Substrate-less stackable package with wire-bond interconnect

Information

  • Patent Grant
  • 10170412
  • Patent Number
    10,170,412
  • Date Filed
    Thursday, April 12, 2018
    6 years ago
  • Date Issued
    Tuesday, January 1, 2019
    5 years ago
Abstract
A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are unconvered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
Description
BACKGROUND OF THE INVENTION

Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.


Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.


Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.


Packaged semiconductor chips are often provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board, and another package is mounted on top of the first package. These arrangements can allow a number of different chips to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between packages. Often, this interconnect distance is only slightly larger than the thickness of the chip itself. For interconnection to be achieved within a stack of chip packages, it is necessary to provide structures for mechanical and electrical connection on both sides of each package (except for the topmost package). This has been done, for example, by providing contact pads or lands on both sides of the substrate to which the chip is mounted, the pads being connected through the substrate by conductive vias or the like. Solder balls or the like have been used to bridge the gap between the contacts on the top of a lower substrate to the contacts on the bottom of the next higher substrate. The solder balls must be higher than the height of the chip in order to connect the contacts. Examples of stacked chip arrangements and interconnect structures are provided in U.S. Patent App. Pub. No. 2010/0232129 (“the '129 Publication”), the disclosure of which is incorporated by reference herein in its entirety.


Despite all of the above-described advances in the art, still further improvements in making and testing microelectronic packages would be desirable.


BRIEF SUMMARY OF THE INVENTION

An aspect of the present disclosure relates to a method for making a microelectronic unit. The method includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the bases and remote from the first surface. The wire bonds further have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over at least a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by at least one of the end surface or a portion of the edge surface thereof that is uncovered by the encapsulation layer. Then, the metallic element is selectively patterned to form first conductive elements insulated from one another by at least portions of the encapsulation layer. At least some of the wire bonds are disposed atop the first conductive elements.


A microelectronic element can be included in the structure and electrically connected with the conductive layer when the step of removing portions of the conductive layer is performed. The step of forming the dielectric encapsulation layer can be carried out with the microelectronic element electrically connected with the conductive layer and such that the encapsulation layer at least partially covers at least one surface thereof. At least some of the first conductive elements can be electrically connected between respective ones of the wire bonds and the microelectronic element.


An example of the method can further include the step of forming a redistribution layer over the second surface of the encapsulation layer. The redistribution layer can include conductive contacts displaced in at least one lateral direction from the unexposed portions of the wire bonds.


At least some of the wire bonds can be formed such that the end surfaces thereof are displaced in one or more lateral directions from the bases thereof. In an example, the bases of the wire bonds can be arranged in a first pattern having a first minimum pitch and the unencapsulated portions of the wire bonds can be arranged in a pattern having a second minimum pitch that is greater than the first minimum pitch. Alternatively, the bases can be arranged in a first pattern having a first minimum pitch and the unencapsulated portions of the wire bonds can be arranged in a pattern having a second minimum pitch that is less than the first minimum pitch.


The method can further include forming second conductive elements overlying the second surface of the dielectric layer. At least some of the second conductive elements can be connected with respective ones of at least some of the unencapsulated portions of the wire bonds.


The step of selectively removing portions of the conductive layer can include forming at least some first conductive elements as contact pads to which bases of wire bonds that are not electrically connected with other elements of the unit are electrically connected.


The method can further include the step of thinning the unit by one of grinding or polishing. In an example, the encapsulation layer can be formed having an initial thickness such that the end surfaces of the wire bonds are substantially covered, and the step of thinning the unit can include removing a portion of the encapsulation layer such that the end surfaces become unencapsulated by the encapsulation layer.


The step of forming the encapsulation layer can include dispensing an encapsulant onto the first surface of the conductive layer and at least edge surfaces of the wire bonds. Further, the step of forming the encapsulation layer can include molding an encapsulant in contact with the conductive layer, at least edge surfaces of the wire bonds, and at least one surface of the microelectronic element.


The method can further include removing a carrier from a surface of the conductive layer opposite the wire bonds prior to performing the step of selectively removing portions of the conductive layer.


In an embodiment, the conductive layer can have a thickness of less than 20 microns.


Another aspect of the present disclosure relates to a method for making a microelectronic package. The method can include forming a plurality of wire bonds on a first surface of a conductive layer of an in process unit. The in-process unit has at least one microelectronic element joined thereto that is electrically connected with portions thereof. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the bases and remote from the first surface. The wire bonds further have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over at least a portion of the first surface of the conductive layer, over at least a portion of the at least one microelectronic element, and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by at least one of the end surface or a portion of the edge surface thereof that is uncovered by the encapsulation layer. Portions of the conductive layer are selectively removed to form first conductive elements thereof. At least some of the first conductive elements are electrically connected with at least some of the wire bonds, and at least some of the first conductive elements include at least some of the portions of the conductive layer with which the microelectronic element is electrically connected.


Another aspect of the present disclosure relates to a method for making a microelectronic unit. The method includes forming a plurality of wire bonds on a first surface that is a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds have bases joined to the first surface and end surfaces remote from the bases and remote from the first surface. The wire bonds further have edge surfaces extending between the bases and the end surfaces. When forming the wire bonds, the conductive layer includes a plurality of regions attached to one another at at least some edges thereof. The method also includes forming a dielectric encapsulation layer over at least a portion of the first surface of the conductive layer and over portions of the wire bonds, such that unencapsulated portions of the wire bonds are defined by at least one of the end surface or a portion of the edge surface thereof that is uncovered by the encapsulation layer, wherein when performing the step of selectively removing portions of the encapsulation layer, a plurality of microelectronic elements are joined to the conductive layer, in the form of an in-process unit having at least one microelectronic element electrically connected with each of at least some of the regions of the conductive layer. The metallic element is then selectively patterned to form first conductive elements insulated from one another by at least portions of the encapsulation layer. At least some of the wire bonds are disposed atop the first conductive elements. The in-process unit is then severed into a plurality of microelectronic units, each including the first conductive elements of a region of the conductive layer and the at least one microelectronic element electrically connected therewith.


Another aspect of the present disclosure relates to a method for making a microelectronic assembly. The method includes making a first microelectronic package, including forming a plurality of wire bonds on a first surface of a conductive layer of an in process unit. The in-process unit has at least one microelectronic element joined thereto and electrically connected with portions thereof. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the bases and remote from the first surface. The wire bonds further have edge surfaces extending between the bases and the end surfaces. Forming the first microelectronic package also includes forming a dielectric encapsulation layer over at least a portion of the first surface of the conductive layer, over at least a portion of the at least one microelectronic element, and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by at least one of the end surface or a portion of the edge surface thereof that is uncovered by the encapsulation layer. Portions of the conductive layer are then selectively removed to form first conductive elements thereof. At least some of the first conductive elements are electrically connected with at least some of the wire bonds and at least some of the first conductive elements include at least some of the portions of the conductive layer with which the microelectronic element is electrically connected. The method also includes joining the first microelectronic package with a second microelectronic package overlying the second surface of the encapsulation layer of the first package. The second microelectronic package includes a plurality of contacts exposed at a first surface thereof. Joining the first microelectronic package with the second microelectronic package includes electrically connecting the unencapsulated portions of the wire bonds of the first microelectronic package with the contacts of the second microelectronic package.


Another aspect of the present disclosure relates to a microelectronic package including at least one microelectronic element. The package further includes first electrically conductive elements including terminals exposed at a mounting surface of the package. At least some of the first conductive elements are electrically connected to the at least one microelectronic element through vias integrally formed with the first conductive elements. The package further includes wire bonds having bases joined to respective ones of the conductive elements and adjacent the first surface of the dielectric encapsulation layer and end surfaces remote from the bases. Each wire bond defines an edge surface extending between the base and the end surface thereof. The package also includes a dielectric encapsulation layer having a first surface and a second surface remote from the first surface. At least a portion of the first surface is exposed at the mounting surface of the package. The dielectric encapsulation layer fills spaces between the wire bonds such that the wire bonds are separated from one another by the encapsulation layer. Unencapsulated portions of the wire bonds are defined by at least portions of the end surfaces of the wire bonds that are uncovered by the encapsulation layer at the second surface thereof.


At least some of the unencapsulated portions of the wire bonds can be displaced in at least one lateral direction from the respective bases thereof.


The package can further include a second microelectronic element. In an example the first microelectronic element can include contacts exposed at a front face thereof that are disposed toward the first surface of the dielectric layer, and the second microelectronic element can include contacts exposed at a front face thereof that is disposed toward the second surface of the dielectric layer. In such an example, the package can further include second conductive elements exposed at the second surface of the encapsulation layer. At least some of the second conductive elements can be connected between respective ones of the contacts of the second microelectronic element and respective ones of the unencapsulated wire bond portions. The first and second microelectronic elements can be electrically connected by at least one wire bond that is electrically connected with at least one contact of the first microelectronic element and at least one contact of the second microelectronic element. Alternatively, the second microelectronic element can be connected with one of the second conductive elements by a wire bond joined between one of the contacts of the second microelectronic element and a respective one of the second microelectronic elements. In another example, the first and second microelectronic elements can be electrically connected by a wire bond joined to a contact of the second microelectronic element and a respective one of the conductive elements exposed at the first surface of the encapsulation layer.


A microelectronic assembly can include a first microelectronic package as described above and a second microelectronic package that includes a microelectronic element and terminals exposed at a surface of the second microelectronic package. The terminals can be electrically connected with the microelectronic element. Further, the second microelectronic package can overlie the first microelectronic package and can be bonded thereto with the terminals thereof electrically connected to at least some of the unencapsulated portions of the wire bonds of the first microelectronic package.


A system can include a microelectronic package, as described above and one or more electronic components.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention will be now described with reference to the appended drawings. It is appreciated that these drawings depict only some embodiments of the invention and are therefore not to be considered limiting of its scope.



FIG. 1 shows a top schematic view of an in-process unit that can be processed to form a microelectronic package by steps according to a method of the present disclosure;



FIG. 2 shows a side elevation of the in-process unit of FIG. 1;



FIG. 3 shows a top view of the in-process unit of FIG. 1 in a further process step of the method;



FIG. 4 shows a side elevation view of the in-process unit of FIG. 3;



FIG. 5 shows a detail view of a portion of the in-process unit of FIG. 4 as indicated by area or detail A;



FIG. 6 shows a top view of the in-process unit of FIG. 1 in a further process step of the method;



FIG. 7 shows a side elevation view of the in-process unit of FIG. 6;



FIG. 8 shows a detail view of a portion of the in-process unit of FIG. 7 as indicated by area B or detail;



FIG. 9 shows a side elevation view of a microelectronic package that can result from the method;



FIG. 10 shows a detail view of the package of FIG. 9 as indicted by area or detail C;



FIG. 11 shows the detail view of FIG. 10 after a further optional process step of the method;



FIG. 12 shows a side view of the package of Fig.


in a further optional process step of the method;



FIG. 13 shows a detail view of a portion of the package of FIG. 11 as indicated by area or detail D;



FIG. 14 shows an alternative in-process unit that can be processed to form a microelectronic package by steps according to variation of a method of the present disclosure;



FIG. 15 shows a detail view of a portion of the in-process unit of FIG. 13 as indicated by area E;



FIG. 16 shows a side elevation view of a microelectronic package that can result from the method variation;



FIG. 17 shows a detail view of a portion of the package of FIG. 15 after an optional process step of another method variation;



FIG. 18 shows an alternative microelectronic package;



FIG. 19 shows a detail view of a portion of the package of FIG. 18 as indicated by area F;



FIG. 20 shows a further alternative microelectronic package;



FIG. 21 shows a detail view of a portion of the package of FIG. 20 as indicated by area G;



FIG. 22 shows a further alternative microelectronic package;



FIG. 23 shows a further alternative microelectronic package; and



FIG. 24 shows an example of a microelectronic assembly that can include one or more packages according to various embodiments shown herein.



FIG. 25 depicts an example of a system which may include a package according to an implementation described herein.





DETAILED DESCRIPTION

Turning now to the figures, where similar numeric references are used to indicate similar features, there is shown in FIG. 9 a microelectronic unit or package 10 according to an embodiment of the disclosure, for which FIGS. 1-8 show various stages of formation of the microelectronic package according to a method in another embodiment of the disclosure. The embodiment of FIG. 9 is a microelectronic package 10 in the form of a packaged microelectronic element such as a semiconductor chip assembly that is used in computer or other electronic applications.


The microelectronic package 10 of FIG. 9 includes a microelectronic element 22. The microelectronic package 10 can be embedded within an encapsulation layer 42 or may be contacted by the encapsulation layer at one or more surfaces thereof, e.g., a front or rear surface or an edge surface extending between the front and rear surfaces. The encapsulation layer 42 has a thickness extending from a first surface 43 or 45 to a second surface 44. The first and second surfaces can be at least partially exposed at respective first and second mounting surfaces 11 and 12 of the packages 10. Such a thickness can be at least equal to a thickness of the microelectronic element 22, itself. As seen in FIG. 10, encapsulation layer 42 can further extend outwardly from the microelectronic element 22 in lateral directions, as also shown in the plan-view of FIG. 6. A plurality of wire bonds 32 are also embedded within encapsulation layer and extend between end surfaces 35 and 38 that are respectively uncovered by the encapsulation layer and which may be flush (e.g., co-planar) with surfaces 43 or 45 and 44. For purposes of this discussion, the first surface 43 or 45 may be described as being positioned opposite or remote from second surface 44. Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the Figures, and is not limiting.


Microelectronic element 22 can be a semiconductor chip or another comparable device having a plurality of active or passive circuit elements therein or both active and passive circuit elements which may be in the form of an integrated passives on-chip (“IPOC”), among others. In the embodiment of FIG. 10, microelectronic element 22 has at least portions of edge and rear surfaces contacted (e.g., covered by) encapsulation layer 42. The microelectronic element 22 may be positioned such that its contacts 24 are adjacent the first mounting surface 11 of the package. Further, in such an arrangement, contacts 24 are connected with conductive elements 28 that extend along first surface 43 or 45 of encapsulation layer 42 to electrically connect with wire bonds 32 at end surfaces 35, thereof, which can be defined by bases 34 of the respective wire bonds 32. Such bases 34 can be an artifact of the process used to form wire bonds 32, and can be in the shape of such bases 34 as formed by ball bonding, as shown, or by wedge bonding, stitch bonding or the like. In other embodiments, such as that shown in FIG. 16, bases can be partially or fully removed during fabrication, such as by a thinning process of grinding, lapping, polishing, or other suitable technique. Such thinning or other process can also reduce the height of the wire bonds 132 such that end surfaces 135 are defined as extremities of the wire bonds 132 that were above the bases. In an embodiment, the microelectronic contacts 24 can be electrically connected with conductive elements 28 by conductive (e.g., metalized) vias 25 that include vias deposited onto the contacts 24 of the microelectronic element such as by plating, sputtering, or vapor deposition of one or more metals, such as one or more of copper, nickel, chromium, aluminum, gold, titanium, tungsten, cobalt, or one or more alloys thereof, without limitation. In one example, conductive elements can be formed by depositing a liquid conductive matrix material having metallic and non-metallic components, and thereafter curing the deposited conductive matrix material. For example, a conductive matrix material can be deposited and used such as described in commonly owned U.S. patent application Ser. No. 13/158,797, the disclosure of which is incorporated by reference herein.


Conductive elements 28 can include respective “contacts” or “pads” that can be exposed at the second surface 44 of encapsulation layer 42. As used in the present description, when an electrically conductive element is described as being “exposed at” the surface of another element having dielectric structure, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure. Thus, a terminal or other conductive structure that is exposed at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric. In one example, the conductive elements 28 can be flat, thin elements that are exposed at first surface 43 of encapsulation layer 42. Conductive elements 28 can have any suitable shape and in some cases can be circular. Conductive elements 28 may be electrically interconnected with one another, to microelectronic element 22, or both, by traces 31. Conductive elements 28 can also be formed along front surface 20 of microelectronic element 22.


As shown in FIGS. 12 and 13, additional conductive elements 28 can be exposed at a second surface 44 of encapsulation layer 42. Such conductive elements 28 can overlie and electrically connect with end surfaces 38 of wire bonds 32. In other variations, such conductive elements can include pads 28 that are displaced in at least one lateral direction along surface 44 from a corresponding wire bond, to which they can be connected at an end surface thereof by a trace 31.


Wire bonds 32 can be joined to at least some of the conductive elements 28, such as on the faces thereof. Wire bonds 32 can be joined at a base 34 thereof to the conductive elements 28 and can extend to an end 36 remote, i.e. opposite, from the respective bases 34 and from first surface 43. The ends 36 of wire bonds 32 can be characterized as being “free” in that they are not electrically connected or otherwise joined to microelectronic element 22 or any other conductive features within microelectronic package 10 that are, in turn, connected to microelectronic element 22. In other words, free ends 36 are available for electronic connection, either directly or indirectly as through a conductive element 28 or other features discussed herein, to a conductive feature external to package 10. The fact that ends 36 are held in a predetermined position by, for example, encapsulant layer 42 or otherwise joined or electrically connected to another conductive feature does not mean that they are not “free” as described herein, so long as any such feature is not electrically connected to microelectronic element 22. Conversely, bases 34 may not be free as they can be either directly or indirectly electrically connected to microelectronic element 22, as described herein. As shown in FIG. 10, bases 34 can be rounded in shape, extending outward from an edge surface 37 of wire bond 32 defined between base 34 and end 36. The particular size and shape of base 34 can vary according to the type of material used to form wire bond 32, the desired strength of the connection between wire bond 32 and conductive element 28, or the particular process used to form wire bond 32. Exemplary methods for making wire bonds 32 are described in U.S. Pat. No. 7,391,121 to Otremba, in U.S. Pat. App. Pub. No. 2005/0095835 (describing a wedge-bonding procedure that can be considered a form of wire bonding), and in commonly-assigned U.S. patent application Ser. Nos. 13/462,158; 13/404,408; 13/405,108; 13/405,125; and 13/404,458, the disclosures of which are incorporated herein by reference in their entireties.


Wire bonds 32 are formed by bonding a metal wire made of copper, gold, nickel, solder, aluminum, or metal alloy, among others, at a surface thereof and performing one or more other steps so as to form a wire bond having a base and an unencapsulated surface remote, e.g., opposite, therefrom with a length of the wire extending therebetween. Additionally, wire bonds 32 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel, platinum, or palladium, among others. Alternatively, the coating can be of an insulating material, such as an insulating jacket. In an embodiment, the wire used to form wire bonds 32 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 μm and 150 μm. In general, wire bonds 32 can be formed on a metal bonding surface, i.e. a first metal bonding surface of a structure using a wire bond tool. In other embodiments, including those in which wedge bonding is used, such as described below, wire bonds 32 can have a thickness of up to about 500 μm. A leading end of a wire segment is heated and pressed against the receiving surface to which the wire segment bonds, typically forming a ball or ball-like base 34 joined to the surface of the conductive element 28. The desired length of the wire segment to form the wire bond is drawn out of the bonding tool, which can then sever or cut the wire bond at the desired length. Wedge bonding, which can be used to form wire bonds of aluminum, for example, is a process in which the heated portion of the wire is dragged across the receiving surface to form a wedge that lies generally parallel to the surface. The wedge-bonded wire bond can then be bent upward, if necessary, and extended to the desired length or position before cutting. In a particular embodiment, the wire used to form a wire bond can be cylindrical in cross-section. Otherwise, the wire fed from the tool to form a wire bond or wedge-bonded wire bond may have a polygonal cross-section such as rectangular or trapezoidal, for example.


The free ends 36 of wire bonds 32 can define respective end surfaces 38. End surface 38 can form at least a part of a contact in a pattern such as a grid or an array formed by respective end surfaces 38 of a plurality of wire bonds 32. FIGS. 6 and 7 show an exemplary pattern for such an array of contacts formed by end surfaces 38. Such an array can be formed in an area array configuration, variations of which could be implemented using the structures described herein. In a variation of that shown, there need not be end surfaces of a wire bond at every position of the grid or array pattern in FIG. 6. Such an array can be used to electrically and mechanically connect the microelectronic package to another microelectronic structure, such as to a printed circuit board (“PCB”), or to other packaged microelectronic elements, an example of which is shown in FIG. 24. In such a stacked arrangement, wire bonds 32 and conductive elements 28 can carry multiple electronic signals therethrough, each having a different signal potential to allow for different signals to be processed by different microelectronic elements in a single stack. The grid or array pattern in which end surfaces 38 are disposed at certain positions that can be disposed at positions thereof that are the same as or different than the grid or array pattern in which bases 34 are disposed. In the example shown in FIG. 9, where wire bonds 32 are generally vertically arranged, such arrays may be identical. In other arrangements, such as that shown in FIG. 23 can include wire bonds 532 that are angled 546 with respect to surface 544 of encapsulation layer 542 such that the array of end surfaces 38 has a greater pitch than that of bases 34. An inverse of such an arrangement is also possible. Further, as discussed above, conductive elements 28 can be laterally displaced from end surfaces 35 or 38 to which they are electrically connected by traces 31. This arrangement can also provide for different pitches over surfaces 544 and 545 or other different arrangements of contacts.


As shown in FIG. 24 such a package 10 can be arranged in a stack with other similar packages or the like. While FIG. 24 shows two such microelectronic packages 10A, 10B, three, four or even more can be arranged in such a stack, which can also be assembled with a circuit panel 90 with solder masses 52 joining conductive elements 28 to panel contacts 92. Solder masses 52 can also be used to interconnect the microelectronic assemblies in such a stack, such as by electronically and mechanically attaching end surfaces 38 to conductive elements 28 or connecting conductive elements 28 to other conductive elements 28.


Encapsulation layer 42 serves to protect the other elements within microelectronic package 10, particularly wire bonds 32. This allows for a more robust structure that is less likely to be damaged by testing thereof or during transportation or assembly to other microelectronic structures. Encapsulation layer 42 can be formed from a dielectric material with insulating properties such as that described in U.S. Patent App. Pub. No. 2010/0232129, which is incorporated by reference herein in its entirety.


As discussed above, FIG. 23 shows an embodiment of microelectronic assembly 510 having wire bonds 532 with ends 536 that are not positioned directly above the respective bases 34 thereof. That is, considering first surface 544 of assembly 510 as extending in two lateral directions, so as to substantially define a plane, end 536 or at least one of the wire bonds 532 is displaced in at least one of these lateral directions from a corresponding lateral position of base 34. As shown in FIG. 23, wire bonds 532 can be substantially straight along the longitudinal axis thereof, as in the embodiment of FIG. 9, with the longitudinal axis being angled at an angle 546 with respect to a first surface 544 of encapsulation layer 542. Although the cross-sectional view of FIG. 23 only shows the angle 546 through a first plane perpendicular to first surface 544, wire bond 532 can also be angled with respect to second surface 545 in another plane perpendicular to both that first plane and to second surface 545. Such an angle can be substantially equal to or different than angle 546. That is the displacement of end 536 relative to base 34 can be in two lateral directions and can be by the same or a different distance in each of those directions.


In an embodiment, various ones of wire bonds 532 can be displaced in different directions and by different amounts throughout the assembly 510. Such an arrangement allows for assembly 510 to have an array that is configured differently on the level of surface 544 compared to on the level of surface 545. For example, an array can cover a smaller overall area or have a smaller pitch on surface 544 than at the second surface 545 level. Further, some wire bonds 532 can have ends 536 that are positioned above microelectronic element 522 to accommodate a stacked arrangement of packaged microelectronic elements of different sizes. In another embodiment, wire bonds can achieve this lateral displacement by including curved portions therein. Such curved portions can be formed in an additional step during the wire bond formation process and can occur, for example, while the wire portion is being drawn out to the desired length. This step can be carried out using available wire-bonding equipment, which can include the use of a single machine. Such curved portions can take on a variety of shapes, as needed, to achieve the desired positions of the ends of the wire bonds. For example, curved portions can be formed as S-curves of various shapes.



FIGS. 1-8 show a microelectronic package 10 in various steps of a fabrication method thereof. FIGS. 1 and 2 show microelectronic package 10 at a step where microelectronic element 22 has been bonded to a structure comprising a patternable metallic element 28′. The structure may include or consist of a metallic or other electrically conductive material layer extending in first and second transverse directions 15, 17 to define a general shape of package 10, as can be seen in the plan view of FIG. 1. Microelectronic element 22 can be assembled, e.g., bonded, to the conductive material layer 28′ using an adhesive layer or polymeric material which is not fully cured. In some embodiments, the structure may include a support layer or device, e.g., a carrier to support the conductive material layer 28′ during at least some steps during fabrication. Such a support layer can be removed after formation of the encapsulation layer 42.



FIGS. 3, 4 and 5 show microelectronic package 10 having wire bonds 32 joined at predetermined locations on surface 30′ of conductive material layer 28′. As discussed, wire bonds 32 can be applied by heating an end of a wire segment to soften the end such that it forms a deposition bond to conductive element 28 when pressed thereto, forming base 34. The wire is then drawn out away from conductive element 28 and manipulated, if desired, in a specified shape before being severed to form end 36 and end surface 38 of wire bond 32. Alternatively, wire bonds 32 can be formed from, for example, an aluminum wire by wedge bonding. Wedge bonding is formed by heating a portion of the wire adjacent the end thereof and dragging it along the conductive element 28 with pressure applied thereto. Such a process is described further in U.S. Pat. No. 7,391,121, the disclosure of which is hereby incorporated by reference herein in its entirety, and in previously-referenced U.S. patent application Ser. No. 13/402,158.


In FIGS. 6-8 encapsulation layer 42 has been added to microelectronic package 10 by being applied over surface 30′ of conductive material layer 28′, extending upwardly therefrom and along edge surfaces 37 of wire bonds 32. Encapsulation layer 42 can also extend along at least a portion of microelectronic element 22, including over at least one of the front face, rear face, or edge surface thereof. In other examples, the encapsulation layer 42 can be formed such that it does not contact any portions of microelectronic element 22, such as by being laterally spaced away therefrom. Encapsulation layer 42 can be formed by depositing an encapsulant, e.g., a resin over the stage of microelectronic package 10 shown in FIG. 4. In one example, this can be done by placing package 10 in an appropriately configured mold having a cavity in the desired shape of the encapsulation layer 42 that can receive package 10. Such a mold and the method of forming an encapsulation layer therewith can be as shown and described in U.S. Pat. App. Pub. No 2010/0232129, the disclosure of which is incorporated by reference herein it its entirety. Alternatively, encapsulation layer 42 can be prefabricated to the desired shape from an at least partially compliant material. In this configuration, compliant properties of the dielectric material allow encapsulation layer 42 to be pressed into position over wire bonds 32 and microelectronic element 22. In such a step, wire bonds 32 penetrate into the compliant material forming respective holes therein, along which encapsulation layer 42 contacts edge surfaces 37. Further, microelectronic element 22 may deform the compliant material so that it can be received therein. The compliant dielectric material can be compressed to expose end surfaces 38 on outer surface 44. Alternatively, any excess compliant dielectric material can be removed from encapsulation layer to form a surface 44 on which end surfaces 38 of wire bonds 32 are uncovered.


In an example, the encapsulation layer 42 can be formed such that, initially, surface 44 thereof is spaced above end surfaces 38 of wire bonds 32. To expose the end surfaces 38, the portion of encapsulation layer 42 that is above end surfaces 38 can be removed, exposing a new surface 44 that is substantially flush with end surfaces 38, as shown in FIG. 7. In a further alternative, encapsulation layer 42 can be formed such that surface 44 is already substantially flush with end surfaces 38 or such that surface 44 is positioned below end surfaces 38. Removal, if necessary, of a portion of encapsulation layer 42 can be achieved by grinding, dry etching, laser etching, wet etching, lapping, or the like. If desired, a portion of the ends 36 of wire bonds 32 can also be removed in the same, or an additional, step to achieve substantially planar end surface 38 that are substantially flush with surface 44. In a particular example, the encapsulation can be applied over the microelectronic element 22, wire bonds 34, and patternable conductive element 28′ without using a mold and excess encapsulant can be removed after the application thereof to expose the end surfaces of the wire bonds, e.g., by polishing or one or more of the above methods.


After formation of dielectric layer 42, conductive material layer 28′ can be patterned, by chemical or mechanical etching (such as laser etching or the like), to make conductive elements 28 and/or traces 31 by removing portions of conductive material layer 28′ and leaving the portions thereof in the desired locations and form of the desired conductive elements 28 or traces 31. This can be done to make selective interconnections between wire bonds 32 and contacts 24 of microelectronic element 22 or to form conductive elements 28 displaced from respective wire bonds 32 with which they can be connected by traces 31. In some embodiments, conductive vias 25 can be formed to connect traces 31 or conductive features 28 in the form of pads with the microelectronic contacts 24.


As shown in FIG. 11, the package 10 can then be thinned to planarize surface 44 and end surfaces 38 of wire bonds 32. This can include exposing a surface of microelectronic element 22 on surface 44, which can also include thinning of microelectronic element 22 itself. Additionally or alternatively, conductive features 28 and/or traces 31 can be formed over surface 44, as described above. This can be done by depositing or joining a conductive layer over surface 44 and then patterning the layer to form such conductive elements 28 and traces 31.



FIGS. 16 and 17 show a microelectronic package 110 that is similar in construction to that shown in FIG. 10 but with microelectronic element 122 in a “face-up” arrangement. In such an arrangement, microelectronic contacts 124 are disposed toward surface 144 of encapsulation layer 142. Further, microelectronic element 122 can connect with the pattern of wire bonds 132 by conductive features 128 and traces 131 that are exposed at surface 144. As shown in FIGS. 16 and 17, such traces 131 and conductive elements 128 can connect with microelectronic contacts 124 by metalized vias 125 that extend from surface 144 to the contacts 124.


As illustrated in FIG. 16, the routing achieved by traces 131 and conductive elements 128 exposed on surface 144 can be the only routing in package 110, with surface 145 being ground down to remove conductive material layer 128′ (FIG. 15), which can also remove further encapsulation material, bases 134, and all or a portion of the attachment layer 120. Alternatively, as shown in FIG. 16 electrically conductive routing elements can also be included on surface 145 that can be for purposes or redistribution of wettable contacts in the array over surface 145. In other examples, a designated wire bond can connect with the microelectronic element 122 by routing over surface 144, which can, in turn connect with other wire bonds by routing over surface 145 that is connected with such designated wire bonds.



FIGS. 14 and 15 show microelectronic package 110 in process steps that can lead to either of the completed packages 110 shown in FIGS. 16 and 17. Specifically, FIGS. 14 and 15 show package 110 with microelectronic element 122 bonded, face-up, on conductive material layer 128′. Similarly, wire bonds 132 have been joined to surface 130′ of conductive material layer 128′ and formed according to any one of the processes described above. Further, encapsulation layer 142 has been deposited over exposed portions of surface 130′ and over wire bonds 132 and microelectronic element 122, according to any of the various processes described above. Routing circuitry in the form of conductive elements 128 and traces 131 were then formed over surface 144 of encapsulation layer 142 to connect wire bonds 132 with microelectronic element 122.


At such a point, package 110 can be further processed by grinding, polishing, lapping or other techniques as described above to remove material to result in the package 110 shown in FIG. 16. Alternatively, additional routing can be formed by patterning conductive material layer 128′ to form conductive elements 128 and traces 131 in the desired configuration, as described above with respect to FIGS. 9 and 10.



FIGS. 18-22 show various arrangements of packages of a similar general structure to those described above but utilizing multiple microelectronic elements. In one example, FIGS. 18 and 19 show a microelectronic package 210 having one microelectronic element 222A embedded within encapsulation layer 242 in a face-down arrangement and another microelectronic element 222B in a face-up arrangement. Such a package 210 can utilize electrically conductive routing circuitry in the form of interconnected conductive elements 228 and traces 231 over both surface 244 and surface 245 of encapsulation layer 242. Additionally, designated wire bonds 232 can be used to electrically connect microelectronic element 222A with microelectronic element 222B by routing circuitry that connects with such a designated wire bond over each end surface 35 and 38 and respectively to at least one contact 224 of each of microelectronic elements 222A and 222B. Such a package 210 can be made by a method that is similar to those described above with respect to FIGS. 1-16.



FIGS. 20 and 21 show an arrangement of a microelectronic package 310 that is similar to that shown in FIGS. 18 and 19, but with an additional microelectronic element 322C in a face-up arrangement bonded over face 326 of microelectronic element 322B. To facilitate connection of microelectronic element 322B to electrically conductive routing circuitry over surface 344, microelectronic element 322C can be smaller than microelectronic element 322B or can be offset therefrom such that contacts 324 of microelectronic element 322B are uncovered by microelectronic element 322C. Such a connection can be achieved by metalized vias 325 that connect with the element contacts 324 or by additional wire bonds 362 that are joined to contacts 324 of microelectronic element 322B and are uncovered by encapsulation layer 342 on surface 344. As discussed above, routing between any of the microelectronic element 322A, 322B, and 322C can be achieved by designated wire bonds 332 with appropriately configured routing circuitry connected therewith.


In a further example shown in FIG. 22, a microelectronic package can be similar to that shown in FIGS. 18 and 19, but with additional wire bonds 466 that connect between one or more contacts 424 of microelectronic element 422B (which are disposed toward surface 444 of encapsulation layer 442) and a portion of the routing circuitry over surface 445 of encapsulation layer 442. In the example shown, such a wire bond 466 can be used to achieve a connection between microelectronic element 422B and microelectronic element 422A, which has contacts 424 disposed toward surface 445 of encapsulation layer 442. As shown wire bond 466, or 462, can join with a trace 431 (or a conductive element, if desired) that is further connected to a metalized via 425 that electrically connects with element contacts 424 of microelectronic element 422A, or 422B.


The structures discussed above can be utilized in construction of diverse electronic systems. For example, a system 611 in accordance with a further embodiment includes microelectronic package 610, as described above, in conjunction with other electronic components 613 and 615. In the example depicted, component 613 is a semiconductor chip whereas component 615 is a display screen, but any other components can be used. Of course, although only two additional components are depicted in FIG. 25 for clarity of illustration, the system may include any number of such components. The microelectronic package 610 as described above may be, for example, a microelectronic package as discussed above in connection with FIG. 10, or a structure incorporating plural microelectronic packages as discussed with reference to FIG. 24. Package 610 can further include any one of the embodiments described in FIGS. 13-23. In a further variant, multiple variations may be provided, and any number of such structures may be used.


Microelectronic package 610 and components 613 and 615 are mounted in a common housing 619, schematically depicted in broken lines, and are electrically interconnected with one another as necessary to form the desired circuit. In the exemplary system shown, the system includes a circuit panel 617 such as a flexible printed circuit board, and the circuit panel includes numerous conductors 621, of which only one is depicted in FIG. 25, interconnecting the components with one another. However, this is merely exemplary; any suitable structure for making electrical connections can be used.


The housing 619 is depicted as a portable housing of the type usable, for example, in a cellular telephone or personal digital assistant, and screen 615 is exposed at the surface of the housing. Where microelectronic package 610 includes a light-sensitive element such as an imaging chip, a lens 811 or other optical device also may be provided for routing light to the structure. Again, the simplified system shown in FIG. 25 is merely exemplary; other systems, including systems commonly regarded as fixed structures, such as desktop computers, routers and the like can be made using the structures discussed above.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. An apparatus, comprising: conductive elements of a conductive layer on a bottom side of a package;wire bond wires coupled to and extending from first upper surface portions of the conductive elements;a microelectronic element coupled to second upper surface portions of the conductive elements through conductive contact structures;a wire bond wire of the wire bond wires interconnected for electrical conductivity to a conductive contact structure of the conductive contact structures by a conductive element of the conductive elements for a redistribution on the bottom side of the package; anda dielectric layer contacting the wire bond wires and side portions of the microelectronic element to define at least one dimension of the package, the conductive layer at least partially defining the bottom side of the package.
  • 2. The apparatus according to claim 1, wherein the redistribution is configured to provide contacts of the package for interconnects for electrical conductivity with a microelectronic structure.
  • 3. The apparatus according to claim 1, wherein the redistribution is a lower redistribution, the apparatus further comprising a redistribution layer on an upper surface of dielectric layer interconnected for electrical conductivity to the wire bond wires for an upper redistribution on a top side of the package.
  • 4. The apparatus according to claim 3, wherein the lower redistribution and the upper redistribution respectively are configured for providing contacts of the package for interconnects for electrical conductivity with a first microelectronic structure and a second microelectronic structure.
  • 5. The apparatus according to claim 4, wherein the microelectronic element is in a face-down orientation.
  • 6. The apparatus according to claim 4, wherein the conductive elements are patterned from the conductive layer to define shapes of the conductive elements.
  • 7. The apparatus according to claim 4, wherein the wire bond wires are spaced away from a perimeter of the microelectronic element for the lower redistribution.
  • 8. The apparatus according to claim 7, wherein the redistribution layer extends over a backside surface of the microelectronic element for the upper redistribution.
  • 9. The apparatus according to claim 8, wherein the conductive contact structure includes a pad of the microelectronic element.
  • 10. The apparatus according to claim 9, wherein the conductive contact structure includes a solder mass.
  • 11. The apparatus according to claim 10, wherein the conductive contact structure includes a metalized via including the solder mass.
  • 12. The apparatus according to claim 7, wherein the conductive element is a trace.
  • 13. The apparatus according to claim 3, wherein the microelectronic element and the conductive contact structures respectively are a first microelectronic element and first conductive contact structures, the apparatus further comprising: a second microelectronic element in a face-up orientation coupled over the first microelectronic element; andthe redistribution layer extending over the second microelectronic element and interconnected for electrical conductivity to the second microelectronic element through second conductive contact structures.
  • 14. The apparatus according to claim 13, wherein the second conductive contact structures include respective pads of the second microelectronic element.
  • 15. The apparatus according to claim 14, wherein the second conductive contact structures include respective solder masses.
  • 16. The apparatus according to claim 13, wherein the wire bond wires include coated cores.
  • 17. The apparatus according to claim 3, wherein the microelectronic element includes a first microelectronic element and a second microelectronic element in a stack.
  • 18. The apparatus according to claim 17, wherein the conductive contact structures are first conductive contact structures, the apparatus further comprising: second conductive contact structures interconnected for electrical conductivity between the redistribution layer and the second microelectronic element.
  • 19. The apparatus according to claim 18, wherein: the first microelectronic element is in a face-down orientation in the stack;the second microelectronic element is in a face-up orientation and above the first microelectronic element in the stack; andthe redistribution layer extends over the second microelectronic element and is interconnected for electrical conductivity between the redistribution layer and the second microelectronic element through the second conductive contact structures.
  • 20. The apparatus according to claim 19, wherein the first and the second conductive contact structures include respective pads respectively of the first and the second microelectronic element.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/042,034, filed Feb. 11, 2016, which is a continuation of U.S. patent application Ser. No. 14/486,867, filed Sep. 15, 2014 (now U.S. Pat. No. 9,263,413), which is a divisional of U.S. patent application Ser. No. 13/477,532, filed May 22, 2012, (now U.S. Pat. No. 8,835,228), the disclosure of each of which is incorporated herein by reference in its entirety for all purposes consistent herewith.

US Referenced Citations (802)
Number Name Date Kind
2230663 Alden Feb 1941 A
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman et al. Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 DiFrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5476211 Khandros Dec 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Faraci et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6469373 Funakura et al. Oct 2002 B2
6472743 Huang et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6489676 Taniguchi et al. Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6550666 Chew et al. Feb 2003 B2
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6563217 Corisis et al. May 2003 B2
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth et al. Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6693363 Tay et al. Feb 2004 B2
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6740981 Hosomi May 2004 B2
6741085 Khandros et al. May 2004 B1
6746894 Fee et al. Jun 2004 B2
6754407 Chakravorty et al. Jun 2004 B2
6756252 Nakanishi Jun 2004 B2
6756663 Shiraishi et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774317 Fjelstad Aug 2004 B2
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6780746 Kinsman et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6800941 Lee et al. Oct 2004 B2
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6825552 Light et al. Nov 2004 B2
6828665 Pu et al. Dec 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabirzi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6909181 Aiba et al. Jun 2005 B2
6917098 Yamunan Jul 2005 B1
6930256 Huemoeller et al. Aug 2005 B1
6933598 Kamezos Aug 2005 B2
6933608 Fujisawa Aug 2005 B2
6939723 Corisis et al. Sep 2005 B2
6946380 Takahashi Sep 2005 B2
6951773 Ho et al. Oct 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7017794 Nosaka Mar 2006 B2
7021521 Sakurai et al. Apr 2006 B2
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7052935 Pai et al. May 2006 B2
7053477 Kamezos et al. May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071028 Koike et al. Jul 2006 B2
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7078788 Vu et al. Jul 2006 B2
7078822 Dias et al. Jul 2006 B2
7095105 Cherukuri et al. Aug 2006 B2
7112520 Lee et al. Sep 2006 B2
7115986 Moon et al. Oct 2006 B2
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7138722 Miyamoto et al. Nov 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176043 Haba et al. Feb 2007 B2
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7187072 Fukitomi et al. Mar 2007 B2
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7216794 Lange et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Baninetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7256069 Akram et al. Aug 2007 B2
7259445 Lau et al. Aug 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276785 Bauer et al. Oct 2007 B2
7276799 Lee et al. Oct 2007 B2
7287322 Mahieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7298033 Yoo Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7307348 Wood et al. Dec 2007 B2
7321164 Hsu Jan 2008 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7342803 Inagaki et al. Mar 2008 B2
7344917 Gautham Mar 2008 B2
7345361 Malik et al. Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7368924 Beaman et al. May 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7378726 Punzalan et al. May 2008 B2
7390700 Gerber et al. Jun 2008 B2
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7425758 Corisis et al. Sep 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7456495 Pohl et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7495644 Hirakata Feb 2009 B2
7504284 Ye et al. Mar 2009 B2
7504716 Abbott Mar 2009 B2
7517733 Camacho et al. Apr 2009 B2
7527505 Murata May 2009 B2
7528474 Lee May 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7560360 Cheng et al. Jul 2009 B2
7564116 Ahn et al. Jul 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7605479 Mohammed Oct 2009 B2
7612638 Chung et al. Nov 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7629695 Yoshimura et al. Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659612 Hembree et al. Feb 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7670940 Mizukoshi et al. Mar 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682960 Wen Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7683482 Nishida et al. Mar 2010 B2
7692931 Chong et al. Apr 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7723839 Yano et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7759782 Haba et al. Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7800233 Kawano et al. Sep 2010 B2
7807512 Lee et al. Oct 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7808439 Yang et al. Oct 2010 B2
7815323 Saeki Oct 2010 B2
7834464 Meyer et al. Nov 2010 B2
7838334 Yu et al. Nov 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7855464 Shikano Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7859033 Brady Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7876180 Uchimura Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7898083 Castro Mar 2011 B2
7901989 Haba et al. Mar 2011 B2
7902644 Huang et al. Mar 2011 B2
7902652 Seo et al. Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7919871 Moon et al. Apr 2011 B2
7923295 Shim et al. Apr 2011 B2
7923304 Choi et al. Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7944034 Gerber et al. May 2011 B2
7956456 Gurrum et al. Jun 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Robert et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
7994622 Mohammed et al. Aug 2011 B2
8004074 Mori et al. Aug 2011 B2
8004093 Oh et al. Aug 2011 B2
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8017437 Yoo et al. Sep 2011 B2
8017452 Ishihara et al. Sep 2011 B2
8018033 Moriya Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8021907 Pagaila et al. Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039960 Lin Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8048479 Hedler et al. Nov 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8053906 Chang et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8063475 Choi et al. Nov 2011 B2
8071424 Kang et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076765 Chen et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8106498 Shin et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8119516 Endo Feb 2012 B2
8120054 Seo et al. Feb 2012 B2
8120186 Yoon Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8143141 Sun et al. Mar 2012 B2
8143710 Cho Mar 2012 B2
8158888 Shen et al. Apr 2012 B2
8169065 Kohl et al. May 2012 B2
8174119 Pendse May 2012 B2
8183682 Groenhuis et al. May 2012 B2
8183684 Nakazato May 2012 B2
8193034 Pagaila et al. Jun 2012 B2
8194411 Leung et al. Jun 2012 B2
8198716 Periaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8225982 Pirkle et al. Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8237257 Yang Aug 2012 B2
8258010 Pagaila et al. Sep 2012 B2
8258015 Chow et al. Sep 2012 B2
8263435 Choi et al. Sep 2012 B2
8264091 Cho et al. Sep 2012 B2
8269335 Osumi Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8293580 Kim et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8318539 Cho et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8330272 Haba Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8390108 Cho et al. Mar 2013 B2
8390117 Shimizu et al. Mar 2013 B2
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau et al. Mar 2013 B1
8409922 Camacho et al. Apr 2013 B2
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8435899 Miyata et al. May 2013 B2
8450839 Corisis et al. May 2013 B2
8476115 Choi et al. Jul 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8487421 Sato et al. Jul 2013 B2
8492201 Pagaila et al. Jul 2013 B2
8502387 Choi et al. Aug 2013 B2
8507297 Iida et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8518746 Pagaila et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558379 Kwon Oct 2013 B2
8558392 Chua et al. Oct 2013 B2
8564141 Lee et al. Oct 2013 B2
8567051 Val Oct 2013 B2
8569892 Mori et al. Oct 2013 B2
8580607 Raba Nov 2013 B2
8598717 Masuda Dec 2013 B2
8618646 Sasaki et al. Dec 2013 B2
8618659 Sato et al. Dec 2013 B2
8624374 Ding et al. Jan 2014 B2
8637991 Haba Jan 2014 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8653676 Kim et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8664780 Han et al. Mar 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680662 Haba et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8685792 Chow et al. Apr 2014 B2
8686570 Semmelmeyer et al. Apr 2014 B2
8697492 Haba et al. Apr 2014 B2
8723307 Jiang et al. May 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson Jun 2014 B2
8766436 Delucca et al. Jul 2014 B2
8772152 Co et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8785245 Kim Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8796135 Oganesian et al. Aug 2014 B2
8796846 Lin et al. Aug 2014 B2
8802494 Lee et al. Aug 2014 B2
8810031 Chang et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8816505 Mohammed et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836140 Ma et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8846521 Sugizaki Sep 2014 B2
8847376 Oganesian et al. Sep 2014 B2
8853558 Gupta et al. Oct 2014 B2
8878353 Haba et al. Nov 2014 B2
8884416 Lee et al. Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8912651 Yu et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8937309 England et al. Jan 2015 B2
8940630 Damberg et al. Jan 2015 B2
8940636 Pagaila et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8948712 Chen et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8970049 Kamezos Mar 2015 B2
8975726 Chen Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9006031 Camacho et al. Apr 2015 B2
9012263 Mathew et al. Apr 2015 B1
9041227 Chau et al. May 2015 B2
9054095 Pagaila Jun 2015 B2
9082763 Yu et al. Jul 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9105552 Yu et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9142586 Wang et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9167710 Mohammed et al. Oct 2015 B2
9171790 Yu et al. Oct 2015 B2
9177832 Camacho Nov 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9209081 Lim et al. Dec 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato et al. Dec 2015 B2
9258922 Chen et al. Feb 2016 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9299670 Yap et al. Mar 2016 B2
9318449 Hasch et al. Apr 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9330945 Song et al. May 2016 B2
9349706 Co et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9378982 Lin et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu et al. Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9405064 Herbsommer et al. Aug 2016 B2
9412661 Lu et al. Aug 2016 B2
9418940 Hoshino et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai et al. Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9496152 Cho et al. Nov 2016 B2
9502390 Caskey et al. Nov 2016 B2
9508622 Higgins Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
9653442 Yu et al. May 2017 B2
9659877 Bakalski et al. May 2017 B2
9663353 Ofner et al. May 2017 B2
9685365 Mohammed Jun 2017 B2
9735084 Katkar et al. Aug 2017 B2
9788466 Chen Oct 2017 B2
9812402 Awujoola et al. Nov 2017 B2
9842798 Marimuthu et al. Dec 2017 B2
9859203 Kim et al. Jan 2018 B2
9871599 Chen et al. Jan 2018 B2
20010042925 Yamamoto et al. Nov 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020171152 Miyazaki Nov 2002 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030094666 Clayton et al. May 2003 A1
20030162378 Mikami Aug 2003 A1
20040041757 Yang et al. Mar 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050161814 Mizukoshi et al. Jul 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20060087013 Hsieh Apr 2006 A1
20060216868 Yang et al. Sep 2006 A1
20060255449 Lee et al. Nov 2006 A1
20070010086 Hsieh Jan 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070164457 Yamaguchi et al. Jul 2007 A1
20070190747 Hup Aug 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080042265 Merilo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee et al. May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080123319 Beaman et al. Jun 2008 A1
20080123320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080246126 Bowles et al. Oct 2008 A1
20080277776 Enomoto Nov 2008 A1
20080280393 Lee et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Chung et al. Aug 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110157834 Wang Jun 2011 A1
20110177643 Chiu Jul 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120126431 Kim et al. May 2012 A1
20120153444 Haga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130040423 Tung Feb 2013 A1
20130049218 Gong et al. Feb 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130153646 Ho Jun 2013 A1
20130200524 Han et al. Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130323409 Read et al. Dec 2013 A1
20140035892 Shenoy et al. Feb 2014 A1
20140124949 Paek et al. May 2014 A1
20140175657 Oka et al. Jun 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140312503 Seo Oct 2014 A1
20150076714 Haba et al. Mar 2015 A1
20150130054 Lee et al. May 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20170229432 Lin et al. Oct 2017 A1
Foreign Referenced Citations (144)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
102009001461 Sep 2010 DE
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
1118364 May 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06268101 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10135220 May 1998 JP
H10135221 May 1998 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11260856 Sep 1999 JP
11317476 Nov 1999 JP
2000323516 Nov 2000 JP
3137134 Apr 2001 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002050871 Feb 2002 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003197668 Jul 2003 JP
2003307897 Oct 2003 JP
2003318327 Nov 2003 JP
2004031754 Jan 2004 JP
2004047702 Feb 2004 JP
2004048048 Feb 2004 JP
2004-172157 Jun 2004 JP
2004-200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005093551 Apr 2005 JP
2003377641 Jun 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2003426392 Jul 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2006344917 Dec 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007194436 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008235378 Oct 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009508324 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010135671 Jun 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
2011166051 Aug 2011 JP
2004-319892 Nov 2014 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001-0094894 Nov 2001 KR
10-0393102 Jul 2002 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
10-2007-0058680 Jun 2007 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
101215271 Dec 2012 KR
20130048810 May 2013 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200721327 Jun 2007 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
I605558 Nov 2017 TW
9615458 May 1996 WO
02-13256 Feb 2002 WO
03-045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007101251 Sep 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010014103 Feb 2010 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (70)
Entry
Chinese Office Action Search Report for Application No. 2014800551784 dated Jan. 23, 2018.
European Search Report for Appln. No. EP12712792, dated Feb. 27, 2018, 2 pages.
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
EE Times Asia “3D Plus Wafer Level Stack” [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.eetasia.com/ART_8800428222_280300_NT_DEC52276.htm>, 2 pages.
Extended European Search Report for Appln. No. EP13162975, dated Sep. 5, 2013.
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
International Search Report for Appln. No. PCT/US2005/039716, dated Apr. 5, 2006.
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Sep. 14, 2011.
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Jan. 17, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/060551, dated Apr. 18, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044342, dated May 7, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044346, dated May 11, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2012/060402, dated Apr. 2, 2011.
International Search Report and Written Opinion for Appln. No. PCT/US2013/026126, dated Jul. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/052883, dated Oct. 21, 2011.
International Search Report and Written Opinion for Appln. No. PCT/US2013/041981, dated Nov. 13, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/053437, dated Nov. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/075672, dated Apr. 22, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/014181, dated Jun. 13, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050125, dated Feb. 4, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050148, dated Feb. 9, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Mar. 20, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2015/011715, dated Apr. 20, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2015/032679, dated Nov. 11, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Dec. 15, 2015.
Taiwan Office Action for 103103350, dated Mar. 21, 2016.
Taiwan Search Report for 105128420, dated Sep. 26, 2017.
U.S. Appl. No. 13/477,532, dated May 22, 2012.
U.S. Office Action for U.S. Appl. No. 12/769,930, dated May 5, 2011.
“Wafer Level Stack—WDoD”, [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Written Opinion for Appln. No. PCT/US2014/050125, dated Jul. 15, 2015.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D Integration,” May 2010, STATS ChipPAC Ltd.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056526, dated Jan. 20, 2017.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056402, dated Jan. 31, 2017.
International Search Report and Written Opinion for Appln. No. PCT/US2016/068297, dated Apr. 17, 2017.
Japanese Office Action for Appln. No. 2013-509325, dated Oct. 18, 2013.
Japanese Office Action for Appln. No. 2013-520776, dated Apr. 21, 2015.
Japanese Office Action for Appln. No. 2013-520777, dated May 22, 2015.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France, May 21, 2010.
Kim et al., “Application of Through Mold Via (TMV) as PoP Base Package,” 2008, 6 pages.
Korean Office Action for Appn. 10-2011-0041843, dated Jun. 20, 2011.
Korean Office Action for Appn. 2014-7025992, dated Feb. 5, 2015.
Korean Search Report KR10-2010-0113271, dated Jan. 12, 2011.
Korean Search Report KR10-2011-0041843, dated Feb. 24, 2011.
Meiser, S., “Klein Und Komplex,” Elektronik lrl Press Ltd, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992) pp. 72-77, XP000277326, [ISR Appln. No. PCT/US2012/060402, dated Feb. 21, 2013 provides concise stmt. Of relevance).
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates and 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003.
North Corporation, Processed intra-Layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil], NMBITM, Version 2001.6, 1 p.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Partial International Search Report from Invitation to Pay Additional Fees for Appln. No. PCT/US2012/028738, dated Jun. 6, 2012.
Partial International Search Report for Appln. No. PCT/US2012/060402, dated Feb. 21, 2013.
Partial International Search Report for Appln. No. PCT/US2013/026126, dated Jun. 17, 2013.
Partial International Search Report for Appln. No. PCT/US2013/075672, dated Mar. 12, 2014.
Partial International Search Report for Appln. No. PCT/US2014/014181, dated May 8, 2014.
Partial International Search Report for Appln. No. PCT/US2015/032679, dated Sep. 4, 2015.
Partial International Search Report for Appln. No. PCT/US2015/033004, dated Sep. 9, 2015.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
Taiwan Office Action for 100125521, dated Dec. 20, 2013.
Taiwan Office Action for 100125522, dated Jan. 27, 2014.
Taiwan Office Action for 100141695, dated Mar. 19, 2014.
Taiwan Office Action for 100138311, dated Jun. 27, 2014.
Taiwan Office Action for 100140428, dated Jan. 26, 2015.
Taiwan Office Action for 102106326, dated Sep. 8, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2017/064437, dated Mar. 29, 2018.
Related Publications (1)
Number Date Country
20180233448 A1 Aug 2018 US
Divisions (1)
Number Date Country
Parent 13477532 May 2012 US
Child 14486867 US
Continuations (2)
Number Date Country
Parent 15042034 Feb 2016 US
Child 15951925 US
Parent 14486867 Sep 2014 US
Child 15042034 US