cases, the solder bump may typically form a generally spherical shape, as illustrated.
With continued reference to
The crackstop structure 132 includes a continuous metal barrier preventing the propagation of a microcrack emanating from the kerf region towards the interconnect region. More specifically, the metallic structure 106 and the metallic liner 114 prevent microcracks in either the BEOL level 102 or the first dielectric layer 108 from propagating from the kerf region into the interconnect region. The final structure 100 may further include a bonding pad structure 134 or solder ball structure which may be formed simultaneously with the crackstop structure 132 using the same process flow. It should be noted that the metallic liner 114 of the crackstop feature 132 is located above the first dielectric layer 108 and below the second dielectric layer 116.
Another embodiment by which to integrate a crackstop structure into a bonding pad structure process flow is described in detail below by referring to the accompanying drawings
Referring now to
Referring now to
Referring now to
A capping layer 208 may be formed on the first and second copper pedestals 128a, 128b in both the interconnect region and the crackstop region. The capping layer, while illustrated as a single layer, may include multiple layers. In an embodiment of the invention the capping layer 208 may include any metallic conductive material including, for example, nickel, copper, or any combination thereof. In an embodiment of the invention, a nickel layer followed by a copper layer may be deposited on the copper pedestal 128. The capping layer 208 may have a thickness ranging from about 100 nm to about 2 μm.
Referring now to
Referring now to
With continued reference to
Also like above, the final structure 200 may further include the bonding pad structure 134 which may be formed simultaneously with the crackstop structure 212 using the same process flow. It should be noted that the metallic liner 114 of the crackstop feature 132 is located above the first dielectric layer 108 and below the second dielectric layer 116.
Therefore, the methods and corresponding structures described above enable the simultaneous elimination of the industry standard aluminum pad with the use of a thick PSPI and copper plug final via, for example the third dielectric layer 118 and the copper plug 126. Furthermore, the methods and corresponding structures described above simultaneously provide a reliable chip-edge crackstop structure, for example the crackstop structure 132, that meets crackstop reliability guidelines.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiment, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
This application is a divisional of U.S. patent application Ser. No. 14/059,486, filed Oct. 22, 2013, now issued as U.S. Pat. No. 9,190,318 on Nov. 17, 2015, the complete disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4922326 | Blumenshine et al. | May 1990 | A |
4976814 | Blumenshine et al. | Dec 1990 | A |
5024970 | Mori | Jun 1991 | A |
7207096 | Gambino et al. | Apr 2007 | B2 |
7323780 | Daubenspeck et al. | Jan 2008 | B2 |
7573115 | Melville et al. | Aug 2009 | B2 |
7687915 | Lee et al. | Mar 2010 | B2 |
7704804 | Daubenspeck et al. | Apr 2010 | B2 |
7777339 | Daubenspeck et al. | Aug 2010 | B2 |
7821104 | Lee et al. | Oct 2010 | B2 |
7875502 | Brofman et al. | Jan 2011 | B2 |
7985671 | Daubenspeck et al. | Jul 2011 | B2 |
8299581 | Daubenspeck et al. | Oct 2012 | B2 |
8450849 | Lu et al. | May 2013 | B2 |
20090149013 | Daubenspeck et al. | Jun 2009 | A1 |
20120126228 | Fischer et al. | May 2012 | A1 |
20150031189 | Chen et al. | Jan 2015 | A1 |
Entry |
---|
U.S. Appl. No. 14/059,486, Office Action Communication Dated Apr. 28, 2015, pp. 1-7. |
U.S. Appl. No. 14/059,486, Office Action Communication Dated May 21, 2015, pp. 1-9. |
U.S. Appl. No. 14/059,486, Notice of Allowance Communication Dated Aug. 11, 2015, pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20160027744 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14059486 | Oct 2013 | US |
Child | 14876889 | US |