The present invention is directed, in general, to electronic devices and, in particular, to a stacked magnetic device and semiconductor device in a module, and related methods of forming the same.
Magnetic devices such as inductors are often used in circuit design for electronic devices (e.g., power modules) in which energy is stored in a magnetic field surrounding an electrically conductive element such as a coil of copper wire. To produce an inductor that can store a useful amount of energy for a given size and a given current level, a number of electrically conductive turns or wires are formed around a magnetic structure or core such as a layer of magnetic material. The magnetic field is enhanced by the permeability of the magnetic material and by the presence of the multiple conductive turns. As the size of electronic devices has been reduced by using integrated circuits and printed wiring boards with surface-mount assembly techniques, the size of inductors has not, to date, decreased proportionately. Thus, the size of magnetic structures generally dominates the size of present electronic power modules.
Substantial progress has been made in recent years in integrating control circuits including operational amplifiers, comparators, and passive circuit elements, with active elements such as field-effect transistors. An area that has been more challenging is to produce a power module that includes larger passive elements, such as inductors, that are difficult to include in an integrated circuit, with an active element that may include control circuit elements and passive elements such as resistors on the same die. The integration of larger passive elements such as inductors with an active element would enable the production of very compact power modules.
A characteristic that affects broad market acceptance of a power module is its physical size, which introduces thermal design challenges. A continuing area affecting the design of a compact power module that requires further progress is the ability to dissipate the heat produced by passive circuit elements in a compact physical structure, as well as the heat produced by active elements. The dissipation of heat from these sources is performed in a challenging external thermal environment without compromising a power rating of the power module.
A number of approaches have been used in the past to reduce the size of a power module. For instance, U.S. Pat. No. 5,574,420 entitled “Low Profile Surface Mounted Magnetic Devices and Components Therefor,” to Roy, et al., issued Nov. 12, 1996, which is incorporated herein by reference, discloses a magnetic device that forms conductive pathways in a body of magnetic material, adds windings by inserting staple-like conductive piece parts through apertures in the body, and solders the staples to a patterned printed wiring board placed below a ceramic magnetic bar to complete the winding structure. Each of the magnetic devices disclosed in the aforementioned references suffers from a current limitation therefor, which is an impractical design and manufacturing approach for a mass market. The aforementioned magnetic devices also provide inadequate heat dissipation capability or reduction in the size thereof.
Another approach is disclosed in a technical specification from Ericsson designated “EN/LZT 146 318 R1C,” Sep. 2006 for PMF 8000 series point of load (“POL”) regulators, which is incorporated herein by reference. As illustrated on the first page of the technical specification, the PMF 8000 series POL regulators provides a magnetic component of large size and discrete implementation without any heat removal capability causing an inadequate ability to shrink the size of the device or remove heat therefrom. Another approach is disclosed in U.S. Pat. No. 6,366,486 entitled “Power Supply Device for Enhancing Heat-Dissipating Effect,” to Chen, et al. (“Chen”), issued Apr. 2, 2002, which is incorporated herein by reference. A package of Chen includes a printed circuit board, a transformer, an inductor having an inductive winding, a metal strip electrically connected to the inductive winding, and a converter electrically connected to the metal strip and covered by the metal strip. The aforementioned magnetic device also provides inadequate heat dissipation capability or reduction in the size of a power module.
Thus, the designs for power modules of the past are inadequate to produce a sufficiently miniaturized, high-density device with a substantial power rating. The power modules should be more compact than presently achievable designs. The design of power modules is inadequately served by these aforementioned limitations. In addition, a power module integrable with manufacturing processes of a commensurate end product would provide substantial cost savings therefor.
Accordingly, what is needed in the art is a power module, and related method of forming the same, that can meet the more stringent requirements of present applications such as compactness, efficiency and high power density, while being manufacturable at high volume and with lower cost than is achieved with conventional design approaches.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, which include a module having a stacked magnetic device and semiconductor device, and method of forming the same. In one embodiment, the module (e.g., a power module) includes a printed wiring board including a patterned conductor formed on an upper surface thereof. The module also includes a magnetic core mounted on the upper surface of the printed wiring board proximate the patterned conductor and a semiconductor device mounted on an upper surface of the magnetic core.
In another aspect, the present invention provides a method of forming a module (e.g., a power module) including providing a printed wiring board and forming a patterned conductor on an upper surface of the printed wiring board. The method also includes mounting a magnetic core on the upper surface of the printed wiring board proximate the patterned conductor and mounting a semiconductor device on an upper surface of the magnetic core.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to alternative embodiments in a specific context, namely, a power module (e.g., an electronic device) including a discrete or separate passive element and a semiconductor device, and a method of manufacture therefor. While the principles of the present invention will be described in the environment of a power module, any application that may benefit from a semiconductor device mounted on a discrete passive element as described herein is well within the broad scope of the present invention.
As will become more apparent, a discrete passive element may be embodied, without limitation, in an inductor or a transformer. In addition, a semiconductor device may include active elements (e.g., a switch) and passive elements (e.g., diodes, resistors, capacitors) and circuits such as controllers with control circuit elements such as operational amplifiers and comparators. Of course, the broad scope of the present invention is not limited to the particular elements that form the semiconductor device.
In addition to the passive and active elements, the semiconductor device may include integrated circuits (either in bare die or in module form) coupled (e.g., adhesively mounted) to a conductive substrate, and electrically coupled thereto with wire bonds, as well as surface-mount elements coupled thereon. An encapsulant such as plastic molded material, for example, an epoxy material, is placed around the discrete passive element and the semiconductor device, and any additional elements to provide environmental and mechanical protection as well as a thermally conductive covering to facilitate heat dissipation during operation of the power module. Other molding materials and processes as well as electronic devices constructed without an encapsulant are well within the broad scope of the present invention. It should be understood that the power module may form, at least in part, a power management system, which itself is often referred to as a power management integrated circuit.
Referring initially to
The power train 110 receives an input voltage Vin from a source of electrical power (represented by a battery) at an input thereof and provides a regulated output voltage Vout to power, for instance, a microprocessor at an output thereof. In keeping with the principles of a buck converter topology, the output voltage Vout is generally less than the input voltage Vin such that a switching operation of the power converter can regulate the output voltage Vout. An active element such as a switch (e.g., a main switch Qmn) is enabled to conduct for a primary interval (generally co-existent with a primary duty cycle “D” of the main switch Qmn) and couples the input voltage Vin to an output filter inductor Lout. During the primary interval, an inductor current ILout flowing through the output filter inductor Lout increases as a current flows from the input to the output of the power train 110. A portion of the inductor current ILout is filtered by the output capacitor Cout.
During a complementary interval (generally co-existent with a complementary duty cycle “1-D” of the main switch Qmn), the main switch Qmn is transitioned to a non-conducting state and another active element such as another switch (e.g., an auxiliary switch Qaux) is enabled to conduct. The auxiliary switch Qaux provides a path to maintain a continuity of the inductor current ILout flowing through the output filter inductor Lout. During the complementary interval, the inductor current ILout through the output filter inductor Lout decreases. In general, the duty cycle of the main and auxiliary switches Qmn, Qaux may be adjusted to maintain a regulation of the output voltage Vout of the power converter. Those skilled in the art should understand, however, that the conduction periods for the main and auxiliary switches Qmn, Qaux may be separated by a small time interval to avoid cross conduction therebetween and beneficially to reduce the switching losses associated with the power converter.
The controller 120 receives a desired characteristic such as a desired system voltage Vsystem from an internal or external source associated with the microprocessor, and the output voltage Vout of the power converter. The controller 120 is also coupled to the input voltage Vin of the power converter and a return lead of the source of electrical power (again, represented by a battery) to provide a ground connection therefor. A decoupling capacitor Cdec is coupled to the path from the input voltage Vin to the controller 120. The decoupling capacitor Cdec is configured to absorb high frequency noise signals associated with the source of electrical power to protect the controller 120.
In accordance with the aforementioned characteristics, the controller 120 provides a signal (e.g., a pulse width modulated signal SPWM) to control a duty cycle and a frequency of the main and auxiliary switches Qmn, Qaux of the power train 110 to regulate the output voltage Vout thereof. The controller 120 may also provide a complement of the signal (e.g., a complementary pulse width modulated signal S1-PWM) in accordance with the aforementioned characteristics. Any controller adapted to control at least one switch of the power converter is well within the broad scope of the present invention. As an example, a controller employing digital circuitry is disclosed in U.S. Pat. No. 7,038,438, entitled “Controller for a Power Converter and a Method of Controlling a Switch Thereof,” to Dwarakanath, et al., issued May 2, 2006 and U.S. Pat. No. 7,019,505, entitled “Digital Controller for a Power Converter Employing Selectable Phases of a Clock Signal,” to Dwarakanath, et al., issued Mar. 28, 2006, which are incorporated herein by reference.
The power converter also includes the driver 130 configured to provide drive signals SDRV1, SDRV2 to the main and auxiliary switches Qmn, Qaux, respectively, based on the signals SPWM, S1-PWM provided by the controller 120. There are a number of viable alternatives to implement a driver 130 that include techniques to provide sufficient signal delays to prevent crosscurrents when controlling multiple switches in the power converter. The driver 130 typically includes active elements such as switching circuitry incorporating a plurality of driver switches that cooperate to provide the drive signals SDRV1, SDRV2 to the main and auxiliary switches Qmn, Qaux. Of course, any driver 130 capable of providing the drive signals SDRV1, SDRV2 to control a switch is well within the broad scope of the present invention. As an example, a driver is disclosed in U.S. Pat. No. 7,330,017, entitled “Driver for a Power Converter and Method of Driving a Switch Thereof,” to Dwarakanath, et al., issued Feb. 12, 2008, which is incorporated herein by reference. Also, an embodiment of a semiconductor device that may embody portions of the power conversion circuitry is disclosed in U.S. Pat. No. 7,230,302, entitled “Laterally Diffused Metal Oxide Semiconductor Device and Method of Forming the Same,” to Lotfi, et al., issued Jun. 12, 2007, which is incorporated herein by reference, and an embodiment of an integrated circuit embodying power conversion circuitry, or portions thereof, is disclosed in U.S. Pat. No. 7,015,544, entitled “Integrated Circuit Employable with a Power Converter,” to Lotfi, et al., issued Mar. 21, 2006, which is incorporated by reference.
Turning now to
Solder paste is selectively applied or disposed to the leadframe 201 in a thin layer to areas (e.g., a pad of the leadframe 201) for screening processes to provide electrical and mechanical attachment for surface-mount elements such as the discrete passive element. The surface-mount elements such as capacitors may be placed with their conductive ends in the solder paste. The solder paste may be composed of lead-based as well as lead-free compositions.
Above the discrete passive element, a thermally conductive and electrically insulating material 205 is dispensed thereon to form an upper planar surface that acts as a die-attach layer for a semiconductor device 206 that is adhesively bonded thereon. An exemplary thermally conductive and electrically insulating material 205 is epoxy. The adhesive is cured, typically in a controlled thermal process, to secure the semiconductor device 206 to the discrete passive element. An exemplary thermally conductive and electrically insulating material 205 used to mount the semiconductor device 206 onto the discrete passive element is Ablebond 2025D from Ablestik, Rancho Dominguez, Calif. The thermally conductive and electrically insulating material 205 is dispensed (applied) onto the discrete passive element and the semiconductor device 206 is pressed into the thermally conductive and electrically insulating material 205 forcing spreading of the same under the semiconductor device 206 to obtain a minimum of 75% coverage of the bottom surface semiconductor device 206. A curing process in an in-line oven for up to about 45 minutes at about 175 degrees Celsius is used to cure the thermally conductive and electrically insulating material 205.
The semiconductor device 206 is electrically coupled to the patterned leadframe 201 by wire bonds (not shown). The assembly is then encapsulated in a molded package 207, preferably by a thermo-setting encapsulant material such as an epoxy molding compound from Sumikon EME-G770LC from Sumitomo Bakelite, Tokyo, Japan by a transfer molding process to form a surface-mount power module.
Electrical connections to an external circuit are made to the power module by electrically conductive pads formed about the edges of the power module as illustrated and described with reference to
In the embodiment illustrated in
Turning now to
Turning now to
Turning now to
The semiconductor device formed as an unpackaged semiconductor die includes switches (e.g., metal-oxide semiconductor field-effect transistors) 435 and a controller 440 and is bonded to the upper surface of the thermally conductive, electrically insulating layer 430. Pads, such as pad 445, on an upper surface of the semiconductor device are coupled by wire bonds, such as wire bond 450, to the electrically conductive leads 415 formed on the leadframe 405. The wire bonds 450 are preferably formed of gold wire to provide electrical circuit connections between the pads 445 on the upper surface of the semiconductor device and the electrically conductive leads 415 formed on the leadframe 405. Thermal conductivity of the heat path from the semiconductor device through the thermally conductive, electrically insulating layer 430 is enhanced by an overlapping region 455 of the semiconductor device with the metallic ends 425 of the main body 420 of the discrete passive element. Advantageously, high heat dissipating portions of the semiconductor device are located over or near an overlapping region such as overlapping region 455.
The steps as described above to form a power module generally do not require execution in the highly controlled environment of a clean room. Some steps, however, may be preferably performed in a clean room or other controlled environment such as typically used for assembly of integrated circuits into a molded plastic package, as is generally well known in the art.
Turning now to
Turning now to
Electrical connections of the power module to the system employing the power module are made by placing the power module on another circuit board, printed wiring board or substrate formed with interconnect pads that are covered with solder paste, generally by a screening operation, and heating the power module on the circuit board in a reflow oven. The reflow soldering operation is generally adequate to provide mechanical attachment of the power module to another circuit board, but other attachment methods such as adhesive compound are well within the broad scope of the present invention.
The exemplary lateral dimensions of the power module as illustrated in
In another embodiment of a module such as a power module (e.g., a surface-mount power module) formed with a discrete passive element (e.g., a magnetic device such as an inductor), the inductor is incorporated into a molded package employing processes as introduced herein. The implementation of an inductor allows for simplification of construction of the power module (e.g., power module formed as a power converter) that in turn enables simplification of conventional manufacturing steps, advantageously resulting in a lower manufacturing cost with reduction in product size.
In an embodiment, the magnetic core of the inductor is assembled into the end product separately from the electrically conductive coil (also referred to as “coil”). The magnetic core and the coil are formed as two physically independent structures that are brought together when the inductor and/or power module are assembled. In a first structure, an electrically conductive coil is formed on a printed wiring board or a substrate of a molded package. In a second structure, a magnetic material is deposited on to a non-electrically conductive carrier (also referred to as a “carrier”) such as a substantially undoped silicon die that is then placed on the printed wiring board or substrate.
The two physically independent structures form an inductor without the need for a manufacturing process that separately combines the two structures. When the two structures are brought physically close to each other, the magnetic coupling between the two structures produces an inductance with physical, electrical, and magnetic characteristics suitable for operation of a circuit such as a power converter.
The electrically conductive coil is formed according to design rules and manufacturing steps permitted by an integrated circuit assembly process for the printed wiring board or substrate. The coil is directly electrically coupled to the remaining circuit elements (e.g., switches) of, for instance, the power converter through conventional connection package points such as by means of wire bonds, solder bumps, or other integrated circuit package assembly techniques. No coil terminations, solderable leads, crimped conductors, or other inductor terminations are needed, since the coil is independently fabricated in a different process step than that used to form the magnetic core.
The second structure (e.g., the magnetic core) is formed using a non-magnetic and non-electrically conductive carrier such as a substantially undoped silicon wafer that is subjected to a deposition process that, after dicing, produces a magnetic layer/film with desired magnetic properties in the end package. The magnetic core formed as a diced die with desired magnetic characteristics is placed proximate such as above, parallel, and/or adjacent to the portion of the printed wiring board or substrate on which the coil has been formed. The proximity of these two structures produces desired inductive properties for the coil by virtue of presence of appropriately chosen magnetic material on the carrier. Alternately, the magnetic core can be implemented using a ceramic ferrite piece part that can be formed by conventional press and fire techniques, and placed proximate to the coil in the end package. The ceramic ferrite piece part may be bonded to the printed wiring board or substrate by depositing epoxy dots on the surface thereof, pressing the magnetic core onto the dots, and then curing the epoxy.
In the case where the carrier is a silicon die, the magnetic core is formed by deposition of a suitably chosen magnetic thin-film material, preferably with a high magnetic permeability, on the surface of the silicon die to a desired thickness. Deposition methods include electro-chemical deposition and vacuum sputter deposition. The choice of materials is wide including metallic alloys including iron, cobalt, and nickel. An advantageous alloy is one containing iron and cobalt. Other alloys include, without limitation, various alloys of iron, cobalt and nickel, including alloys of iron and nitrogen or iron and nickel.
Deposition of the magnetic material may also be performed employing a plating process. In such a plating process, a thin, seed layer of a conductive material is sputtered or deposited by an electroless plating process on to a silicon die. A thicker layer of the magnetic material is then deposited or electroplated on to the seed layer employing conventional electroplating techniques. A photoresist and patterning process may be employed to define an area of deposition for the seed layer. For an example of a magnetic device, see U.S. patent application Ser. No. 7,920,042, entitled “Micromagnetic Device and Method of Forming the Same,” to Lotfi, et al., issued Apr. 5, 2011, which is incorporated herein by reference. The power control and processing functions are implemented in a semiconductor device such as another silicon die that is placed over the magnetic core, thereby creating a power module in an integrated molded package.
Turning now to
Conductive lands are formed around the periphery of the printed wiring board 900. The upper conductive lands 901, 902, 911 are formed on the upper surface of the printed wiring board 900 and a lower conductive land 912 is formed on an opposing (lower) surface of the printed wiring board 900. The upper conductive lands (e.g., the upper conductive land 902) are coupled by an electrically conductive via to the lower conductive lands (e.g., the lower conductive land 912) on the opposing (lower) surface of the printed wiring board 900. An edge of the lower conductive land 912 is visible in
One terminal of the spirally shaped conductor 903 terminates on the upper conductive land 901. An electrically conductive via 904 couples another terminal of the spirally shaped conductor 903 to a terminal of another spirally shaped conductor (not shown) formed with a winding sense (e.g., the same winding sense) on the opposing (lower) surface of the printed wiring board 900. The spirally shaped conductor formed on the opposing (lower) surface of the printed wiring board 900 with the same winding sense produces a magnetic field in the same direction as a magnetic field produced by the spirally shaped conductor 903 formed on the upper surface of the printed wiring board 900 by a current flowing serially through both spirally shaped conductors. Another terminal of the another spirally shaped conductor terminates on a lower conductive land (not shown) on the opposing (lower) surface of the printed wiring board 900, such as a lower conductive land on the opposing (lower) surface of the printed wiring board 900 under the upper conductive land 911.
The conductive lands on the opposing (lower) surface of the printed wiring board 900 form external terminals, contacts or leads for the power module. The insulating material of the printed wiring board 900 is preferably formed, without limitation, of “BT” material, which is a high-temperature insulating material commonly used in the art to form printed wiring boards. An alternative insulating material for the printed wiring board 900 is “FR4.” The patterned conductor (e.g., the spirally shaped conductor 903) of the printed wiring board 900 is formed as a layer of copper such as a two-ounce layer of copper. The spirally shaped conductor 903 is typically overlaid with a thin film of gold to accommodate a soldering or a wire-bonding operation in a later manufacturing step. The printed wiring board 900 may be formed as an array of devices on a larger printed wiring board that may then be sawed in a later manufacturing step to form portions of the power module illustrated in
Turning now to
The magnetic core 1001 that is advantageously formed with a relatively high magnetic permeability material is operative to produce a “magnetic mirror” effect wherein a substantial portion of the magnetic flux produced in accordance with the spirally shaped conductor 903 is conducted within the volume of the magnetic core 1001. The magnetic mirror effect generally constrains the magnetic flux that is produced below the printed wiring board 900 to an area substantially beneath the magnetic core 1001. If the magnetic permeability of the magnetic core 1001 is sufficiently high, relatively little flux is produced in the region above the magnetic core 1001 compared to the magnetic flux produced in the magnetic core 1001. In this manner, the inductance of the spirally shaped conductor 903 is substantially doubled in comparison to a similarly formed winding without an overlying magnetic core 1001, and the region of the magnetic flux is practically constrained to an area near and including the magnetic core 1001.
Turning now to
Turning now to
Turning now to
Electrical connections of the power module to a system employing the power module are made by placing the power module on another circuit board or printed wiring board formed with interconnect pads that are covered with solder paste, generally by a screening operation, and heating the power module on the circuit board in a reflow oven. The reflow soldering operation is generally adequate to provide mechanical attachment of the power module to another circuit board, but other attachment methods such as by an adhesive compound are well within the broad scope of the present invention. The exemplary lateral dimensions of the power module as illustrated in
Thus, a power module and a method of manufacture thereof with readily attainable and quantifiable advantages have been introduced. Those skilled in the art should understand that the previously described embodiments of the power module are submitted for illustrative purposes only. In addition, other embodiments capable of producing a power module while addressing compact, efficient, and high density power modules, while being manufacturable at high volume and with lower cost than is achieved with the prior art are well within the broad scope of the present invention. While the power module has been described in the environment of electronic power conversion, the module may also be incorporated into other electronic devices, systems or assemblies such as entertainment, motor control, or computing devices, or into other devices wherein a compact module is required that can be assembled advantageously at low cost.
For a better understanding of power converters, see “Modern DC-to-DC Switchmode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991). For a better understanding of magnetic devices, see “Soft Ferrites: Properties and Applications,” by E. C. Snelling, published by Butterworth-Heinemann, Second Edition, 1989. The aforementioned references are incorporated herein by reference in their entirety.
Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a continuation in part of, and claims priority to, U.S. patent application Ser. No. 12/244,669, entitled “Module Having a Stacked Passive Element and Method of Forming the Same,” filed on Oct. 2, 2008, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1889398 | Bishop | Nov 1932 | A |
2600473 | Brockman | Jun 1952 | A |
3210707 | Constantakes | Oct 1965 | A |
3691497 | Bailey et al. | Sep 1972 | A |
3762039 | Douglass et al. | Oct 1973 | A |
3902148 | Drees et al. | Aug 1975 | A |
3908264 | Friberg et al. | Sep 1975 | A |
3947699 | Whitmer | Mar 1976 | A |
4101389 | Uedaira | Jul 1978 | A |
4103267 | Olschewski | Jul 1978 | A |
4187128 | Billings et al. | Feb 1980 | A |
4199743 | Martincic | Apr 1980 | A |
4349862 | Bajorek et al. | Sep 1982 | A |
4433927 | Cavallari | Feb 1984 | A |
4455545 | Shelly | Jun 1984 | A |
4586436 | Denney et al. | May 1986 | A |
4636752 | Saito | Jan 1987 | A |
4668310 | Kudo et al. | May 1987 | A |
4681718 | Oldham | Jul 1987 | A |
4751199 | Phy | Jun 1988 | A |
4754317 | Comstock et al. | Jun 1988 | A |
4777465 | Meinel | Oct 1988 | A |
4808118 | Wilson et al. | Feb 1989 | A |
4847986 | Meinel | Jul 1989 | A |
4870224 | Smith et al. | Sep 1989 | A |
4878291 | Suguri | Nov 1989 | A |
4916522 | Cohn | Apr 1990 | A |
4967156 | Seitz | Oct 1990 | A |
4975671 | Dirks | Dec 1990 | A |
5056214 | Holt | Oct 1991 | A |
5059278 | Cohen et al. | Oct 1991 | A |
5096513 | Sawa et al. | Mar 1992 | A |
5118298 | Murphy | Jun 1992 | A |
5161098 | Balakrishnan | Nov 1992 | A |
5187119 | Cech et al. | Feb 1993 | A |
5262296 | Ogawa et al. | Nov 1993 | A |
5279988 | Saadat et al. | Jan 1994 | A |
5285369 | Balakrishnan | Feb 1994 | A |
5345670 | Pitzele et al. | Sep 1994 | A |
5353001 | Meinel et al. | Oct 1994 | A |
5428245 | Lin et al. | Jun 1995 | A |
5430613 | Hastings et al. | Jul 1995 | A |
5436409 | Sawada et al. | Jul 1995 | A |
5469334 | Balakrishnan | Nov 1995 | A |
5484494 | Oda et al. | Jan 1996 | A |
5524334 | Boesel | Jun 1996 | A |
5543773 | Evans et al. | Aug 1996 | A |
5561438 | Nakazawa et al. | Oct 1996 | A |
5574273 | Nakagawa et al. | Nov 1996 | A |
5574420 | Roy et al. | Nov 1996 | A |
5578261 | Manzione et al. | Nov 1996 | A |
5692296 | Variot | Dec 1997 | A |
5751528 | Nepela et al. | May 1998 | A |
5783025 | Hwang et al. | Jul 1998 | A |
5787569 | Lotfi et al. | Aug 1998 | A |
5788854 | Desaigoudar et al. | Aug 1998 | A |
5802702 | Fleming et al. | Sep 1998 | A |
5807959 | Wu et al. | Sep 1998 | A |
5834691 | Aoki | Nov 1998 | A |
5835350 | Stevens | Nov 1998 | A |
5837155 | Inagaki et al. | Nov 1998 | A |
5846441 | Roh | Dec 1998 | A |
5898991 | Fogel et al. | May 1999 | A |
5920249 | Huss | Jul 1999 | A |
5973923 | Jitaru | Oct 1999 | A |
5998925 | Shimizu et al. | Dec 1999 | A |
6005377 | Chen et al. | Dec 1999 | A |
6005467 | Abramov | Dec 1999 | A |
6060176 | Semkow et al. | May 2000 | A |
6081997 | Chia et al. | Jul 2000 | A |
6087920 | Abramov | Jul 2000 | A |
6087921 | Morrison | Jul 2000 | A |
6094123 | Roy | Jul 2000 | A |
6101218 | Nagano | Aug 2000 | A |
6118351 | Kossives et al. | Sep 2000 | A |
6118360 | Neff | Sep 2000 | A |
6143157 | Andrus et al. | Nov 2000 | A |
6160721 | Kossives et al. | Dec 2000 | A |
6165340 | Andrus et al. | Dec 2000 | A |
6246311 | Finnemore et al. | Jun 2001 | B1 |
6255714 | Kossives et al. | Jul 2001 | B1 |
6317948 | Kola et al. | Nov 2001 | B1 |
6353379 | Busletta et al. | Mar 2002 | B1 |
6362714 | Rice et al. | Mar 2002 | B1 |
6366486 | Chen et al. | Apr 2002 | B1 |
6384706 | Iwanami | May 2002 | B1 |
6440750 | Feygenson et al. | Aug 2002 | B1 |
6466454 | Jitaru | Oct 2002 | B1 |
6479981 | Schweitzer, Jr. et al. | Nov 2002 | B2 |
6495019 | Filas et al. | Dec 2002 | B1 |
6541819 | Lotfi et al. | Apr 2003 | B2 |
6549409 | Saxelby, Jr. et al. | Apr 2003 | B1 |
6552629 | Dixon et al. | Apr 2003 | B2 |
6560860 | Shepherd | May 2003 | B2 |
6578253 | Herbert | Jun 2003 | B1 |
6608332 | Shimizu et al. | Aug 2003 | B2 |
6621137 | Ma et al. | Sep 2003 | B1 |
6624498 | Filas et al. | Sep 2003 | B2 |
6649422 | Kossives et al. | Nov 2003 | B2 |
6691398 | Gutierrez | Feb 2004 | B2 |
6693805 | Steigerwald et al. | Feb 2004 | B1 |
6731002 | Choi | May 2004 | B2 |
6747538 | Kuwata et al. | Jun 2004 | B2 |
6750403 | Peterson | Jun 2004 | B2 |
6775901 | Lee et al. | Aug 2004 | B1 |
6790379 | Aoki et al. | Sep 2004 | B2 |
6912781 | Morrison et al. | Jul 2005 | B2 |
6922130 | Okamoto | Jul 2005 | B2 |
6989121 | Thummel | Jan 2006 | B2 |
6998952 | Zhou et al. | Feb 2006 | B2 |
6998953 | Yeo et al. | Feb 2006 | B2 |
7009486 | Goeke et al. | Mar 2006 | B1 |
7015544 | Lotfi et al. | Mar 2006 | B2 |
7019505 | Dwarakanath et al. | Mar 2006 | B2 |
7020295 | Hamada et al. | Mar 2006 | B2 |
7021518 | Kossives et al. | Apr 2006 | B2 |
7023315 | Yeo et al. | Apr 2006 | B2 |
7038438 | Dwarakanath et al. | May 2006 | B2 |
7057486 | Kiko | Jun 2006 | B2 |
7101737 | Cobbley | Sep 2006 | B2 |
7151228 | Takase et al. | Dec 2006 | B2 |
7157984 | McCorquodale et al. | Jan 2007 | B2 |
7175718 | Nobutoki et al. | Feb 2007 | B2 |
7180395 | Lotfi et al. | Feb 2007 | B2 |
7183622 | Heck et al. | Feb 2007 | B2 |
7188530 | Pedersen et al. | Mar 2007 | B2 |
7214985 | Lotfi et al. | May 2007 | B2 |
7229886 | Lotfi et al. | Jun 2007 | B2 |
7230302 | Lotfi et al. | Jun 2007 | B2 |
7230316 | Yamazaki et al. | Jun 2007 | B2 |
7232733 | Lotfi et al. | Jun 2007 | B2 |
7236086 | Vinciarelli et al. | Jun 2007 | B1 |
7244994 | Lotfi et al. | Jul 2007 | B2 |
7250842 | Johnson et al. | Jul 2007 | B1 |
7256674 | Lotfi et al. | Aug 2007 | B2 |
7276998 | Lotfi et al. | Oct 2007 | B2 |
7330017 | Dwarakanath et al. | Feb 2008 | B2 |
7426780 | Lotfi et al. | Sep 2008 | B2 |
7434306 | Gardner | Oct 2008 | B2 |
7462317 | Lotfi et al. | Dec 2008 | B2 |
7498522 | Itoh | Mar 2009 | B2 |
7786837 | Hebert | Aug 2010 | B2 |
7791440 | Ramadan et al. | Sep 2010 | B2 |
7876572 | Sota | Jan 2011 | B2 |
7936160 | Sheehan | May 2011 | B1 |
7948772 | Tung et al. | May 2011 | B2 |
7974103 | Lim et al. | Jul 2011 | B2 |
20010030595 | Hamatani et al. | Oct 2001 | A1 |
20010033015 | Corisis | Oct 2001 | A1 |
20010041384 | Ohgiyama et al. | Nov 2001 | A1 |
20030002265 | Simmons | Jan 2003 | A1 |
20030062541 | Warner | Apr 2003 | A1 |
20030076662 | Miehling | Apr 2003 | A1 |
20030232196 | Anand et al. | Dec 2003 | A1 |
20040130428 | Mignano et al. | Jul 2004 | A1 |
20050011672 | Alawani et al. | Jan 2005 | A1 |
20050167756 | Lotfi et al. | Aug 2005 | A1 |
20050168203 | Dwarakanath et al. | Aug 2005 | A1 |
20050168205 | Dwarakanath et al. | Aug 2005 | A1 |
20050169024 | Dwarakanath et al. | Aug 2005 | A1 |
20050212132 | Hsuan et al. | Sep 2005 | A1 |
20060009023 | Nair et al. | Jan 2006 | A1 |
20060038225 | Lotfi et al. | Feb 2006 | A1 |
20060040449 | Lotfi et al. | Feb 2006 | A1 |
20060040452 | Lotfi et al. | Feb 2006 | A1 |
20060081937 | Lotfi et al. | Apr 2006 | A1 |
20060096087 | Lotfi et al. | May 2006 | A1 |
20060096088 | Lotfi et al. | May 2006 | A1 |
20060097831 | Lotfi et al. | May 2006 | A1 |
20060097832 | Lotfi et al. | May 2006 | A1 |
20060097833 | Lotfi et al. | May 2006 | A1 |
20060109072 | Giandalia et al. | May 2006 | A1 |
20060145800 | Dadafshar et al. | Jul 2006 | A1 |
20060197207 | Chow et al. | Sep 2006 | A1 |
20070025092 | Lee et al. | Feb 2007 | A1 |
20070074386 | Lotfi et al. | Apr 2007 | A1 |
20070075815 | Lotfi et al. | Apr 2007 | A1 |
20070075816 | Lotfi et al. | Apr 2007 | A1 |
20070075817 | Lotfi et al. | Apr 2007 | A1 |
20070210777 | Cervera et al. | Sep 2007 | A1 |
20070246808 | Ewe et al. | Oct 2007 | A1 |
20080001701 | Gardner et al. | Jan 2008 | A1 |
20080090079 | Fajardo et al. | Apr 2008 | A1 |
20080180075 | Xie et al. | Jul 2008 | A1 |
20080258274 | Sinaga et al. | Oct 2008 | A1 |
20080258278 | Ramos et al. | Oct 2008 | A1 |
20080301929 | Lotfi et al. | Dec 2008 | A1 |
20080303131 | McElrea et al. | Dec 2008 | A1 |
20090004774 | Lee et al. | Jan 2009 | A1 |
20090057822 | Wen et al. | Mar 2009 | A1 |
20090065964 | Lotfi et al. | Mar 2009 | A1 |
20090066300 | Lotfi et al. | Mar 2009 | A1 |
20090066467 | Lotfi et al. | Mar 2009 | A1 |
20090066468 | Lotfi et al. | Mar 2009 | A1 |
20090068347 | Lotfi et al. | Mar 2009 | A1 |
20090068400 | Lotfi et al. | Mar 2009 | A1 |
20090068761 | Lotfi et al. | Mar 2009 | A1 |
20090146297 | Badakere et al. | Jun 2009 | A1 |
20100087036 | Lotfi et al. | Apr 2010 | A1 |
20100164449 | Dwarakanath et al. | Jul 2010 | A1 |
20100164650 | Abou-Alfotouh et al. | Jul 2010 | A1 |
20100212150 | Lotfi et al. | Aug 2010 | A1 |
20110181383 | Lotfi et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
10022980 | Dec 2000 | DE |
2 041 818 | Sep 1980 | GB |
01072517 | Mar 1989 | JP |
2-228013 | Sep 1990 | JP |
5-314885 | Nov 1993 | JP |
6-251958 | Sep 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20100214746 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12244669 | Oct 2008 | US |
Child | 12393818 | US |