This document relates to semiconductor integrated circuits (ICs), and more particularly to assemblies with semiconductor integrated circuits.
Multiple ICs can be combined in a high-density assembly to provide needed functionality. High density is desired for small assembly size and also to shorten electrical paths as needed for high speed and low power consumption. However, a small IC is a fragile device with tiny, densely packed contact pads which must be connected to possibly larger contact pads of other integrated or non-integrated (discrete) circuits. To enable such connections, an intermediate IC (interposer) can be provided. Interposers may also increase the mechanical strength of the assembly, absorb stresses generated due to differences in coefficients of thermal expansion (CTE), and improve the ability to dissipate heat that can be generated during operation or manufacture. However, interposers increase the assembly size and complexity, and they should be as thin as possible to shorten the electrical connections through the interposers.
In regions not occupied by die 110.2, interposer 120.2 is connected to interposer 120.1 by studs 154. In regions not occupied by die 110.1, interposer 120.1 is connected to an underlying insulator-based substrate 160 by other studs 154.
Each interposer 120 includes interconnects 158 each of which goes through the interposer and interconnects the interposer's circuits (not shown) coupled to connections 108, 140, 154. Insulator-based substrate 160 includes similar interconnects 164.
In manufacturing, ICs 110 and 120 and substrate 160 are separately manufactured and then attached to each other. Then the portion of assembly 102 above the substrate 160 is covered by an encapsulant (e.g. molding compound) 180 to mechanically strengthen the assembly. The assembly is then attached to external devices 104.
As noted above, it is desirable to reduce CTE mismatches, and thus the ICs 110 and 120 and the encapsulant 180 should preferably be made of materials with similar CTEs. However, a typical encapsulant (epoxy) has a much higher CTE than many ICs based on semiconductor materials such as silicon, so there is a need to reduce the encapsulant amount while still obtaining a robust assembly. Also, it is desirable to improve the mechanical strength and heat dissipation of intermediate structures obtained during manufacturing as well as the final structure.
This section summarizes some features of the invention. Other features may be described in the subsequent sections. The invention is defined by the appended claims, which are incorporated into this section by reference.
Some manufacturing techniques described below reduce the assembly size and improve the mechanical strength and heat-dissipation capabilities of IC assemblies and intermediate structures. For example, in some embodiments, the structure of
Due to the increased strength, it is easier to manufacture other circuits on interposers 120.1 and 120.2 after their attachment to each other and to dies 110.1 and 110.2. For example, in some embodiments, after the attachment, holes 204 are formed through the interposers 120.1 and 120.2, or through part of the interposers (e.g. through the interposers' substrates) to extend into the die 110.2, and conductive vias are formed in the holes. Then other ICs (such as 110.1 and 110.3) or IC assemblies are attached to the top surface of interposer 120.2 and the bottom surface of interposer 120.1 and electrically connected to the conductive vias in holes 204. Further, in some embodiments, attachment of dies 110.3 can be performed before dicing of interposers 120.1 and 120.2, when the two interposers are still part of standard-size wafers: manufacturing is simplified when performed on standard-size structures. For example, circuit elements such as transistors, capacitors, interconnects, etc. (not shown) can be formed on interposer 120.2 before and/or after the attachment of IC 110.3. Of note, even though the interposer 120.2 has a cavity on the bottom, the interposer's top surface can be planar, facilitating fabrication of holes 204 and other circuit elements and the attachment of IC 110.3.
In some embodiments, the die 110.2 has contact pads connected to interposer 120.1. In some embodiments, the die 110.2 is placed in a through-hole in interposer 120.2.
The invention is not limited to the features and advantages described above except as defined by the appended claims.
The embodiments described in this section illustrate but do not limit the invention. The invention is defined by the appended claims.
Substrate 120.1S is patterned to form blind vias 224B (
The vias are then metallized. If substrate 120.1S is silicon, this can be done as follows. Photoresist 320 and protective layer 310 are removed, and a dielectric layer 324 (
Then metal 224M (
Bellow, numeral 224 can refer to the metallized vias. For ease of description, we will refer to vias 224 as “metallized”, but non-metal conductive materials can also be used (e.g. doped polysilicon). A conductive via (the feature formed of conductive material) 224M can be analogized to a whole or part of an interconnect 158 of
If layer 224M does not fill the vias but is only a liner on the via surfaces, some other material (not shown) can be formed on layer 224M as a filler to fill the vias and provide a planar top surface for the wafer. This filler material can be polyimide deposited by spin coating for example.
Optionally, as shown in
Interposer 120.1 may include transistors, resistors, capacitors, and other devices (not shown) in substrate 120.15 and redistribution layer 210.1. These devices can be formed before, during and/or after the fabrication of vias 224 and RDL 210.1 using the process steps described above and/or additional process steps. Such fabrication techniques are well known. See e.g. the U.S. Pat. No. 6,958,285 issued Oct. 25, 2005 to Siniaguine, and U.S. pre-grant patent publication 2012/0228778 by Kosenko et al. published Sep. 13, 2012, both incorporated herein by reference.
Dies 110.1 are attached to interposer 120.1 and connected to contact pads 120.1C. More particularly, dies 110.1 have circuitry (not shown) electrically coupled to contact pads 110C, and the contact pads 110C are connected to respective contact pads 120.1C by connections 140.1 (possibly of the type described above for connections 140 or 154); the attachment can use prior art methods (e.g. as in
Throughout this disclosure, dies 110.1 can be replaced by IC assemblies such as, for example, the assembly 102 of
Optionally, an encapsulant (not shown) can be formed under the dies (as underfill) and/or around the dies (to completely or partially cover the dies' sidewalls), and perhaps above the dies (to completely cover the dies' top and sidewall surfaces), possibly by prior art techniques (e.g. including molding and/or capillary action for underfill and/or pre-deposited underfill). The encapsulant can be any suitable material (e.g. epoxy with silica or other particles, or non-conducting film for the underfill) or a combination of materials. No encapsulant is used in some embodiments. Other embodiments use an encapsulant, but the requirements for the encapsulant are relaxed because the assembly will be strengthened by one or more other interposers closely positioned with respect to interposer 120.1 (see
In the embodiment being described, interposer 120.1 does not have any cavities (such as cavity 202.1 in
Just like interposer 120.1, interposer 120.2 may be provided with circuits including transistors, resistors, capacitors, and/or other elements. Circuitry can be manufactured in interposer 120.2 before and/or after the attachment to interposer 120.1.
Interposer 120.2 should be sufficiently rigid to facilitate subsequent handling of the assembly as explained below. In the embodiment shown, interposer 120.2 includes monocrystalline silicon substrate 120.2S of a thickness 650 microns or higher. Other materials (e.g. glass, metal, polymer plastic, and others) and thicknesses are possible, based on any factors that may be important (including the availability of materials and processes). One possible factor is reducing the mismatch of the coefficients of thermal expansion (CTE) between substrates 120.2S and 120.1S: if substrate 120.1S is silicon, then substrate 120.2S could be silicon or another material with a similar CTE. Another factor is reducing the CTE mismatch between interposer 120.2 and dies 110.1 (especially if the dies may physically contact the interposer 120.2 or may be attached to interposer 120.2). The choice of materials can also be affected by the type of circuitry that must be provided in interposer 120.2.
Another possible factor is high thermal conductivity to better enable the interposer 120.2 to conduct heat to the ambient. For example, metal may be appropriate.
Openings 202.2 (
Then photoresist 430 is removed (
Optionally, a dielectric 434, e.g. silicon dioxide or polyimide, is formed to cover the substrate surface by any suitable techniques (e.g. sputtering, or thermal oxidation if substrate 120.2S is silicon).
As shown in
In this embodiment, the interposers are attached without being electrically interconnected, and in fact no circuitry has been manufactured in interposer 120.2 at this stage. In other embodiments, circuitry has been manufactured in interposer 120.2, possibly with contact pads in legs 120.2L, and these contact pads can be connected to contact pads in interposer 120.1 with studs 154 of
In
Bonding of dies 110.1 to the cavity surfaces increases the bonding strength between the interposers 120.1, 120.2 and improves the thermal conductivity of the thermal path from the dies to interposer 120.2.
As noted above, in some embodiments the dies are underfilled and/or encapsulated from above by a suitable protective material (not shown in
In some embodiments, the cavities 202.2 are of uniform depth, and the top surfaces of the dies (or encapsulant) may be provided with uniform height. To improve the height uniformity, the dies (or encapsulant) can be polished before joining of interposer 120.2 to interposer 120.1. Suitable polishing processes include lapping, grinding, and chemical mechanical polishing (CMP). Also, temperature interface material (TIM, not shown here but shown at 525 in
In some embodiments, substrate 120.2S and/or layer 434 is soft and capable to deform to accommodate the height variations in dies 110.1. In some embodiments, possibly before the dies are attached to the interposer 120.1, the dies' surfaces (top surfaces in
After the bonding of interposer 120.2 to interposer 120.1, interposer 120.2 is optionally thinned from the top; see
In some embodiments, the top surface of interposer 120.2 remains planar. Interposers 120.1 and 120.2 have not been diced, so the lateral shape of the assembly can be the same as of a standard wafer. These particulars are not limiting.
Now additional circuits (not shown) can be fabricated on top of interposer 120.2 and connected to dies 110.1 and/or interposer 120.1 by conductive vias passing through holes 204 (see
Feature 510.3 is a metallized via formed through substrate 110S, and hole 204.4 terminates at the via, i.e. at the top surface of die 110.1. Hole 204.5 terminates above the feature 510.5 to provide capacitive coupling to the feature as described below. While the holes are shown above the respective features, a hole may also be on a side of a respective feature, to provide electrical coupling from the side. These examples are not limiting.
As shown in
Dielectric 514 is omitted from subsequent drawings for simplicity.
Then dies 110.2 (
The contact pads at the top of interposer 120.2 are connected to contact pads 110C of dies 110.2 by connections 140.2, which can be solder, adhesive, possibly using diffusion bonding or discrete wires or other techniques, as described above for connections 140, 140.1, 108, 154. Dies 110.2 do not have to be vertically aligned with dies 110.1.
Dies 110.2 can optionally be underfilled and/or encapsulated from above.
As illustrated in
Then conductive vias 204M are formed in interposer 120.3 to reach and possibly partially penetrate the dies 110.2, and other dies 110.3 are attached to interposer 120.3 so as to be electrically coupled to vias 204M (possibly through RDL 210.3 optionally formed on top of interposer 120.3, and/or through other circuits;
In some embodiments, different interposers have different thickness, e.g. the top interposer may be thicker than the underlying interposers. The thickness of each interposer is defined as a function of desired properties, such as rigidity, resistance to warpage, heat dissipation, and assembly size.
At any stage, possibly after the stage of
In some embodiments, even though the interposer 120.1 is reduced in thickness, the interposer 120.1 is kept flat by overlying interposer 120.2 and by higher interposers if present, so the handling of the assembly 504 is facilitated. The overlying interposer(s) 120 also improve mechanical integrity (e.g. increase rigidity and weight) to further facilitate handling of the assembly. Also, the overlying interposers 120 help absorb and dissipate the heat generated during this and subsequent fabrication stages and in subsequent operation of assembly 504. The final thickness of substrate 120.1S can therefore be very low, e.g. 50 microns or even 5 microns or less. The same is true for the overlying interposers, or at least for the interposer portions at the cavities (above the dies). Hence, vias 204M and blind vias 224B (
Subsequent process steps depend on the particular application. In some embodiments (
Many variations are possible. The dies 110 on top of any interposer do not have to be aligned with the dies on any interposer above or below; therefore, the cavities enclosing a die on any interposer do not have to be aligned with any other cavities.
It is assumed that dicing lines will not pass through vias 204M.1. Alternatively, the dicing dies may or may not pass through the vias; for example, a via 204M.1 can be used to test the structure before dicing, and/or to provide an interconnect which after dicing is located on a side of a die 504S.
In
Some vias 204M may serve just as heat sinks, possibly having no electrical functionality.
Further, the assembly includes a reinforcement frame (stiffener frame) 1010. Reinforcement frame 1010 is similar to an interposer but has through holes 202.4′ in place of cavities; dies 110.3 are located in through holes 202.4′ and may extend up into respective cavities 202.4. Due to the reinforcement frame, the cavities 202.4 can be shallower. Of note, the reinforcement frame 1010 does not need a layer like dielectric 434.
Through holes 202.4′ may or may not be vertically aligned with cavities 202.4; see for example
Features described above can be used separately or in any combination. For example, the top RDL 210.4 with the top contact pads 120.CT can be provided in any of the embodiments of
As illustrated in
Further, the die 110.2 can be replaced by an assembly, and the same is true for all dies 110 described above. See
Die 110.2′″ is located in cavity 202.1 of interposer 120.1, and may have bottom contact pads connected to those of interposer 120.1 (this is not shown).
Vias 204 is as in
Some embodiments include methods and structures defined by the following clauses:
Clause 1 defines method for fabricating a microelectronic assembly, the method comprising:
obtaining a first structure (e.g. as in
wherein at least one of the first and second interposers comprises one or more first cavities (e.g. 202.2), and at least part of each first module is located in a respective first cavity; and
after obtaining the first structure, forming one or more first conductive vias (e.g. 204M) each of which passes through at least part of at least one of the first and second interposers to reach at least one respective first cavity and to physically contact, or be capacitively coupled to, circuitry of at least one respective first module at least partially located in the respective first cavity (such as any via 204M in
Clause 2 defines the method of clause 1 wherein at least one first conductive via enters at least one respective first module (alternatively, the via may terminate at the surface of a first module without entering the first module).
Clause 3 defines the method of any preceding clause wherein at least one first conductive via enters a semiconductor substrate of at least one semiconductor integrated circuit of at least one first module.
Clause 4 defines the method of any preceding clause wherein at least one first conductive via passes through a semiconductor substrate of at least one semiconductor integrated circuit of at least one first module.
Clause 5 defines the method of any preceding clause wherein at least one first conductive via passes through at least part of each of the first and second interposers and through the respective first cavity.
Clause 6 defines the method of any preceding clause wherein at least one first conductive via passes through at least part of the second interposer (e.g. through substrate 120.2S of interposer 120.2 in
Of note, in a variation of
Clause 7 defines the method of any preceding clause further comprising, after forming the one or more first conductive vias, attaching a second module (e.g. a die or module 1110.2 in
Clause 8 defines the method of any preceding clause wherein each first conductive via is formed in a respective first hole (e.g. 204 in
Clause 9 defines the method of any preceding clause further comprising:
forming one or more second holes (e.g. for thermal vias 204M.1 or 204M.2 in
forming thermally conductive material in each second hole, the thermally conductive material having a higher thermal conductivity than at least one of the first and second interposers' portions which contains at least part of the second hole, the thermally conductive material having no electrical functionality. (For example, the thermally conductive material can be metal.)
Clause 10 defines the method of any preceding clause further comprising forming one or more second conductive vias (such as 204M.1 in
Clause 11 defines the method of clause 10 wherein at least one second conductive via is electrically coupled to first conductive vias passing through at least parts of at least two of the interposers of the set.
Clause 12 defines the method of clause 10 or 11 wherein at least one second conductive via is formed after obtaining the first structure. (In some embodiments, the holes for the vias can be formed after obtaining the first structure such as shown in
Clause 13 defines the method of any preceding clause wherein each interposer has a substrate, and each first conductive via passes through the respective interposer's substrate.
Clause 14 defines the method of clause 13 wherein each substrate is a semiconductor substrate.
Clause 15 defines a microelectronic assembly comprising:
a plurality of interposers overlying one another and comprising a set of at least two interposers each of which comprises one or more first contact pads;
a plurality of first modules each of which is attached to at least one of the interposers and comprises a respective semiconductor integrated circuit and one or more contact pads each of which is electrically coupled to the integrated circuit and connected to a respective first contact pad, wherein each interposer in the set has a first contact pad connected to a contact pad of a first module;
wherein at least one of the interposers comprises one or more first cavities, and at least part of each first module is located in at least one respective first cavity;
wherein the microelectronic assembly further comprises:
one or more first conductive vias each of which passes through at least part of at least respective one of the interposers and reaches at least one respective first cavity and physically contacts, or is capacitively coupled to, circuitry of at least one respective first module at least partially located in the respective first cavity;
one or more second conductive vias (for example, 204M.1 in
Clause 16 defines the microelectronic assembly of claim 15 wherein for at least one second conductive via, the respective first conductive vias are electrically coupled to said segment of the second conductive via.
Clause 17 defines the microelectronic assembly or method of any preceding clause wherein each interposer has a substrate, and each first conductive via passes through the respective interposer's substrate.
Clause 18 defines the microelectronic assembly of clause 17 wherein each substrate is a semiconductor substrate.
Clause 19 defines the microelectronic assembly or method of any preceding clause wherein at least one first conductive via enters a semiconductor substrate of at least one semiconductor integrated circuit of at least one first module.
Clause 20 defines the microelectronic assembly or method of any preceding clause wherein at least one first conductive via passes through a semiconductor substrate of at least one semiconductor integrated circuit of at least one first module.
Clause 21 defines the method or microelectronic assembly of any preceding clause wherein each conductive via extends along a vertical axis which is an imaginary line passing through the via.
Clause 22 defines the method or microelectronic assembly of any preceding clause wherein at least one first conductive via enters at least one respective first module.
The invention is not limited to the embodiments described above. Other embodiments and variations are within the scope of the invention, as defined by the appended claims.
The present application is a division of U.S. patent application Ser. No. 14/328,380, filed Jul. 10, 2014, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5532519 | Bertin et al. | Jul 1996 | A |
5701233 | Carson et al. | Dec 1997 | A |
6008536 | Mertol | Dec 1999 | A |
6157076 | Azotea et al. | Dec 2000 | A |
6222722 | Fukuzumi et al. | Apr 2001 | B1 |
6251796 | Abdul-Ridha et al. | Jun 2001 | B1 |
6322903 | Siniaguine et al. | Nov 2001 | B1 |
6384473 | Peterson et al. | May 2002 | B1 |
6403444 | Fukuzumi et al. | Jun 2002 | B2 |
6451650 | Lou | Sep 2002 | B1 |
6492726 | Quek et al. | Dec 2002 | B1 |
6613672 | Wang et al. | Sep 2003 | B1 |
6620701 | Ning | Sep 2003 | B2 |
6624505 | Badehi | Sep 2003 | B2 |
6717254 | Siniaguine | Apr 2004 | B2 |
6746876 | Itoh et al. | Jun 2004 | B2 |
6787916 | Halahan | Sep 2004 | B2 |
6947275 | Anderson et al. | Sep 2005 | B1 |
6958285 | Siniaguine | Oct 2005 | B2 |
7011988 | Forcier | Mar 2006 | B2 |
7049170 | Savastiouk et al. | May 2006 | B2 |
7061102 | Eghan et al. | Jun 2006 | B2 |
7115988 | Hool | Oct 2006 | B1 |
7144745 | Badehi | Dec 2006 | B2 |
7183643 | Gibson et al. | Feb 2007 | B2 |
7186586 | Savastiouk et al. | Mar 2007 | B2 |
7400036 | Tan | Jul 2008 | B2 |
7670921 | Chinthakindi et al. | Mar 2010 | B2 |
7786591 | Khan et al. | Aug 2010 | B2 |
7863096 | England | Jan 2011 | B2 |
7906803 | Shioya et al. | Mar 2011 | B2 |
7928548 | Bernstein et al. | Apr 2011 | B2 |
7964508 | Savastiouk et al. | Jun 2011 | B2 |
7977579 | Bathan et al. | Jul 2011 | B2 |
7989270 | Huang et al. | Aug 2011 | B2 |
8018068 | Scanlan | Sep 2011 | B1 |
8071470 | Khor et al. | Dec 2011 | B2 |
8072082 | Yean et al. | Dec 2011 | B2 |
8076788 | Haba et al. | Dec 2011 | B2 |
8102039 | Noma et al. | Jan 2012 | B2 |
8110862 | Cheng et al. | Feb 2012 | B2 |
8183696 | Meyer et al. | May 2012 | B2 |
8257985 | Stevenson et al. | Sep 2012 | B2 |
8377829 | Yeh et al. | Feb 2013 | B2 |
8378480 | Chen et al. | Feb 2013 | B2 |
8397013 | Rosenband et al. | Mar 2013 | B1 |
8426961 | Shih et al. | Apr 2013 | B2 |
8470668 | Cho et al. | Jun 2013 | B2 |
8518753 | Wu et al. | Aug 2013 | B2 |
8519537 | Jeng et al. | Aug 2013 | B2 |
8525318 | Kim | Sep 2013 | B1 |
8575493 | Xu et al. | Nov 2013 | B1 |
8598695 | Oganesian et al. | Dec 2013 | B2 |
8629546 | Scanlan | Jan 2014 | B1 |
8674423 | Collins et al. | Mar 2014 | B2 |
8830689 | Kim et al. | Sep 2014 | B2 |
9165793 | Wang et al. | Oct 2015 | B1 |
9252127 | Shen et al. | Feb 2016 | B1 |
20030047798 | Halahan | Mar 2003 | A1 |
20040134796 | Shelp et al. | Jul 2004 | A1 |
20040174682 | Lin et al. | Sep 2004 | A1 |
20040178495 | Yean | Sep 2004 | A1 |
20040183187 | Yamasaki et al. | Sep 2004 | A1 |
20040201111 | Thurgood | Oct 2004 | A1 |
20040238934 | Warner et al. | Dec 2004 | A1 |
20050046002 | Lee | Mar 2005 | A1 |
20050047094 | Hsu et al. | Mar 2005 | A1 |
20050068739 | Arvelo et al. | Mar 2005 | A1 |
20050196095 | Karashima et al. | Sep 2005 | A1 |
20050263869 | Tanaka et al. | Dec 2005 | A1 |
20050266701 | Aoyagi | Dec 2005 | A1 |
20060231937 | Juskey | Oct 2006 | A1 |
20070029654 | Sunohara et al. | Feb 2007 | A1 |
20070045798 | Horie et al. | Mar 2007 | A1 |
20070197013 | Trezza | Aug 2007 | A1 |
20070221399 | Nishizawa et al. | Sep 2007 | A1 |
20070235850 | Gerber et al. | Oct 2007 | A1 |
20080128897 | Chao | Jun 2008 | A1 |
20080211089 | Khan | Sep 2008 | A1 |
20080244902 | Blackwell et al. | Oct 2008 | A1 |
20080272477 | Do | Nov 2008 | A1 |
20080280394 | Murtuza | Nov 2008 | A1 |
20090008762 | Jung | Jan 2009 | A1 |
20090115047 | Haba et al. | May 2009 | A1 |
20090212407 | Foster et al. | Aug 2009 | A1 |
20090236718 | Yang | Sep 2009 | A1 |
20090267238 | Joseph et al. | Oct 2009 | A1 |
20100025081 | Arai et al. | Feb 2010 | A1 |
20100081236 | Yang et al. | Apr 2010 | A1 |
20100084761 | Shinagawa | Apr 2010 | A1 |
20100102428 | Lee | Apr 2010 | A1 |
20100134991 | Kim | Jun 2010 | A1 |
20100140769 | Kim | Jun 2010 | A1 |
20100144101 | Chow | Jun 2010 | A1 |
20100224980 | Chahal et al. | Sep 2010 | A1 |
20100230797 | Honda | Sep 2010 | A1 |
20100230806 | Huang et al. | Sep 2010 | A1 |
20100276799 | Heng et al. | Nov 2010 | A1 |
20110027967 | Beyne et al. | Feb 2011 | A1 |
20110068444 | Chi et al. | Mar 2011 | A1 |
20110068468 | Lin | Mar 2011 | A1 |
20110080713 | Sunohara | Apr 2011 | A1 |
20110095403 | Lee et al. | Apr 2011 | A1 |
20110101349 | Oda | May 2011 | A1 |
20110140283 | Chandra | Jun 2011 | A1 |
20110221072 | Chin | Sep 2011 | A1 |
20110287606 | Brun et al. | Nov 2011 | A1 |
20110300668 | Parvarandeh | Dec 2011 | A1 |
20110304036 | Son | Dec 2011 | A1 |
20110309523 | Takahashi | Dec 2011 | A1 |
20120001339 | Malatkar | Jan 2012 | A1 |
20120020026 | Oganesian et al. | Jan 2012 | A1 |
20120049332 | Chen et al. | Mar 2012 | A1 |
20120061852 | Su et al. | Mar 2012 | A1 |
20120086135 | Thompson et al. | Apr 2012 | A1 |
20120091583 | Kawashita et al. | Apr 2012 | A1 |
20120101540 | O'Brien et al. | Apr 2012 | A1 |
20120104623 | Pagaila | May 2012 | A1 |
20120106228 | Lee | May 2012 | A1 |
20120228778 | Kosenko et al. | Sep 2012 | A1 |
20120276733 | Saeki et al. | Nov 2012 | A1 |
20120295415 | Ono | Nov 2012 | A1 |
20120319267 | Moon | Dec 2012 | A1 |
20120319300 | Kim et al. | Dec 2012 | A1 |
20130010441 | Oganesian et al. | Jan 2013 | A1 |
20130014978 | Uzoh et al. | Jan 2013 | A1 |
20130032390 | Hu et al. | Feb 2013 | A1 |
20130069239 | Kim et al. | Mar 2013 | A1 |
20130082383 | Aoya | Apr 2013 | A1 |
20130082399 | Kim et al. | Apr 2013 | A1 |
20130087917 | Jee et al. | Apr 2013 | A1 |
20130093075 | Liu et al. | Apr 2013 | A1 |
20130099368 | Han | Apr 2013 | A1 |
20130105989 | Pagaila | May 2013 | A1 |
20130119527 | Luo et al. | May 2013 | A1 |
20130119528 | Groothuis et al. | May 2013 | A1 |
20130146991 | Otremba et al. | Jun 2013 | A1 |
20130181354 | Khan et al. | Jul 2013 | A1 |
20130187292 | Semmelmeyer et al. | Jul 2013 | A1 |
20130228898 | Ide | Sep 2013 | A1 |
20130241026 | Or-Bach et al. | Sep 2013 | A1 |
20130267046 | Or-Bach et al. | Oct 2013 | A1 |
20130270660 | Bryzek et al. | Oct 2013 | A1 |
20130292840 | Shoemaker et al. | Nov 2013 | A1 |
20130313680 | Oganesian et al. | Nov 2013 | A1 |
20140036454 | Caskey et al. | Feb 2014 | A1 |
20140070380 | Chiu et al. | Mar 2014 | A1 |
20140091461 | Shen | Apr 2014 | A1 |
20140134803 | Kelly et al. | May 2014 | A1 |
20140134804 | Kelly et al. | May 2014 | A1 |
20140225244 | Smith et al. | Aug 2014 | A1 |
20140246227 | Lin et al. | Sep 2014 | A1 |
20140252655 | Tran et al. | Sep 2014 | A1 |
20140264811 | Wu | Sep 2014 | A1 |
20140319683 | Lin et al. | Oct 2014 | A1 |
20140361410 | Yamamichi et al. | Dec 2014 | A1 |
20150001731 | Shuto | Jan 2015 | A1 |
20150021755 | Hsiao et al. | Jan 2015 | A1 |
20150262902 | Shen et al. | Sep 2015 | A1 |
20150262928 | Shen et al. | Sep 2015 | A1 |
20150262972 | Katkar | Sep 2015 | A1 |
20160079214 | Caskey | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1688994 | Aug 2008 | EP |
2546876 | Jan 2013 | EP |
WO 2005022630 | Mar 2005 | WO |
WO 2006124597 | Nov 2006 | WO |
WO 2007142721 | Dec 2007 | WO |
WO 2009070348 | Jun 2009 | WO |
WO 2012169162 | Dec 2012 | WO |
WO 2013062533 | May 2013 | WO |
Entry |
---|
U.S. Appl. No. 14/328,380 titled, “Microelectronic Assemblies With Integrated Circuits and Interposers With Cavities, and Methods of Manufacture,” filed Jul. 10, 2014. |
International Search Report mailed Sep. 21, 2015 for International Application No. PCT/US2015/033786, International Filing Date Feb. 6, 2015. |
United States Patent and Trademark Office, First Action Interview Pilot Program Pre-Interview Communication, Mail Date Oct. 22, 2014, for U.S. Appl. No. 14/214,365, filed Mar. 14, 2014. |
International Search Report and Written Opinion for PCT/US2015/032572 dated Nov. 23, 2015. |
John H. Lau, “TSV Interposer: The most Cost-Effective Integrator for 30 IC Integration,” Electronics & Optoelectronics Research Laboratories, Industrial Technology Research Institute (ITRI), retrieved on Feb. 24, 2015. |
ChipScale Review, “The Impact of CSPs on Encapsulation Materials,” ChipScale Review publication issue Mar. 1998, retrieved Feb. 21, 2014, 6 pages. |
Dr. Paul A. Magill, “A New Thermal-Management Paradigm for Power Devices,” Power Electronics Technology, Nov. 2008, pp. 26-30. |
Herming Chiueh et al., “A Dynamic Thermal Management Circuit for System-On-Chip Designs,” Analog Integrated Circuits and Signal Processing, 36, pp. 175-181, Jan. 25, 2003. |
Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification 1.0,” Last Revision Jan. 2013, 122 pages, Retrieved from: http://hybridmemorycube.org/specification-download/. |
K. Zoschke et al., “Hermetic Wafer Level Packaging of MEMS Components Using Through Silicon Via and Wafer to Wafer Bonding Technologies” (2013 Electronic Components & Technology Conference, IEEE, pp. 1500-1507). |
Lau et al., “Thin-Wafer Handling with a Heat-Spreader Wafer for 2.5D/3D IC Integration,” 46th International Symposium on Microelectronics (IMAPS 2013) Sep. 30-Oct. 3, 2013, Orlando, FL USA, pp. 1-8 [389-396]. |
Li Shang et al., “Thermal Crisis: Challenges and Potential Solutions,” Potentials, vol. 25, Issue 5, Sep./Oct. 2006, pp. 31-35. |
Nakamura et al., “Technology Trends and Future History of Semiconductor Packaging Substrate Material,” Hitachi Chemical Review Technical Report No. 55, May 2013, pp. 24-29. |
Pulliam, Wayne, “Designing with BGAs,” AMD presentation, 2008, 62 pages. |
San Hwui Lee et al., “Wafer-to-Wafer Alignment for Three Dimensional Integration: A Review,” Journal of Microelectromechanical Systems, vol. 20, Issue 4, Aug. 2011, pp. 885-898. |
U.S. Appl. No. 14/201,585, filed Mar. 7, 2014. |
U.S. Appl. No. 14/214,365 titled, “Integrated Circuits Protected by Substrates with Cavities, and Methods of Manufacture,” filed Mar. 14, 2014, 40 pages. |
Dreiza; Moody et al., “Joint Project for Mechanical Qualification of Next Generation High Density Package-on-Package (PoP) with Through Mold Via Technology,” Amkor Technology, EMPC2009—17th European Microelectronics & Packaging Conference, Jun. 16th, Rimini, Italy, 8 pages. |
Zwenger; Curtis et al., “Next Generation Package-on—Package (PoP) Platform with Through Mold Via (TMV™) Interconnection Technology,” Amkor Technology, Originally published in the proceedings of the IMPAS Device Packaging Conference, Scottsdale, AZ, Mar. 10-12, 2009, 8 pages. |
Kim; Jinseong et al., “Application of Through Mold Via (TMV) as PoP base package,” Amkor Technology, 2008 IEEE Reprinted from ECTC2008 Proceedings, 6 pages. |
U.S. Appl. No. 14/250,317 titled “Die Stacks With One or More Bond Via Arrays,” filed Apr. 10, 2014, 58 pages. |
Das; Rabindra N. et al., “Package-Interpose-Package (PIP) Technology for High End Electronics,” Endicott Interconnect Technologies, Inc., retrieved Jul. 31, 2014, 4 pages. |
McCormick; Heather et al., “Assembly and Reliability Assessment of Fine Pitch TMV Package on Package (PoP) Components,” Amkor Technology Inc., Originally published in the Proceedings of the SMTA International Conference, San Diego, CA, Oct. 4-8, 2009, 8 pages. |
Final Office Action dated Mar. 2, 2015 of U.S. Appl. No. 14/214,365. |
Notice of Allowance dated Apr. 16, 2015 of U.S. Appl. No. 14/268,899. |
A. Strandjord et al., “Bumping for WLCSP using Solder Ball Attach on electrolessss NiAu UBM”, Pac Tech USA—Packaging Technologies, Inc., 29 pages, 2008. |
M.A. Boyle et al., “Epoxy Resins”, Composites, vol. 21, ASM Handbook, ASM International, p. 78-89, 2001. |
U.S. Appl. No. 14/558,462 titled, “Interposers With Circuit Modules Encapsulated by Moldable Material in a Cavity, and Methods of Fabrication”, filed Dec. 2, 2014. |
K.T. Turner et al., “Mechanics of direct wafer bonding”, Proc. R. Soc. A, 462, 171-188, Nov. 9, 2005. |
Pre-Interview First Office Action dated Oct. 22, 2014 of U.S. Appl. No. 14/214,365. |
U.S. Appl. No. 14/288,064 titled, “Integrated Circuit Assemblies With Reinforcement Frames, and Methods of Manufacture,” filed May 27, 2014. |
U.S. Appl. No. 14/268,899 titled, “Making Electrical Components in Handle Wafers of Integrated Circuit Packages,” filed May 2, 2014. |
International Search Report and Written Opinion, Aug. 6, 2015, 10 pages, PCT Patent Application No. PCT/US2015/028172. |
International Search Report and Written Opinion for PCT/US2015/019609 dated May 12, 2015, 11 pages. |
Office Action dated Jul. 9, 2015 for U.S. Appl. No. 14/558,462, 11 pages. |
U.S. Appl. No. 14/214,365, filed Mar. 14, 2014. |
Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification 1.0,” Last Revision Jan. 2013, 122 pages, Retrieved from: http://hybridmemorycube.org/specificationdownload/. |
Number | Date | Country | |
---|---|---|---|
20160133600 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14328380 | Jul 2014 | US |
Child | 14980996 | US |